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ABSTRACT This paper aims to develop a speller system based on a bipolar single-channel electroen-
cephalogram with sufficient accuracy. The proposed system consists of a custom-designed headset, a new
virtual keyboard with 58 characters, special symbols, and digits, and a five-target steady-state visual-evoked
potential (SSVEP)-based brain–computer interface (BCI) utilizing one-dimensional convolutional neural
network (1-D CNN) for SSVEP frequency detection. The deep learning model is implemented and trained
under the training mode before being applied in the operation mode of the system. To validate the proposed
model, we acquire the training dataset with numerous testing conditions, including different frequency
resolutions of the feature and different time-window lengths of analysis. Two types of features based on the
frequency domain are investigated to compare their performances in terms of classification accuracy of the
model. The experimental results from eight subjects shows that on average, the proposed model can classify
five-class SSVEP data with a high accuracy of 99.2%. The proposed BCI is then employed in an online
experiment of spelling the word ‘‘SPELLER’’ using 2-s time window. Consequently, the system achieves an
average accuracy of 97.4% and an information transfer rate of 49 ± 7.7 bpm, showing the practicality and
feasibility of implementing a reliable single-channel SSVEP-based speller utilizing 1-D CNN.

INDEX TERMS Brain–computer interface (BCI), electroencephalogram (EEG), bipolar single
channel, speller, one-dimensional convolutional neural network (1-D CNN), steady-state visual evoked
potential (SSVEP).

I. INTRODUCTION
Brain–computer interface (BCI) has recently set up a new
path way for direct communication between human and
machine in addition to conventional communication. BCI
plays an important role in assisting people with disabilities to
enable them to communicate effectively with the whole com-
munity [1]–[3]. The common electroencephalogram (EEG)
signals used in a BCI-based system are event-related syn-
chronization/desynchronization (ERS/ERD), event-related
potential (ERP), and steady-state visual evoked poten-
tial (SSVEP) [4]–[7]. SSVEP is a periodic response of the
brain to a periodic visual stimulus modulated at a frequency
higher than 6 Hz [8]. In a SSVEP-based BCI, the stimulus
is used to induce an SSVEP response on the scalp, which
oscillates at the same frequency of the stimulus and its
higher harmonics [9]. Most studies verified that the strongest
SSVEP can be observed in the visual cortex [10]–[12].
SSVEP has been generally used because of its advantages,

including high signal-to-noise ratio (SNR) and high informa-
tion transfer rate (ITR). Moreover, a SSVEP-based system
requires little training time or even no training process [13].
Therefore, SSVEP has attracted more attention and has been
exploited in many studies on BCI systems in the past few
years [8], [9], [13]–[16].Most of these studiesmainly focused
on the usage of a multi-channel headset to develop BCI sys-
tems with high accuracy [13], [14], [17]. However, in real-life
applications, a multi-channel system could be an inefficient
device because of its complicated setup. This study presents a
simple and convenient BCI based on a single channel SSVEP
signal which might increase the usability as well as reduce
the complexity of the system while maintaining the wearing
comfort over time. Two dry electrodes were used to form
a bipolar montage to acquire the EEG signal from the O1–
Oz pair and improve the SNR. These two electrodes were
attached to a 3D-printed holder, which was custom designed
to improve the contacting quality between the electrodes and
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the scalp. The prototype was totally fabricated through a 3D
printing technique with a flexible material, thereby allowing
to achieve a highly suitable wearability.

Many recent studies have employed multivariate statistical
analysis including canonical correlation analysis (CCA) and
least absolute shrinkage and selection operator (LASSO) as
classifiers to detect SSVEP frequencies [14], [17], [18]. The
CCA-based approach has proven its powerful performance
in the cases of multi-channel-based applications by explor-
ing the correlation between two sets of variables. Follow-
ing those works, modified CCA-based classifiers have been
introduced [19], [20] in which the performance of those mod-
els have been significantly improved. Meanwhile, the power
spectral density analysis (PSDA) is known as a conventional
approach most widely used in detecting SSVEP frequencies.
Nevertheless, PSDA has drawbacks because of its sensitiv-
ity to noise resulting in a low accuracy in the SSVEP fre-
quency detection. The CCA and LASSO-based approaches
generally achieve higher recognition accuracy compared to
the PSDA-based technique [14], [17], [18]. Recently, deep
learning has been considered to explore the feasibility of
implementing a SSVEP-based BCI. One significant benefit
of neural network is that it does not strictly require fea-
ture extraction before processing compared to other machine
learning techniques (i.e., linear discriminant analysis (LDA),
Support Vector Machine (SVM), k-nearest neighbor (KNN),
CNN) in which the feature extraction play a critical role
to contribute to the performance of the model. One of the
earliest applications of deep learning in a SSVEP-based BCI
is presented in [21]. In that work, the network is designed
to functions a spatial and time filter in the first two hidden
layers, a signal transformation in the frequency domain in
the next two hidden layers, and a classifier in the output
layer. In another work shown in [22], a CNN model has been
introduced as a robust classifier of the SSVEP frequencies.
The work acquires a 2-D map (channels x frequencies) of
SSVEP data as the input to classify up to five SSVEP fre-
quencies using a multi-channel EEG headset. In this study,
we present a novel 1-D CNN-based approach applied to the
frequency recognition strategy to improve the accuracy of
the current single channel-based BCI. The current work takes
1-D Fast Fourier transform (FFT)-based data as the input data
instead of 2-D maps as usual, consequently could reduce the
computational time of the system.

Aside from accuracy, the ITR is also an important factor
in evaluating a SSVEP-based speller. Many virtual keyboard
designs have been developed in the past few years. For
instance, Bremen-BCI GUI, which is composed of 32 char-
acters (i.e.., letters and special symbols), could offer a high
spelling speed of 18.09 bpm on average. This interface
requires five stimuli (i.e., corresponding to the commands
‘‘left,’’ ‘‘right,’’ ‘‘up,’’ ‘‘down,’’ and ‘‘select’’) for opera-
tion [23]. In another work [13], an ITR of 37.62 bpm was
achieved with a keyboard consisting of 27 characters using
five stimuli. Meanwhile, a boosting in spelling speed of up
to 267 bpm shown in [11], in which a novel SSVEP decoding

method based on phase and harmonics was introduced. In that
work, 40 characters were displayed on a screen with 40 differ-
ent corresponding flickering frequencies. On the other hand,
a comparable high spelling speed of 41.08 bpm was achieved
in [24], with up to 36 items on the interface using six SSVEP
frequencies. Albeit offering a high ITR, the complicated
interface associated with many stimuli could be a challenge to
the user. The current study introduces a new keyboard design
that offers high-speed spelling with less needed stimuli. This
keyboard can offer up to 58 characters, which mostly include
all the characters of a standard keyboard. The current user
interface requires five stimuli corresponding to five SSVEP
commands for operation.

The contribution of this work is to develop an efficient and
feasible BCI in several aspects, including a simple headset
design, a robust CNN-based classifier for frequency recogni-
tion, and a new spelling layout.

II. METHODS
A. EEG HEADSET DESIGN
Two dry sensors from Cognionics, Inc. (Santa Fe, San Diego,
CA, USA) are used to build a single-channel headset. Com-
pared to a wet sensor, the dry sensor has some advantages,
including the exclusion of conductive gels or glues needed
during operation, being easily attached to the brain scalp
through the hair, and being re-usable for many times. Fig. 1(a)
shows the block diagram of the proposed headset. The current
headset adopted a bipolar montage to acquire the EEG signal
from the O1–Oz pair because of its better noise cancellation
ability compared to a unipolar montage [25]. The potential
from each electrode is first passed to an active-shield circuit to
minimize the electromagnetic interference from the external
sources. This active circuit serves as a unity gain buffer, which
help convert the high output impedance of the dry sensor to
the low output impedance of the active circuit. A detailed
design of the active circuit can be found in [26]. The reference
voltage is set to 1.65 V, which was half the value of an analog-
to-digital converter (ADC) voltage span (i.e., 3.3 V), to center
the signal around it. The differential potential between the two
electrodes is then fed into a differential amplifier (INA128,
Texas Instrument, Texas, USA). This differential amplifier
has a high common mode rejection ratio (i.e., ∼100 dB) for

FIGURE 1. EEG headset: (a) schematic of the EEG circuit with dry active
electrodes (top), (b) Photograph of the active electrodes with the flexible
cap (top) and headset (bottom).
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better line–noise rejection. Its gain is set to approximately
10. The differential voltage signals are first high-pass-filtered
at 4 Hz to remove the DC offset and the low-frequency
noises using an active high-pass filter. The output voltage of
this stage is mainly amplified at the gain of approximately
3,000 to ensure that the output voltage matches the input
range of the 12-bit ADC (i.e., 3.3 V span and 0.8 mV res-
olution) of the microcontroller. An active low-pass filter with
a corner frequency of 40 Hz is applied to limit the frequency
band of interest (i.e., 4–40 Hz) and ensure that the Nyquist
sampling rate theory was satisfied. Moreover, the effect of
the 50/60 Hz line noise is minimized because the proposed
headset was powered by a 3.7 V battery. Finally, the analog
signal is sampled at a 128 Hz sampling rate by a 12-bit
ADC (STM32F103CB microcontroller, STMicroelectronics,
Geneva, Switzerland) to convert the analog voltage to digital
prior to further processes.

A completely wearable headset is fabricated based on the
3D printing technique using a flexible material to minimize
the preparation time for use and improve the system reliabil-
ity. The model is first designed using SolidWorks software
(SolidWorks Corp., Massachusetts, USA). The G-code of the
model generated by the MakerBot MakerWare software is
then transferred to a 5th generation 3D printer (MakerBot,
New York, USA) for fabrication. The printing process took
almost 2 h. Fig. 1(b) shows a photograph of the proposed
wearable headset. It is noted that the proposed headset was
typically equipped with several elastic ropes and a flexible
material-made electrode holder useful to maintain a good
contact between the electrodes and the brain scalp through
the hair.

B. VISUAL STIMULATOR AND VIRTUAL
KEYBOARD DESIGN
The stimulus frequencies normally used in the SSVEP can
be divided into three frequency bands: low (i.e., 1–12 Hz),
medium (12–30 Hz), and high (30–60 Hz). The strongest
SSVEP was particularly observed at approximately 10 Hz
followed by 16–18 Hz [27]. Another study showed that the
peak of the SSVEP amplitude occurred near 15 Hz in the
5–25 Hz range [8]. Therefore, in this study, five frequencies
(i.e., 6.67, 7.5, 8.57, 10, and 12 Hz) in the lower range were
selected as stimulus frequencies. These frequencies belonged
to the alpha band of the brain waves, resulting in their equal
interferences with this band. A 60 Hz-refresh rate LCD mon-
itor is employed as the visual stimulator that consisted of five
boxes, called stimuli, which flick at 6.67, 7.5, 8.57, 10, and
12 Hz corresponding to 9, 8, 7, 6, and 5 frames per period
of the monitor, respectively (Fig. 2(a)). One box labeled
‘‘Undo’’ is used to cancel the previous action when it comes
with a wrong command. The stimulus ‘‘Undo’’ is located at
the top-left corner of the screen, while the other four were
located at the top, right, bottom, and bottom left corners of
the screen. Each stimulus is a simple square of 6 cm × 6 cm,
which toggled the color between black and red. The toggling
cycle determines the flickering frequency of the stimulus.

The color toggling between black and red is done using the
square function as a transparent factor with a period that
changed its value at the stimulus frequency:

s (fi) = square(2π fit), (1)

where fi is the stimulus frequency ith (i = 1, . . . , 5); t is
the period of flickering; and s(fi) is the transparent factor at
frequency fi.

The flickering frequencies are selected as the integer fac-
tors of the refresh rate of the screen (i.e., 60 Hz) because of
stability and precision [1]. A red light is chosen as the stim-
ulation light source because of its strong SSVEP response in
the low and medium frequency bands [2]. The stimulation
application is developed inMATLAB using the Psychtoolbox
toolbox.

Recent studies have shown various virtual keyboard
designs [13], [28]–[30], which exhibited good performance
with high typing speed and a friendly user interface. The
present study designs a new virtual keyboard to combine
the strengths of the previous works. Thus, the keyboard can
provide high-speed spelling, a user-friendly interface, and
less number of required stimuli. Fig. 2 illustrates the proposed
interface, where the characters and the visual stimuli were
merged. The interface is composed of three layers (i.e., first,
second, and third layers). Each layer corresponds to a menu
with four choices. Fig. 2(a) depicts the first layer of the virtual
keyboard. Once a choice in this layer is selected, its content
is split into four new choices that belong to the second layer.
Each choice is a stimulation box embedded with 16 char-
acters. The top-middle box contains letters ‘‘A’’ to ‘‘P’’ of
the English alphabet. The right box contains letters ‘‘Q’’
to ‘‘Z’’ and six special symbols. The bottom-middle box
contains other 16 special symbols, while the bottom-left box
consists of 10 digits. Each choice of the menu in the second
layer (Fig. 2(b)) contains four characters. When a choice
is selected, its content is split into four new choices that
belong to the third layer (Fig. 2(c)). Meanwhile, each choice
in the third layer is composed of a single character. The
selection of a character is done when a choice is selected in
this layer. Once the character is selected, the system auto-
matically turns back to the first layer for the next spelling
process. After each command, an animation is generated by
changing the color of the choice from red to green as a
visual feedback to the user. Furthermore, the status of the text
in comparison with the target text is automatically updated
after each trial and displayed on the top-right corner of the
interface. The stimulation application in combinationwith the
keyboard layout was implemented in MATLAB (The Math-
Works, Inc., Massachusetts, USA) using the Psychtoolbox
toolbox.

C. DATA ACQUISITION OF OPTICAL POWER SIGNALS
DURING VISUAL STIMULATION
Fig. 3(a) shows the experimental setup for measuring the
optical power of the stimulation light. An optical sensor
(918d-sl-od3, Newport, California, USA) was placed at a
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FIGURE 2. Demonstration of the 58-character virtual keyboard in
combination with five stimulation boxes (6 cm x 6 cm). (a) First layer.
(b) Second layer. (c) Third layer of the interface. Note that the top right
corner of the GUI indicates the target word and the current status of the
spelling process.

5 mm distance in front of the LCD screen, where the
on-screen stimuli generated the optical power. The sensor
combined with a power meter (1918-R, Newport, California,
USA) continuously acquires the stimulus-induced optical
power. This sensor is sampled at 200 Hz, which is twice
higher than the highest frequency of interest (i.e., the fre-
quency band of the SSVEP ranges from 6 Hz to 16 Hz).
The data from the power meter is then transferred to a
computer via a universal serial bus for further analyses.
The measurement is conducted for all five stimuli to ver-
ify their flickering frequencies. All the experiments are
implemented in a dim room to minimize the ambient light
noise.

D. EXPERIMENTAL DESIGN AND SETUP
Offline experiment was conducted to verify the optimal con-
ditions of the system and to collect data for training the
CNN model prior to the online experiment. Eight healthy
volunteers, who have no problem with visual impairment,
participated in this study (i.e., six males and two females with
an age range of 24 to 32 years). The subjects were seated
on a comfortable chair at a distance of approximately 40 cm
in front of the visual stimulator in a dim room (Fig. 3(b)).
In order to avoid any random error and to maintain the
consistence of the system, the experiment was design to be
consisted of 20 trials. In each trial, the participants were
asked to gaze on five stimuli (i.e., five choices of the menu)
in a pre-defined order. Moreover, they were given a 0.5-s
interval to shift their gaze between two consecutive targets.
The gazing time of the subjects on each target was set to
10 s. During the experiments, EEG signals were recorded
and further processed for training step. All five targets keep
flickering until the end of each trial. To prevent the subjects
from visual fatigue, 2-min break was given after each trial.

FIGURE 3. Experimental set-up. (a) Measurement of stimulus-induced
optical power. (b) The spelling process.

In the online experiment, the subjects were asked to input
the desired word ‘‘SPELLER’’ shown on the screen. They
were instructed to focus their gaze on the stimuli resulting
in inducing corresponding commands. The subjects were
given 0.5 s to shift their gaze between two stimuli. A set of
commands issued from the proposed system help the subject
to navigate the ‘‘path’’ leading to the desired characters.
The user must produce three commands to write a character.
This number of commands is equal to the number of lay-
ers of the interface fixed and independent of the character.
Thus, 21 commands must be produced to finish spelling the
word ‘‘SPELLER.’’ The number of correct counts out of the
21 commands is used to evaluate the system accuracy. Once
an incorrect command is generated, the user can immediately
correct it by choosing the button ‘‘Undo’’ of the menu to
bring the user interface back to previous state. The ITR is
also calculated as another factor for evaluating the perfor-
mance of the proposed BCI. The ITR is defined as follows
according to [7]:

ITR =
n
T
∗ (P log2 P+ (1− P) log2

(
1− P
N − 1

)
+ log2 N ),

(2)

where P is the probability to correctly generate a command;
N is the number of stimuli (N = 5); and T (in minute) is the
time needed to produce n commands.
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FIGURE 4. FFT-based feature: (a) extraction procedure of two type of features, (b) feature visualization of 10 Hz SSVEP signals.

FIGURE 5. The architecture of the proposed 1-D CNN model.

E. FFT-BASED FEATURE EXTRACTION OF EEG SIGNALS
The current study applies a bipolar montage to record the
EEG signal from the O1–Oz pair at a sampling rate of 128 Hz.
The EEG data are first band pass-filtered from 6 to 13 Hz to
explore the characteristics of the fundamental component of
the SSVEP signals. FFT is performed with various number
of points (i.e., 256, 512, 1024 and 2048) resulting in different
frequency resolutions of 0.5, 0.25, 0.125 and 0.0625 Hz in the
frequency domain, respectively. Moreover, a Hamming win-
dow of a similar length to the timewindow length is applied to
improve the signal SNR. To evaluate the system performance
with respect to analyzed window of the signal, three kinds of
time windows (i.e., 1-s, 2-s, and 3-s EEG data) are explored.
Two kinds of FFT-based features are introduced in the current
work. Fig. 4(a) shows the block diagram of feature implemen-
tation. The first feature (‘’Feature 1’’) is computed by divided
all FFT power points over the range 6-13 Hz by themaximum
value in this range. As a result, all magnitude values of
‘‘Feature 1’’ are normalized between 0 and 1 as feature index
vector. To compute the second feature (‘‘Feature 2’’), the
highest FFT power among five SSVEP frequencies is picked
(called ‘‘max_SSVEP’’). Then the feature index vector of
‘‘Feature 2’’ are obtained by divided all FFT power points
over the range 6-13 Hz by the ‘‘max_SSVEP.’’ The com-
binations of these two kinds of features with different time
window lengths are investigated to find out the optimal condi-
tions for the proposed system. In the next step, the computed
features are fed into the CNN model for training. Fig. 4(b)
demonstrates the feature index curves of above-mentioned

features along with the Fourier transform of 2-s EEG signal
utilizing 2048-point NFFT.

F. CNN STRUCTURE AND SYSTEM BLOCK DIAGRAM
Fig. 5 illustrates the 1-D CNN structure being applied in
SSVEP frequency detection. In general, the proposed CNN
model consists of three main layers: input layer, hidden layer
and output layer. The input layer comprises two convolutional
layers named ‘‘convolutional layer 1’’ and ‘‘convolutional
layer 2.’’ It is input with FFT-based feature of windowed
EEG data using 5-point kernel filter. In total, ten kernel
filters are used. To reduce computational time, a max-pooling
layers is applied right after each convolutional layer. In the
hidden layer, two fully connected layers are included. The
first fully connected layer consists of 128 neurons. To prevent
the network from overfitting, dropping-out units with the rate
of 25% are used. The second fully connected layer comprises
three nodes. ReLu is used in the first fully connected layer as
activation function while tanh/ softplus is used in the second
one. There are five nodes involving five SSVEP frequencies
in the output layer. In the current work, softmax is applied
for each node in the output layer. As a result, an input
signal is predicted to be belonged to a class such that its
mapping output value obtained highest among five outputs
of output layer. The general form of softmax function is
given by

fj (z) =
ezj∑K
k=1 e

zk
, j = 1, . . . ,K . (3)
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The function takes a real-valued input vector z and maps it to
a vector of real values in the range (0, 1).

In conjunction with the softmax classifier, cross-entropy is
chosen as the loss function to evaluate the quality of the neural
network. Cross-entropy loss can be expressed as follows:

L (X ,Y ) = −
1
n

∑n

i=1

[
y(i) ln a

(
x(i)
)

+

(
1− y(i)

)
ln (1− a(x(i)))

]
, (4)

where X =
{
x(1), . . . , x(n)

}
is the set of input samples in the

training dataset, and Y =
{
y(1), . . . , y(n)

}
is the correspond-

ing set of labels. The a(x) represents the output of the neural
network given input x.
To obtain better convergence rate of the network, Adam

optimization algorithm is used among with a classic stochas-
tic gradient descent (SGD) algorithm as network weight
update rule.

The network is trained during training mode of the pro-
posed system. Five-fold cross validation is conducted to sta-
tistically evaluate performance of the proposed model as well
as preventing the model from overfitting [31]. Average error
and accuracy of 5-fold cross validation during testing phase
is evaluated.

FIGURE 6. Block Diagram of the proposed BCI speller based on 1-D CNN.

The block diagram of the proposed spelling system,
as shown in Fig. 6, consists of training mode and opera-
tion mode. In the training mode, the CNN model is trained
with given dataset to obtain the optimized weight set. First,
the captured EEG signals are segmented with different time
window lengths (i.e. 1 s, 2 s, 3 s) by sliding the windows

along the signal. The overlapping samples between two con-
secutive windows are set to 16 samples (i.e. 0.125-s data).
Next, the windowed EEG data are band-pass filtered between
6 and 13 Hz. The, discrete Fourier transform is performed
on the filtered EEG data. Finally, frequency domain-based
feature extraction is conducted. Depend upon difference set-
ting conditions, the number of training data samples can be
slightly different. For example, with the settings of 2-s time
window and 0.125 s overlapping time interval, the numbers
of training data samples of class 1 (‘‘6.67 Hz’’), class 2
(‘‘7.5 Hz’’), class 3 (‘‘8.57 Hz’’), class 4 (‘‘10 Hz’’), and
class 5 (‘‘12 Hz’’) for subject 1 were 1584, 1,584, 1,584,
1,584, and 1,424, respectively. In total, there were 7,760 data
samples being used for model training. Among them, the 5-
fold cross validation takes 1552 data samples for validation
of the model in each fold. After successfully trained with
the given dataset, the well-trained model is applied in the
operation mode as prediction machine for the system. Each
predicted output of the CNN model is associated with one of
five SSVEP frequencies. The command consequently, gener-
ated by the CNNmodel is used to operate the virtual keyboard
module.

G. FREQUENCY RECOGNITION USING CCA AND LASSO
To evaluate the performance of the current CNN-based
model, we compare its detection accuracywith those obtained
from some state-of-art methods including CCA and LASSO.
The current study adopts CCA and LASSO techniques which
presented in [17] and [18], respectively. The dataset con-
sists of 20 trials. In each trial, for each stimulus frequency,
4-s single-channel EEG data are extracted to investigate the
effect of time window duration on the recognition accuracy.
The first two harmonics of the frequency spectrum of EEG
signals are taken into account during frequency recognition.

III. RESULTS
A. STIMULATION RESPONSE
Fig. 7 shows an example of optical stimulation signal at
10 Hz and its SSVEP response. Fig. 7(a) illustrates the

FIGURE 7. (a) Stimulus-induced optical power signal at 10 Hz and its 10-s
SSVEP response from the O1–Oz channel. (b) Power spectra of those
signals and the correlation measurement between them.
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FIGURE 8. Learning curve of 5-fold cross validation for eight subjects in 500 training epochs.

optical power of the stimulation light from the stimulus
at the left portion of the figure and its SSVEP response
waveform from the O1-Oz bipolar channel (the right por-
tion of the figure). Both signals are band pass-filtered from
5 to 20 Hz, which covered the SSVEP frequency band being
used in this study, to reject the 60 Hz component from
the refresh rate of the screen. Frequency content of both
signals discovered by discrete Fourier transform is shown
in Fig. 7(b). The PSD peak (‘‘red’’ curve) occurs at 10 Hz
(Fig. 7(b) (left)), which definitely confirms the stimulation
frequency. On the other hand, the ‘‘blue’’ curve represents
a typical response in frequency domain of the brain to its
10-Hz optical stimulation. Its Fourier transform indicates that
a PSD peak is also obtained at 10 Hz. A measurement of
linear correlation between these two signals in frequency
domain is shown in Fig. 7(b) (right). The correlation coef-
ficient is calculated to be 0.7 which typically confirmed
a comparable correlation between two signals. Moreover,
as demonstrated in Fig. 7(b) (left), the major correlation is
resulted from the signals at 10 Hz (1st harmonic) and 20 Hz
(2sd harmonic). The abovementioned results verified the high
precision visual stimuli using the Psychtoolbox and their
clear SSVEP responses.

B. CNN MODEL LEARNING
Learning process of the CNN model is shown in Fig. 8 in
terms of cross entropy loss during testing phase for 500 iter-
ations across eight subjects. It is noted that these results
are obtained given the following setting of the CNN model:
2-s windowed input data, 2048-point NFFT in combination
with feature type 2. Apparently, for all subjects, the model
fits the data at highest rate in the first 100 epochs of training.
Then, the validation loss is approaching zero as it become

saturated at around epoch 500 showing the convergence of
the model. Subject 3 and 4 achieve best average convergence
rate among eight participants. The lowest convergence rate
occurs in the case of subject 6. In addition, this learning
curve shows an abrupt change in convergence rate at epoch
170 consequently it can keep pace with other learning curves
within the next 100 epochs. All learning curves obtain a cross
entropy loss of lower than 0.2 after 300 epochs as the model
get converged. These learning curves (i.e., cross entropy loss)
reflect the trends of the corresponding validation accuracies
which were exhibited in Fig. 9. As a results, the lower cross
entropy loss the higher accuracy is obtained. For all subjects,
the validation accuracy curves are approaching 100% with
different converging rates due to different learning rates of
the model. Although with a bad learning rate at starting (the
first 170 epochs), the accuracy for subject 6 is slightly higher
than that of subject 7 after 500 training epochs (97.28% vs.
97.11%, respectively).

C. FEATURED-DATA 3-D SCATTER PLOT
As mentioned earlier, the fully connected layer F2 is com-
posed of three nodes. Thus, in order to observe the con-
vergence of the model during training, 3-D data associated
with these three nodes are visualized in 3-D coordinate in
which each node output is according to an axis direction.
Fig. 10 illustrates 3-D scatter plot of three output node
data at layer F2 after 500 training epochs. With softplus
is chosen as activation function at layer F2, the 3-D scat-
ter data are distributed around the origin of the coordinate
(Fig. 10(a)). Moreover, data points which belonged to a
specific class gather in a densely volume and well distin-
guished from those of other classes. On the other hand,
Fig. 10(b) shows the 3-D data distribution of three node
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FIGURE 9. Average accuracy of 5-fold cross validation for eight subjects in 500 training epochs.

FIGURE 10. 3-D scatter visualization of featured data at layer F2, after 500 training epochs: (a) with softplus activation function, (b) with tanh activation
function.

outputs in the case of tanh activation is selected in this
layer. Unlike the softplus-induced features, the tanh-induced
features distributed in a 2x2x2 cube. Each group among
five-group data are mainly distributed in a specific cor-
ner of the cube. Although, there are conflict data samples
between two different groups, in general, all classes are dis-
tinguished nicely. It is noted that, for both cases, ‘‘6.67 Hz,’’
‘‘7.5 Hz,’’ ‘‘8.57 Hz,’’ ‘‘10 Hz,’’ and ‘‘12 Hz’’ data samples
are represented with red, green, blue, black, and pink colors,
respectively. Apparently, the proposed CNN model is able to
distinguish different SSVEP frequencies as it can extract the
meaningful information from the frequency spectral of the
signal.

D. CNN MODEL EVALUATION
Fig. 11 compares the performance of the model between
two types of features with respect to time windows and
frequency resolutions. Obviously, the test accuracy of the
CNN model increases as the frequency resolution and the

analyzed time window increase for both kinds of features.
Five-fold cross validation results show that ‘‘Feature 1’’ and
‘‘Feature 2’’-based models achieved their highest accuracies
in the case of 3-s time window and 0.0625-Hz resolution (i.e.,
NFFT is equal to 2048) at 99.5% and 99.8%, respectively.
Likewise, the lowest accuracy of 39.6% and 45.2% (i.e.,
‘‘Feature 1’’ and ‘‘Feature 2’’-based models, respectively)
are obtained in the case of 1-s time window and 0.5-Hz
resolution (i.e., NFFT is equal to 256). An accuracy above
95% occurs in the cases of 2-s and 3-s time windows in
conjunction with 0.125-Hz and 0.0625-Hz frequencies for
both models. Another finding is that less variance of the
accuracy is obtained with higher frequency resolution for all
investigating time windows. For instance, with an exception
of 0.5-Hz spectra case, the standard deviation of the accuracy
of all other cases are lower than 6%. ‘‘Feature 2’’-based
model outperforms the ‘‘Feature 1’’-based model in terms of
accuracy for all cases except for the case of 1-s time window
and 0.25-Hz resolution (i.e., NFFT is equal to 512). This
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FIGURE 11. Five-fold cross validation of the 1-D CNN model for subject 1 with respect to different numbers of FFT point and different time
windows, utilizing: (a) ‘‘Feature 1,’’ (b) ‘‘Feature 2.’’

is reasonable due to the less reliability of 1-s time window
application.

According to equation (2), detection accuracy and
time-window of analysis are two main contributed factors
to the ITR. The shorter detection time and higher detec-
tion accuracy, the higher ITR can be achieved. Considering
the information transfer rate of the proposed system,
we pick 2-s time window and 0.0625-Hz frequency res-
olution in conjunction with ‘‘Feature 2’’ as the best
setting parameters of the proposed SSVEP-based virtual
keyboard.

FIGURE 12. Comparison of detection accuracy of five-class SSVEP data
among three detection methods CCA, LASSO and CNN with respect to
time window length. Note that in the case of CNN classifier, ‘‘Feature 2’’
utilizing 2048-point FFT was used and the model was trained for
1000 iterations.

Fig. 12 compares the detection accuracy of five-class
SSVEP data among three methods including CCA, LASSO,
and the proposed CNN.Apparently, the proposed CNN-based
classifier outperforms CCA and LASSO techniques in
terms of SSVEP frequency detection accuracy for all time

window lengths. There is no significant difference of accu-
racy between CCA and LASSO techniques (i.e. CCA obtains
higher detection accuracy for most of time window lengths
except for the cases of 2 and 3.5 s). In general, the detec-
tion accuracy of SSVEP frequencies increases as the time
window length increases for all three classification methods
(except for the case of 2.5-s time window for CCA and
LASSO techniques). The CCN-based classifier achieves its
highest detection accuracy of 99.87% for 3.5 s and 4 s time
windows whereas CCA and LASSO methods achieve their
highest accuracy of 91% and 90%, respectively, in the case
of 4-s time window.

Fig. 13 compares the 5-fold cross-validation results
between two types of features for eight subjects after 1000
training epochs. It is noted that the test model is based on
2-s windowed signal andwith highest investigating resolution
(0.0625 Hz). For all subjects, ‘‘Feature 2’’ obtains its higher
accuracy in comparison to ‘‘Feature 1.’’ An accuracy above
95% was obtained for all subjects. For ‘‘Feature 2’’ applica-
tion, the model achieves its highest accuracy (99.7± 0.2%) in
the case of subject 3. In contrast, the lowest accuracy occurs
in the case of subject 7 (98.4 ± 0.4%).
Table 1 lists the online testing results of the proposed

SSVEP-based virtual keyboard across eight subjects. The
average accuracy of the proposed speller (based on the ratio
of number of correct commands to total commands being
generated by the system to input the text ‘‘SSVEP’’) over
all the subjects was 97.36 ± 2.86%. All subjects achieved
an accuracy over 95% except for subject 6 (92.00%). More-
over, subjects 2, 4, 5 and 8 were successfully input the
text ‘‘SPELLER’’ without any mistake (i.e., 21 correct com-
mands out of total 21 commands need to be generated).
The proposed system sent a correct control command in
an average of 2.5 s and achieved an average ITR of 48.99
± 7.67 bit/min. Moreover, participants completed their
typing the word ‘‘SPELLER’’ for an average of 0.92 ±
0.06 min, thereby resulting to the mean spelling speed of
7.6 letters/min.
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FIGURE 13. Comparison of performance of proposed CNN classifier between two features using
5-fold cross validation for eight subjects, after 1000 training epochs.

TABLE 1. Online results.

IV. DISCUSSION AND CONCLUSION
BCIs based on multi-channel EEG signals could provide
high accuracy, but requires a complicated set-up prior to use,
which could be a challenge in real-world applications.

The current study aimed to develop a practicable and sim-
ple spelling BCI considering real-life feasibility based on
the SSVEP signals. Thus, the headset was designed to be a
single dry-electrode with only one channel (bipolar O1-Oz)
that acquired the SSVEP signals from the visual cortex. The
proposed headset was composed of several separated parts
fabricated using the 3D printing technique with a flexible
material. Thus, it allowed a fast self-applicability of the cap
and electrodes. The new virtual keyboard design was also
introduced along with a visual stimulator.

The current work, tending to simplify the BCI in real-
work applications, used only one channel; hence, a novel
SSVEP frequency detection approach based on 1-D CNN
was introduced. The proposed system was divided into two
modes which are training mode and operation mode. The
CNN model is trained during training mode before it can be
employed to predict the SSVEP frequencies in the operation
mode. Numerous testing experiments were conducted to find
out the optimal setting parameters of the model which can
be applied in the real-time operation mode. Particularly, two
kinds of FFT-based features have been investigated along
with different frequency resolutions and different lengths of

time windows of the EEG signals. From the analysis, consid-
ering the reliability of the system, the fast speed of spelling
and the high accuracy, ‘‘Feature 2’’ in conjunction with
0.0625-Hz frequency resolution and 2-s time window were
picked as the optimized setting parameters for the system.

To evaluate the effectiveness of the proposed CNN-based
method, we also compared its performance with the
well-known CCA and LASSO-based techniques. As shown
in Fig. 12, the proposed CNN-based classifier obtained higher
accuracy than CCA and LASSO-based techniques in classify-
ing five classes involving five SSVEP frequencies, for all dif-
ferent time windows. Through many studies [14], [17]–[20],
CCA and LASSOmethods have shown their powerful perfor-
mance in detecting SSVEP frequencies in multi-channel BCI
applications. Therefore, a relative low accuracy of CCA and
LASSO-based techniques might be resulted from the single
channel EEG data in the current work.

Experimental results from eight subjects in spelling the text
‘‘SPELLER’’ showed that, on average, the proposed speller
achieved an accuracy of 97.37% with a relative high ITR
of 48.99 ± 7.67 bit/min. On average, the offline accuracy
under training mode across eight subjects was slightly higher
than the online accuracy under operation mode (i.e., 99.15%
vs. 97.37%, respectively). The difference might be resulted
from the variations in the experimental conditions between
training mode and operation mode, such as light intensity
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of the room, SNR of the EEG signal, subject’s readiness,
etc. Another explanation is that there was a low resolution
in accuracy during evaluating the online test resulted from
100%/21 commands = 4.76%/command.

Our study tends to simplify the BCI system design and
implementation in the aspects of practicability and feasibil-
ity to real-life applications. Moreover, the accuracy of the
proposed system remains high in comparison with those in
several recent studies. For example, [17] obtained around
75% accuracy on average, whereas [14] acquired around
80% accuracy with the 2-s window length. Another work
achieved a nearly 100% average accuracy [32]. The recogni-
tion accuracy does not only depend on the number of channels
being used, but also on the frequency detection algorithm and
the SNR of the EEG signal [17], [32]. Thus, in comparison
with [32], the lower accuracy of the current study might have
resulted from the different frequency recognition methods
and the quality of the EEG signal (i.e., SNR) acquired from
the custom headset.

The average information transfer rate of the proposed
speller for an SSVEP-based speller with five commands
was higher than that reported in [33] (i.e., 48.99 vs.
25.89 bpm, respectively) and slightly higher than that in [13]
(i.e., 48.99 vs. 37.62 bpm, respectively). Moreover, the pro-
posed BCI speller showed a good practicability in terms of the
number of characters of the interface compared with those
in several recent studies (i.e., 58 vs. 27 characters in [13],
58 vs. 32 characters in [33], and 58 vs. 26 characters in [34])
while the ITR of the system remains high.

Although the current work employed only single channel
EEG signals and with 1-D input data for the CNN, the perfor-
mance of the model remains comparable high in comparison
with that in the work [22], in which 99.28% classification
rate was obtained with same 2-s time window. However,
the training process might take longer time (500 epochs vs.
10 epochs, respectively) to obtain an optimized network with
the same performance as [22]. It might not matter with the
proposed system since the network need to be trained at once
prior to operation.

Through the study, results showed the feasibility of the
proposed BCI in providing spelling assistance to people with
disabilities in terms of high accuracy and practicability in
real-life applications. Further studies will be performed to
investigate the limit of number of SSVEP frequencies that the
proposed BCI can detect with a relative high performance to
extend its feasible applications.

APPENDIX

Algorithm 1 Feature Extraction and CNN Model Training
Input: A visual cue for starting the training process
Output: The optimized weight set of the CNN model
1: for each trial

Algorithm 1 (Continued.) Feature Extraction and CNN
Model Training
2: Start Visual Stimulation Program
3: Set the gazing time to 50 s (5 stimuli x 10 s gazing

duration for each stimulus)
4: while (current time < gazing time)
5: Run EEG recording program
6: end while
7: Stop Visual Stimulation Program
8: Stop EEG Recording program
9: end for
10: Compute segmented EEG data
11: Set current EEG segment to 1
12: for each EEG segment
13: Compute 6-13 Hz band-pass filter
14: Compute Fast Fourier Transform (FFT)
15: Find maximum value in FFT magnitude vector

(max(FFT))
16: Find maximum value of FFT magnitude involving

5 SSVEP frequencies (max(FFT of SSVEP))
17: Compute ‘‘Feature 1’’: FFT magnitude

vector/max(FFT)
18: Compute ‘‘Feature 2’’: FFT magnitude

vector/max(FFT of SSVEP)
19: Update the feature and label vector
20: INCREMENT current EEG segment
21: end for
22: Save ‘‘feature’’ and ‘‘label’’ vectors
23: Import ‘‘feature’’ and ‘‘label’’ vectors to CNNmodel
24: Initialize number of epoch, target loss, CNN weight

set
25: repeat
26: Run CNN model training process
27: until number of epoch, target loss
28: Return optimizedCNN weight set
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