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ABSTRACT The outliers caused by noise and mismatching severely restrict the precision of visual
odometry. Moreover, the dynamic environment is also a crucial element that decreases the robustness of
the systems. This paper presents a robust stereo visual odometry by decoupled ego-motion estimation based
on probabilistic matches and rejecting the outliers of dynamic objects through motion segmentation. Fast
ZNCC method, based on local sum table and partition upper bound schemes, is presented for selecting
probabilistic matches while keeping run-time efficiency. The selection of multi-correspondences can avoid
mismatching of corresponding points. In consideration of noise interference, the essential matrix is computed
in a probabilistic framework to estimate the initial value of the rotation matrix without estimated depth errors
involved. Then, in order to estimate pose robustly in dynamic environment, a modified sparse subspace
clustering (SSC) method is discussed, which aims to cluster the tracked 3D points cloud to avoid errors
caused by affine transformation. The non-negative constraint makes the method suitable for fast moving
camera. The proposed 3D-SSC method removes the outliers belonging to dynamic objects effectively.
Finally, the detected inliers and depths are employed to estimate the translation matrix and refine rotation
matrix. The proposed method is evaluated on the KITTI benchmark and compared with the state-of-the-art
methods. The results show that our method is more robust as it can detect outliers more accurately in dynamic
environments and achieve higher precision in motion estimation.

INDEX TERMS Stereo visual odometry, probabilistic matches, decoupling estimation, 3D SSC.

I. INTRODUCTION
In recent years, visual odometry (VO) and visual SLAM
have played an immensely important role on autonomous
driving [1], [2]. With the abundant information provided via
vision, the autonomous system can generate self-localization
measurements. Most odometry methods preform registration
between the current image and a previous reference, in which
the estimated transformations between these images are
assumed to originate from the camera motion [3]. However,
almost all the techniques are built under the assumption of
static environments, which usually cannot be satisfied in the
real world. Dynamic objects which violate this assumption
will seriously influence the precision of estimation.

Improving the performance of visual odometry in dynamic
environments is an important and desirable problem, espe-
cially for vehicles. For cameras equipped on vehicles cap-
turing dynamic scenes, both static and dynamic scene parts

appear to be moving [4]. It is seldom the case that vehicles
operate in strictly static environments. Therefore, the mov-
ing objects in environments will significantly impact the
accuracy of estimation.

In addition, the ego-motion of mobile vehicles consists
of the rotation R and the translation t. They are estimated
and integrated together in most VO approaches, which are
prone to drift. From an application perspective, the location
information of the vehicle is crucial information supported by
the odometry. In the KITTI [5] vision benchmark scoreboard,
the translation error is regarded as the exclusive factor for
ranking, and the rotation error is displayed for reference
only. Nevertheless, rotation errors have greater influence than
translation errors on final location during the cumulation of
errors in dead reckoning process such as odometry. The trans-
lation is reliant on the depth in contrast to the rotation. There-
fore, the operation that estimates rotation and translation
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separately will recover rotation with extra precision and
induce high accuracy for location [6]. The VO methods that
involve feature detection and matching process, however, are
suffering from feature mismatching [7].

Hence, in this paper, we design a probabilistic decoupled
framework based robust ego-motion estimation algorithm to
estimate rotation, with translation calculated after dynamic
objects rejected by motion segmentation method. A pair of
stereo cameras are employed to capture images of scenes and
infer the ego-motion. In particular, a set of correspondence
points accompanying with the probabilities of matching for
each corner are estimated through fast ZNCC method to
maintain both accuracy and efficiency. The use of probabilis-
tic multi-correspondences allows us to hold several match
hypotheses for the essential matrix computation, which is an
advantage when there are ambiguous matches. Furthermore,
to avoid the interruptions of dynamic objects in environment,
the 3D trajectories of tracked points along sequences are
employed to directly infer the clustering of data. Since the
Sparse Subspace Clustering (SSC) method performs motion
segmentation well in Hopkins dataset [8], here we modify
this method with 3D data structure as well as non-negative
constraint to categorize trajectories at high speed. After out-
liers rejection through 3D-SSC, the filtered matching points
are used to estimate translation. The algorithm is tested on
the KITTI dataset. The experimental results demonstrate
that our approach is able to exclude outliers of moving
objects in high speed scenes and improve the motion esti-
mation performance. The main contributions of our work are
as follows:

1) A novel motion estimation method is devised, which
estimates the essential matrix in probabilistic framework with
noise and mismatching error being considered. Therefore,
the precision of rotation is improved by the use of robust
probabilistic framework and decoupling estimation for the
essential matrix.

2) The SSC method is employed in 3D space to avoid error
caused by affine transformation. In addition, a more restrict
constraint for sparse self-expression is applied to adjust to fast
moving camera circumstances.

The paper is organized as follows. In Section II, we review
state-of-art visual odometry methods as well as several
approaches which tackle dynamic environments. Section III
describes the overall structure of our visual odometry algo-
rithm. The details about selection of probabilistic matches
and decoupling estimation of rotation are given first. Then,
the SSC method combined with 3D points (3D SSC) is
discussed in detail. In Section IV, we assess the perfor-
mance of our method by comparing it with state-of-art works.
Section V concludes our work and states future directions for
research.

II. RELATED WORK
The estimation of the ego-motion, the position and orientation
of the car is addressed with wheel encoders traditionally,
which suffers from wheel slip in uneven terrain or adverse

conditions and cannot recover from errors in the measure-
ments. The visual odometry technique first appeared in [9]
and then became popular as it is less affected by these condi-
tions. After that, more and more researchers and groups have
been focusing on the topic of self-localization of a system
relying solely or mainly on visual data.

The essential part of any visual odometry is the robust-
ness of estimation. Therefore, a broad variety of meth-
ods have been introduced to increase the accuracy of
estimation [10], [11]. The most general way is to estimate
the full six motion parameters in a Random Sample Con-
sensus (RANSAC) [12] framework [13], [14], where the reli-
ability of full motion hypothesis is related to the number
of iterations and the error threshold. This means that it is
difficult to lead to a correct result. Several best performing
methods in KITTI dataset decouple the estimation of the rota-
tion and the translation as there is a fundamental difference
between their estimation. An initial rotation estimation is uti-
lized to decouple the rotational and translational optical flow
in [15]. The resulting characteristics are then used to exclude
outliers. While in [16] the motion is separately estimated,
where the rotation is estimated by five point method and the
translation is estimated by three point method. A separation
step of rotation and translation estimation is carried out [17]
in the condition of known direction and homography rela-
tion. Such studies mention that the depth is only relative to
translation, in contrast to rotation. Following this idea that the
rotation is independent on the depth, we estimate the rotation
component in advance without depth information involved to
acquire higher accuracy.

The above mentioned methods directly use feature cor-
respondences between images to estimate the ego-motion.
However, the deterministic matching points may lead to
errors due to too little texture, low quality of images and
noise. Then researchers tend to employ probabilistic method
to reduce ambiguity. Domke and Aloimonos [18] propose a
method to compute correspondence probability distributions
using Gabor filters which are tuned to different orientations
and scales. They further establish a probabilistic framework
to estimate epipolar geometry. However, in the presence of
regularly repetitive texture, the responses of the Gabor fil-
ter are identical at multiple places and this would lead to
ambiguous estimation of ego-motion. Work in [19] models
the joint probability distributions related to the positions of
corresponding features in different images by using the joint
feature distribution to yield a distribution over all feasible
ego-motions. However, given the variates in scene structure,
the extracted feature correspondences between images is not
always possible and prone to be mismatched. Therefore,
the result of joint feature distribution probably is not true.
The method proposed in [20] and [21] presents a structure
from motion algorithm by using optical flow probability dis-
tributions calculated by gradient based method. This method
assumes that the noise is Gaussian and the noise parameters
are chosen empirically to compute optical flow from the gra-
dient of images, which may easily violate the actual situation.
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Without any restriction of errors, the zero-mean normal-
ized cross correlation (ZNCC) is served for probability dis-
tribution computation to acquire more robust ego-motion
estimation under adverse image conditions [22]. Although
this algorithm provides more accurate correspondences for
motion estimation, the practical usage is limited because
of the computational burden of ZNCC. Our approach,
inspired by [22], raises a fast ZNCC method to intensely
reduce the computation redundancy and keep its high pre-
cision. This kind of correspondences will achieve a more
accurate ego-motion estimation, particularly when image is
ambiguous, under non-ideal conditions and containing many
unreliable correspondences.

Despite the remarkable results in visual odometry, most
approaches work on the assumption of static environments.
Since the real world usually contains dynamic objects, cur-
rent approaches are prone to failure due to false correspon-
dences or occlusion of previously tracked features. Standard
outliers rejection approach such as RANSAC only work
well under the circumstance where static features are the
majority. To improve odometry performance in dynamic
environment, [23] develops an automatic self-supervised
approach to learn the recognition of dynamic objects in the
environments, which does not require any manual labeling.
Reference [24] also employs an image segmentation classi-
fier learned from hand labeling training examples. This kind
of training method requires enough training data and invari-
able environment for estimation. Other approaches leverage
external sensors such as an inertial measurement unit (IMU)
to solve this problem [25], [26]. A background model esti-
mated from the warped depth images is developed by [27]
to subtract static background. The depth captured from
RGB-D camera severely restricts its application to outdoor
environment.

Multibody motion segmentation clustering is another
kind of technique to handle motion detection problem in
keypoint based VO. In recent decades, numerous works
have been developed in multibody motion segmenta-
tion, such as Generalized Principle Component Analy-
sis (GPCA) [28] and RANSAC-based motion segmentation.
Elhamifar and Vidal [29] proposed a SSC algorithm sup-
ported by the notion of self-expressiveness property of the
data and spectral clustering framework as inferring solution.
In fact, SSC is proved to be the best performance motion seg-
mentation method [8]. Afterwards, many studies have been
proposed to modify the SSC method for higher precision.
Reference [30] considers the problem of subspace clustering
under noise. While [31] and [32] address the problems of
incomplete data and large size data, respectively. From a dif-
ferent perspective, the affinity and segmentation framework
are joint optimized in [33]. Nevertheless, the challenge in
visual odometry application is to tackle the segmentation in
the case of high speed cameras. In this paper, the 3D SSC
method is developed to acquire more robust segmentation
results when vehicles move quickly.

FIGURE 1. The pipeline of our algorithm.

III. PROBLEM FRAMEWORK AND METHOD
This paper presents a visual odometry algorithm that uses
not only probabilistic framework to achieve rotation decou-
pling estimation but also 3D SSC to detect outliers of the
dynamic objects in high speed environment. As shown in
the visual odometry pipeline of our proposed method in
Fig. 1, the corresponding points of the current framematching
with each corner detected in the previous frame are com-
puted via fast ZNCC method (see Section III-A). Using the
probabilistic matches, the essential matrix is defined as the
hypothesis with the maximum likelihood. Then the one-to-
one correspondence is detected by epipolar constraint, which
allows the 3D points to be tracked along the sequence (see
Section III-B). To increase the robustness against dynamic
environment, 3D SSC method is applied to distinguish the
points between background and dynamic objects in direct
3D space (see Section III-C). Finally, the rotation extracted
from essential matrix is refined by reprojection error and the
translation is estimated more accurately after exclusion of
outliers.

A. PROBABILISTIC CORRESPONDING POINTS
MATCHING WITH FAST ZNCC
The first stage of the algorithm is to find the probabilistic
corresponding points q1,··· ,m in image Ik+1 which match with
corner p detected in Ik . For corner detection, we utilize Fea-
tures from Accelerated Segment Test (FAST) algorithm [34]
on the previous frame with non-maximum suppression
employed. After the corners are detected, the bucketing
scheme is applied to obtain uniformly distributed corners as
described in [35] for following points clustering task. Then
the most possible corresponding points and the related prob-
abilities of each corner will be selected as input of ego-motion
estimation in probabilistic framework. Here we utilize the
ZNCC method for probabilistic corresponding points match-
ing as [22]. The corresponding points in current frame of each
corner is determined through ZNCC over a searching area
around corner in previous frame. ZNCC is the most common
and effective criterion of integer-pixel correlation calculation,
since it is robust to changes in the amplitude of illumination
on two compared images, and less sensitive to noise in com-
parisonwith the sum of absolute differences (SAD) and so on.
However, there exists a higher computational cost because of
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its complex definition, which is a significant drawback in its
real-time application.

In this section, we develop a fast way to derive ZNCCbased
corresponding points, while still keep robustness. For each
corner, the computation of ZNCC values over the searching
area can be split into numerator and denominator compu-
tation, respectively. The denominator is computed by local
sum table to eliminate repetition and redundancy, while the
numerator is computed with block partition and upper bound
schemes to skip impossible matches and obtain the most
likely corresponding points with high ZNCC values. The
computation of denominator in ZNCC involves the calcula-
tion of the means and the squares of the searching areas in the
latter image. Hence, the two sums of intensities in searching
area can be efficiently computed by introducing the local sum
table in columns, expressed as

Sg(u, v) =
∑
x∈Wx

I (x + u, v, t + dt)

Sg2 (u, v) =
∑
x∈Wx

I (x + u, v, t + dt)2 (1)

to compute the sums in table at location (u, v), where Wx is
the row size of patch around the feature point. In the local
sum table approach, we compute the sum values of every
column along the row direction and store it in the sum table
in advance.

Referring to Cauchy-Schwarz inequality, the upper bound
µ0(u, v) of the cross correlation term ψ(u, v) in numerator
can be inferred as

ψ(u, v)

=

∑
x∈Wx

∑
y∈Wy

[I (x, y, t)×I (x + u, y+v, t+dt)]

≤

√∑
x∈Wx

∑
y∈Wy

I (x, y, t)2
√∑
x∈Wx

∑
y∈Wy

I (x+u, y+v, t+dt)2

= µ0(u, v) (2)

Following the multilevel successive elimination scheme,
we divide the patch by column uniformly to obtain tighter
upper bounds for different partitioning levels in cross corre-
lationµl(u, v) as well as ZNCC value Cmax, respectively. The
upper bound in l level is given as:

µl(u, v)

=

l∑
y=1

∑
x∈Wx

[I (x, y, t)× I (x + u, y+ v, t + dt)]


+

Wy∑
y=l+1

√∑
x∈Wx

I2(x, y, t)
√∑
x∈Wx

I2(x+u, y+v, t+dt)

 (3)

whereWx is the column size of patch and the maximum value
of l. As the level number increases, the upper bound is more
tighter. An initial value of maximum ZNCC value Cmax is
setted and updated, or the numerator computation is skipped

Algorithm 1 Fast ZNCC Method Based on Local Sum
Table and Partition Upper Bound Schemes
Require: Two images, the key points in the first image
Ensure: The final probability distributions of key points
1: Split the matching candidate patch in columns and estab-

lish the local intensity and square intensity sum tables in
columns for each point.

2: Calculate the denominator by using sum table scheme to
reduce repeating and redundant computations.

3: Start with calculating the numerator, initialize the level
of the upper bound for cross correlation ψ(u, v) as l = 0,
where the number of column determines the hierarchy.

4: Caculate the upper bound of the level l.
a) Calculate the cross correlations of the first l parts.
b) Obtain µl(u, v) by adding the result of (a) to the
intensity squares of the last N − l parts which are given
by sum table Sg2 (u, v).
c) Derive the upper boundCµ of the ZNCC value belong-
ing to this level.
d) Update Cmax if l = N or the current ZNCC value is
bigger than Cmax.

5: Check if Cµ is larger than the current maximum ZNCC
value. If not, set the ZNCC value in this position to 0 and
go to step 1 to calculate the ZNCC value in the next
position. Otherwise, go to step 6.

6: l = l + 1, go to step 4.

FIGURE 2. The probability distributions of exemplary corresponding
points with the partition upper bound computation.

as the upper bound Cµ of ZNCC value for certain level l is
less than Cmax. The details of this algorithm are described in
Algorithm 1.

The matching points and probabilities are illustrated
in Fig. 2. It can be seen that only the most possible corre-
spondence is left in Fig. 2(a), whereas Fig. 2(b) still remains
several most likely correspondences with high probabilities.
Other points in the searching area are skipped during the
execution of upper bound scheme.
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B. DECOUPLING ROTATION BY ESSENTIAL
MATRIX ESTIMATION
As in vehicle tracking and locating, it is ineluctable in con-
secutive frames that a large number of mismatching pixels
will be present. Therefore, the usage of multi-corresponding
points of each corner for ego-motion estimation can avoid
high mismatching errors and significantly improve the accu-
racy. The seminal work of Dmoke and Aloimonos [18] has
dealt with the epipolar geometry estimation by computing the
response of Gabor filters and further calculating the reliability
of the essential matrix using an exponential transformation.
In this section, the approach in [17] is briefly introduced
firstly. Then the extension with perpendicular distance and
Least-Median-of-Squares (LMedS) technique is carried out
to improve the essential matrix estimation.

In [17], the parameters to be estimated are rotation
matrix R and normalized translation directions t̂ = t

‖t‖ .
A bunch of hypotheses for parameters are defined and eval-
uated by analyzing the probabilistic correspondences ρp(q)
along the epipolar lines. A correspondence q for the cor-
ner p is selected which best satisfies the epipolar constraint
denoted by

pTEq = 0 (4)

For each point p in image Ik , the probability of one param-
eter hypothesis Ei is measured by the exponential probabil-
ity of the optimal probabilistic corresponding point along
the epipolar constraint in Ik+1 , the probability is given by
assuming each point maintains statistical independence of
each other

ρ (Ei) ∝
∏

ρ (Ei |p ) (5)

Finally, the result of the algorithm is the parameters with
the maximum probability as defined

E∗ = argmax ρ(E∗i ) (6)

Although the algorithm in [18] estimated the essential
matrix in probabilistic framework, the error in epipolar geo-
metric resulted from noise is not considered. Besides, simple
multiplication is not very reliable because a certain probabil-
ity is too large or too small with exponential operation. Our
formulation makes significant revisions to the problem: the
probability of a motion related to a point p is computed by
combining the perpendicular distance from correspondence
to the line Ep on image plane:

ρ (Ei |p ) ∝ max
pTEq=0

(ρ (q)− λdEp→q) (7)

where the parameter λ balances the two terms in comput-
ing probability. The correspondence is selected through fast
ZNCC method. With considering perpendicular distance as
error caused by noise and mismatching, the accuracy of rota-
tion estimation can be less affected by outliers.

Furthermore, the probabilistic formulation combined with
the LMedS [36] is used for calculating essential matrix.
LMedS is one of the parameter estimation methods.

It acquires the best model by minimizing the median devi-
ation between samples and estimated model parameters.
Hence, there is no need for LMedS to distinguish inliers and
outliers with presetting threshold, compared with RANSAC.

Firstly, we randomly sample approximately 5000 points
over the 5D space of essential matrix, and then the hypothesis
which is mostly possible to be the correct solution is given by:

E∗=argmax
i

med

[
max

pTEiqj=0
(ρpj (q)−λdEipj→q)

]n
j=1

 (8)

where n is the number of points detected in Ik . Our for-
mulation then finds a median probability of each hypothe-
sis among corners and chooses the one with the maximum
probability. Finally, after some of the most probable motion
parameters are selected, we employ the Nelder-Mead simplex
algorithm to obtain the optimal motion parameters between
two successive frames.

Now, the rotation matrix can be extracted from essen-
tial matrix without involving any depth information, which
improves the accuracy of rotation between frames along with
accumulated pose. The exact matches of corners in image Ik
can now be searched through essential matrix in the epipolar
line. And the disparities between

{
I lk , I

r
k

}
and

{
I lk+1, I

r
k+1

}
are computed to obtain the two sets of matched 3D points
{Pk ,Pk+1} for translation estimation.

C. 3D POINTS BASED SSC FOR HIGH SPEED
The purpose of motion segmentation is to distinguish dif-
ferent motions between multi-trajectories of tracking points.
At this point, the 3D points along a sequence that constructed
from the images can be divided into two categories including
static background and dynamic objects. In autonomous driv-
ing cases, only the object which moves quite differently from
cameras and occupies larger area, regarded as main object,
will mainly influence the estimation accuracy. While other
moving objects can be rejected by common outlier rejection
method such as [37]. We aim to cluster the sets of point cloud
tracked along the sequence into two groups containing static
camera motion and moving main object motion, respectively.
That means, it is assumed to be two subspaces in the scene.

Although SSC is one of the best ways of motion segmen-
tation, it is still a difficult task to work well in the high
speed environment. In this section, we review the geometry
of motion segmentation problem and show that how the 3D
SSC method can address this problem.

Given a set of points
{
xij ∈ R2

}j=1,...,F
i=1,...,P projected by 3D

points
{
Xi ∈ R3

}
i=1,...,P along moving coordinate frames{

fj
}F
j=1, all the feature points satisfy the affine projection

model under a rigid-body motion: x11 · · · x1P
...

. . .
...

xF1 · · · xFP

 =
 A1
...

AF

[X1 · · · XP
]

(9)
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where

Aj = KjTj =

 f/dX 0 cx
0 f/

dX cy
0 0 1

[Rj tj
]
∈ R2×4

(10)

is the affine camera matrix at frame j. Since the 3D trajecto-
ries are acquired in Section III-B, there is no need to consider
projection model. Therefore, the transformation matrix in 3D
space:

Tj =
[
Rj tj

]
∈ R3×4 (11)

can represent the transformation model of 3D points. Unlike
affine subspaces segmentation, there is no risk that the seg-
mentation of linear subspaces grouped by 3D transformation
will incorrectly distinguish the subspaces because of affine
structure of the data. With multiple motions in a scene, let
{Sl}l=1,...,n be a group of n linear subspace of R3×F . Denote
the matrix containing all the data points as

X
1
=
[
x1 · · · xP

]
=
[
X1 · · · Xn

]
C (12)

where Xl ∈ R3F×Nl is a data matrix of the points that lies in
Sl and C ∈ RP×P is an unknown permutation matrix.

The SSC problem is the task of clustering the data encoded
by sparse optimization program through spectral cluster-
ing framework. Vidal et al. [28] solved the optimization
problem as

min ‖C‖1 s.t. X = XC, diag(C) = 0 (13)

Then SSC method in [29] builds a graph G with the simi-
larity matrix as W = |C| + |C|T , which is used as the input
of spectral clustering to infer the segmentation of data. It is
proven that the SSC method is only suitable for low speed
scenes. As the operation of taking absolute value for sparse
representation matrix C, the objects that move in the opposite
direction with the same speed as the camera or move along
the camera’s direction with twice speed will eventually get
categorized as background because the negative coefficients
disappeared. These kinds of situations often happens on high-
way or urban roads, where SSCmethod fails to detect moving
objects. Hence, in this paper, we form a C matrix that every
element in the matrix is set to be non-negative to improve the
robustness in the case of high speed. Non-negative constraint
was first proposed in [38] for sparse coding and then gets
frequently used [39], [40]. It turns out that the non-negative
constraint can learn the structure of data points effectively
and induce a good result for classification. This constraint
ensures that coefficients of the representation can be directly
converted to graphweights, which also ensures that every data
point is in the convex hull of its neighbours. Besides, the data
points are prone to noise due to the errors in the processes of
points tracking and depth estimation. Therefore, we use the
Lasso optimization algorithm to recover the sparse solution

with corrupted data points. The final modified optimization
problem is expressed as:

min {‖C‖1+λ‖X−XC‖2} s.t. diag(C)=0, cij>0 (14)

where the regularization parameter λ > 0 is a constant
and the l2 norm promotes having small entries in error
|X − XC|. Note that this minimization problem is a convex
problem, which can be solved using convex solver toolbox
in Matlab as CVX. After solving the improved optimization
program, we obtain a sparse representation for each point.
Then a weighted graph G with similarity matrix W ∈ RP×P

representing the weights of the edges is built to infer the
segmentation by applying spectral clustering. The similarity
matrix W is formed of normalized sparse coefficients C by
settingW = C + CT .
As the outliers are detected accurately, the rotation is

refined and the translation is computed through minimizing
reprojection error.

IV. EXPERIMENT RESULTS
In this section, the experiments are designed and carried
out on the KITTI dataset [35] to evaluate our algorithm.
Additionally, the improved SSC method is evaluated in the
dynamic scene in KITTI dataset as well. We conduct all
experiments on a computer with an Intel Core processor and
4 GB of memory in MATLAB implementations.

A. 3D SSC EVALUATION
For sequences in KITTI dataset, the feature trajectories
are constructed using the probabilistic correspondences and
ego-motion estimation. Visual examples of the 3D SSC
method and the SSC method are given in Fig. 3. As can
be observed in the first column, a significant number of
points belong to the dynamic parts are detected by the 3D
SSCmethod. The second column shows segmentation results
obtained from the SSC method. The images in first row
contain two cars in highway, while the scenes between second
and fourth rows are in urban area where the vehicle moves at
medium speed. The fifth row shows that the car drives in rural
area and observes two bicycles whichmovemuch slower than
the car itself. The camera in sixth row is completely static at
a red light. Note that the SSC method fails to recognize the
moving objects when the camera is moving as well, where
the camera moves much faster than the moving handheld
camera in Hokpins dataset [8]. Although the SSC method is
proven to separate the trajectories better in completely static
environment in the sixth row. On the contrary, the 3D SSC
method solves the segmentation problem well in most cases
even on the highway. Whereas the vehicle is seldom sitting
idle on the road, the 3D SSC method can much meet the
demand in practical cases.

B. VO EVALUATION
After evaluating the motion segmentation, we conduct the
evaluation of our method on KITTI benchmark as well. This
dataset provides 11 sequences that captured by driving car
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FIGURE 3. Visual comparison of 3D SSC and SSC. Sequences taken from KITTI. From left to right: 3D SSC method; SSC method. The first row is in
highway; the second row is in low speed; the third and fourth row are in urban scenes with medium speed; while the fifth row is in rural scene
and the dynamic objects moving much lower compared with the car and the camera is static in the last row.

around a city with ground truth for evaluation, in which the
urban environments with high traffic is the main challenge for
ego-motion estimation.

Several state-of-art VO and visual SLAM algorithms are
compared in the subsequent experiments in order to eval-
uate the performance of our method. The slam algorithms
contain: ORB-SLAM [41], the popular feature based visual
odometry algorithm that achieves robust performance to

large motion changes; SSLAM [42], [43], a visual odom-
etry method that selects keyframes and tracks keypoints
carefully and accurately to make the method more robust;
ORB-SLAMM [44], a monocular SLAM system based on
ORB-SLAM which can ensure mapping when the tracking
fails. The visual odometry algorithms include: SDSO [45],
a stereo visual odometry based on the known direct sparse
odometry (DSO); PL-SVO [46], an extension work of the
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FIGURE 4. The reconstructed trajectories of the first sequence.

FIGURE 5. The reconstructed trajectories of the second sequence.

FIGURE 6. The rotation error for trajectory lengths.

monocular semi-direct visual odometry (SVO) [47] which
works with line segments; PL-StVO [48], a state-of-art stereo
VO algorithm which achieves superior performance based
on combination of both point and line segment features;
VISO-S [35], one of the most popular stereo VO algorithms,
which is usually chosen as a baseline method for compar-
ison and evaluation; CidVO [37], the graph based stereo
VO method utilizes a greedy algorithm to approximate the
maximal clique in the graph to detect the set of inliers.

Fig. 4 and Fig. 5 show the trajectories reconstructed from
our method compared with other methods. One can observe

FIGURE 7. The translation error for trajectory lengths.

FIGURE 8. The rotation error for driving speeds.

FIGURE 9. The translation error for driving speeds.

that our method performs best and possesses less cumulative
error after accumulating both poses and errors over time.
As the two sequences contain dynamic scenarios, the proba-
bilistic and decoupled framework for rotation estimation and
the 3D-SSC method for outliers removal both contribute to
the performance.

For all sequences, the evaluation computes translation and
rotation errors of length (100, 200, ..., 800) meters. Fig. 6-9
show the errors of experimental results of the sequence
in Fig. 4. The errors at different trajectory lengths and driv-
ing speeds are plotted for each algorithm. On one hand,

VOLUME 7, 2019 1959



Y. Wang et al.: Robust Stereo Visual Odometry Based on Probabilistic Decoupling Ego-Motion Estimation and 3D SSC

TABLE 1. The statistical average errors of different methods in KITTI benchmark.

the rotation errors generated by our method decrease fastest
along with the growth of both path length and speed. When
the speed is high and the path length is long, the rotation errors
of our method are smaller than other methods. On the other
hand, the translation errors created by our method remain
small among all algorithms, on account of the rejection of
most outliers using 3D-SSC method.

The statistics errors according to the average of rotation
and translation errors for all sequences in KITTI dataset
(sequences 00-10) are reported in Table 1. Ourmethod clearly
outperforms all the visual odometry approaches in both rota-
tion and translation errors. Besides, our method shows better
results in translation against the slam algorithm SSLAM,
which results from our 3D-SSC method for outliers rejection
in dynamic environments. PL-SVO performs well in rotation
because the line segments and direct visual odometry scheme
provide robust tracking in high exposure scenarios, which are
usual in KITTI or other outdoor scenes. But the lack of scale
in this monocular system causes it performing worser by a
large margin than other method. The typical feature based
slam algorithm ORB-SLAM ranks first in both rotation and
translation, which is based on robust ORB feature and pose
optimization locally and globally. In general, our method is
the top ranked in all visual odometry approaches and the
second ranked of all vision methods.

V. CONCLUSION
In this paper, a novel algorithm for stereo visual odometry
has been presented, which estimates the rotation ahead in
probabilistic framework and detects dynamic objects based
on 3D points especially when vehicle speed is fast. A more
robust probabilistic framework for epipolar geometric esti-
mation has been developed. In contrast to previous method,
the proposed method has introduced the perpendicular dis-
tance to epipolar line and LMedS technique to achieve more
robust estimation in the presence of noise. Given the essen-
tial matrix, the rotation extracted in advance is more accu-
rate, without depth information participated in. Moreover,
to remove disturbance of moving objects, the SSC algorithm
has been modified with 3D points to adapt to fast move-
ment of camera, which leads to a more accurate estima-
tion of translation. The experimental results are evaluated
with KITTI dataset. The results of 3D SSC show that the
improved SSC method works well in dynamic environment.

The proposed visual odometry algorithm performs better than
the other algorithms. To improve the real-time performance of
VO pipeline and study how to improve the robustness under
high exposure conditions would be useful in the future.
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