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ABSTRACT The appearance of generative adversarial networks (GAN) provides a new approach and
framework for computer vision. Compared with traditional machine learning algorithms, GAN works via
adversarial training concept and is more powerful in both feature learning and representation. GAN also
exhibits some problems, such as non-convergence, model collapse, and uncontrollability due to high degree
of freedom. How to improve the theory of GAN and apply it to computer-vision-related tasks have now
attracted much research efforts. In this paper, recently proposed GAN models and their applications in
computer vision are systematically reviewed. In particular, we firstly survey the history and development
of generative algorithms, the mechanism of GAN, its fundamental network structures, and theoretical
analysis of the original GAN. Classical GAN algorithms are then compared comprehensively in terms of the
mechanism, visual results of generated samples, and Frechet Inception Distance. These networks are further
evaluated from network construction, performance, and applicability aspects by extensive experiments
conducted over public datasets. After that, several typical applications of GAN in computer vision, including
high-quality samples generation, style transfer, and image translation, are examined. Finally, some existing
problems of GAN are summarized and discussed and potential future research topics are forecasted.

INDEX TERMS Deep learning, generative adversarial networks (GAN), computer vision (CV), image
generation, style transfer, image inpainting.

I. INTRODUCTION
Generative Adversarial Network (GAN), a generative
approach proposed by Goodfellow et al. in 2014 [1], has
become one of the most discussed topics in machine learning.
GAN has made significant improvements in most computer
vision tasks, as demonstrated by its remarkable achievements
in image processing [2], [3], image style transfer [4], [5],
classification [6], [7], and image generation [8]–[10]. Up until
now, many variants of GAN models have been proposed in
different fields. GAN has become one of the most active
algorithms in deep learning in recent years.

Generative approaches are used to model simulated obser-
vations drawn from a probability density function, and
can obtain plentiful samples. Generally speaking, gener-
ative models can be divided into two categories: tradi-
tional machine learning based algorithms, and deep learning
based algorithms. Examples of the former include Restric-

ted Boltzmann Machine(RBM) [11], Gaussian Mixture
Model (GMM) [12], Naive Bayes Model (NBM) [13],
Hidden Markov Model (HMM) [14] and so on. These algo-
rithms build generative models, which use specific func-
tions to approximate true distributions, and thus constitute
the desirable interpretability and remarkable achievements of
the generative models. However, each traditional generative
model needs a certain functional form, which has complex
expression and is hard to be designed. In addition, traditional
generative models do not perform well on large scale datasets
such as ImageNet [15].

To address these issues, researchers have been looking
for solutions from deep learning algorithms. The deep gen-
erative models include variational autoencoders (VAE) [16]
and GAN, the two most promising methods for unsuper-
vised learning on complex distributions. The goals of VAE
and GAN are to generate distributions from input data
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distributions. Both VAE and GAN construct models to gen-
erate target data from hidden variables, but they are different
in implementation methods. VAE generates data distributions
based on the variational Bayesian inference, while GAN gen-
erates data distributions through the adversarial process. The
variational approach of VAE introduces a deterministic bias
to optimize the lower bound of log-likelihood rather than the
likelihood itself and results in blurred generation. In contrast,
GAN gradually improves the quality of generations by adver-
sarial training process. GAN exhibits the following advan-
tages over VAE based models: 1) GAN belongs to the type of
non-parametric production-based modeling methods, which
does not require prior approximate distributions of training
data. 2) GAN works on the whole image and takes less time
to generate samples by directly using global information.

What makes GAN so outstanding is its special structures.
GAN is a deep adversarial framework consisting of a gener-
ative network named generator and a discriminative network
called discriminator. The generator captures the data distribu-
tions, which wish to pass through the test of the discrimina-
tor, and the discriminator estimates the probability whether
the sample is from true distributions. The GAN framework
is inspired by minimax two-player game, and the competi-
tion between the generator and discriminator forces them to
improve their methods until the counterfeit is undistiguish-
able from the true samples [1]. Both the quality of samples
generated and the identification ability of the discriminator
are improved interactively during the training process [17].
It is notable that the generator can be any algorithm as
long as it can learn distribution of training data, and the
discriminator needs to extract features and train a binary
classifiers using these features. For example, convolutional
neural networks (CNN) [18]–[20], recurrent neural networks
(RNN) [21], [22], and long-short-term memory (LSTM)
[23], [24] could be used to extract features. While the genera-
tor needs to produce detailed distributions, and as an opposite
operation of CNN to produce detailed distributions, decon-
volutional neural networks are generally used as generators.
Combined with other models, GAN has developed rapidly in
recent years, which will be briefly introduced below.

Recent development of GAN can be divided into three
stages. From the time when GAN was proposed until the
appearance of DCGAN [20], is the initial stage (2014.06-
2015.11). The second is exploration stage (2015.11-2017.01)
from the appearance of DCGAN to the appearance of
WGAN [25]. From WGAN to present is rising stage
(2017.01-present). When GAN was initially proposed,
it didn’t receive much attention, because the original GAN is
difficult to control, the model is easy to collapse and the result
is not satisfactory. Then a landmark model DCGAN was
proposed in the exploration stage. Researchers began to find
solutions to make GANs more stable by improving the struc-
ture and training skills. Meanwhile, the applications of GAN
began to appear and have achieved good results, such as high-
quality image generation [8], image style conversion [4],
etc.. Despite wide application, theoretical explanation of why

TABLE 1. Abbreviations and corresponding full names appearing in the
paper.

GAN has the above problems is rarely seen. In the rising
phase, WGAN has provided detailed explanation of GAN’s
poor control and easy collapse. It also proposes a solution to
improve the quality of generated results. Accordingly, many
new models with better results have been proposed from
different angles. In addition, GANs are applied in many new
fields, such as text-image mutual generation [26], image in
painting [27], etc., showing strong vitality via combination
with other approaches. GAN is still in an ascendant stage
towards deeper explorations and more extensive applications,
indicating a wide developing prospect.

The rest of this paper is organized as follows. The mech-
anism, advantages, and disadvantages of the generator and
discriminator are introduced in section II. Evolutions of typ-
ical GAN models are listed in section III. Several variants of
GAN and their applications and improvements are described
in section IV, followed by summaries and future trends of
GAN in section V.

II. GENERATIVE ADVERSARIAL NETWORKS
In this section, we will introduce the principle and archi-
tecture of GAN, with a discussion of its advantages and
disadvantages. The key idea of GAN is inspired by the mini-
max two-person zero-sum game in which one player benefits
only at the equal loss of the other. In GAN, the two players
correspond to the generator and the discriminator. The goal
of the generator is to deceive the discriminator, and the goal
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of the discriminator is to determine whether a sample is
from real distribution. The output of the discriminator is a
probability that the input sample is a true sample. A higher
probability indicates that the sample is more likely from real
data. Conversely, the closer the probability is to 0, the more
likely the sample is fake. When the probability infinitely
approaches to 1/2, the optimal solution is obtained, as the
discriminator finds it is hard to check fake samples.

A. GAN NETWORK STRUCTURE
GAN consists of two networks: the generator (G) and the
discriminator (D). Essentially, bothG andD are implicit func-
tion expressions that are usually implemented by deep neural
networks [52]. Fig. 1 shows the model structure of GAN,
where G captures the data distribution from real sample and
maps it to a new space. The generated data is recorded asG(z),
whose distribution is recorded as pg(z). The aim of GAN is
to make pg(z) as similar as the distribution of training sample
pr (x). The input of D can be either real data x or generated
dataG(z). The result ofD is a probability or a scalar predicting
whether the input of D is from real distribution.

FIGURE 1. The basic framework of GAN, which includes a generator G
and a discriminator D, trained through back-propagation algorithm.

1) THE GENERATOR
The generator is represented by a differentiable function G.
G collects random variables z from the prior distribution and
maps them through a neural networks to pseudo-sample dis-
tributions G(z), which is an upsampling process. The input z
generally uses Gaussian noise which is a random variable or a
random variable in latent space. During the training of GAN,
the parameters of G and D are updated iteratively. When
G is being trained, the parameters of D are fixed. The data
generated byG is labeled as fake and is input intoD. Between
the output of the discriminator D(G(z)) and the sample label,
the error is calculated, and the error back propagation algo-
rithm is used to update the parameters of G.
G only imposes a few constraints on input variables which

can not only be entered to the first layer but also be entered
to the last layer. Moreover, the noise can be added to hidden
layers, in the way of either summation product or mosaic.
GAN does not limit the input dimension of z, which is
usually a 100-dimensional vector. Furthermore, G must be

differentiable because feedback passed through the discrimi-
nator will return gradients to update parameters of G and D.

2) THE DISCRIMINATOR
The goal of discriminatorD is to determine whether the input
is from real sample and provides a feedback mechanism that
refines weight parameters of G. When the input is real sam-
ple x, the output of D approaches to 1. Otherwise, the output
of D approaches to 0.
When the discriminator is trained, theG is fixed.D obtains

the positive sample x from the real dataset and the negative
sample G(z) generated by the generator. Both of them are
input intoD, and the output ofD and sample labels are used to
calculate the error. Finally, the error back propagation algo-
rithm is used to update the parameters of the discriminator.

B. LOSS FUNCTION
The loss function of GAN is based on a two-player mini-
max game, which contains two neural networks that compete
against each other in a zero-sum game framework [53]. Two
players are represented by two functions which are differ-
entiable with respect to their inputs and parameters. The
discriminator function is denoted by D, whose inputs and
parameters are x and θθθ (D), and whose loss function is

V (D, θθθ (D)) = −Ex∼pr (x)[logD(x)]

−Ez∼pg(z)[log(1− D(G(z)))] (1)

the pr represents real data distribution and the pg represents
generated data distribution. The generator function is denoted
by G, whose input and parameters are z and θθθ (G), and whose
loss function is

V (G, θθθ (G)) = Ez∼pg [log(1− D(G(z)))] (2)

Both players have their own loss functions. D needs to max-
imize V(D)(θθθ (D), θθθ (G)) by updating θθθ (D), and G needs to min-
imize V(G)(θθθ (D), θθθ (G)) by updating θθθ (G). Both players’ loss
functions depend on parameters of each other. They cannot
update the other parameter and will not stop training until a
Nash equilibrium is achieved [54]. GAN is actually a mini-
max optimization problem, whose loss function is defined as:

min
G

max
D

V (D,G) = Ex∼pr (x)[logD(x)]

+Ez∼pg(z)[log(1− D(G(z)))] (3)

The first part of formula (3) represents that D makes objec-
tive function as large as possible when real data is input. The
latter represents that when the generated data is input to D,
D makes the output D(G(z)) approach 0, while the goal of
G is to make the output D close to 1. When two models
have been sufficiently trained, the game eventually reaches
a Nash equilibrium. Ideally, D cannot tell whether the input
is real data or generated data, that is, when the minimum
pr (x)/(pr (x) + pg(z)) equals to 1/2, the model is optimal.
It means that D cannot distinguish real samples and generated
samples.
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C. THE CHALLENGES OF GAN
Though GAN has achieved great success, there are still some
problems such as gradient disappearance, difficulty in train-
ing, and poor diversity. The reasons of these problems will be
explained.

According to the loss function (3), the input of D includes
two parts: the real data set distribution pr and the generated
data distribution pg. The loss function can be also written as:

min
G

max
D

V (D,G) = Ex∼pr [logD(x)]

+Ex∼pg [log(1− D(x))] (4)

The core problem of GAN is to measure and minimize the
distance between the two distributions pr and pg. When the
generator is fixed, the training of discriminator is also a
process of minimizing the cross entropy, and the loss function
of D is:

V (D) = −pr (x)[logD(x)]− pg(x)[log(1− D(x))] (5)

Let the derivative of equation (5) be 0, then the optimal
discriminator D(x) has the following shape

D∗(x) =
pr (x)

pr (x)+ pg(x)
(6)

There are two ways to express the loss function of the
generator, one of which can be written as:

V (G) = Ex∼pg [log(1− D(x))] (7)

In the case where the discriminator is optimal, a generator-
independent item is added to equation (7) to make a new
equation V (D, θθθ (G)) (8), where θθθ (G) is a neural network
parameterized by θ .

V (D, θθθ (G)) = Ex∼pr [logD(x)]+ Ex∼pg [log(1− D(x))] (8)

In the following, merging Eq.(6) into Eq.(8), we obtain

V (D, θθθ (G)) = Ex∼pr log
pr (x)

1
2 [pr (x)+ pg(x)]

+Ex∼pg log
pg(x)

1
2 [pr (x)+ pg(x)]

− 2log2

= KL(pr ||
pr + pg

2
)+ KL(pg||

pr + pg
2

)− 2log2

(9)

where KL is the Kullback-Leibler divergence (KL diver-
gence) defined by the following equation

KL(pr ||pg) = Ex∼pr [log
pr (x)
pg(x)

] (10)

KL divergence is a non-symmetric measurement of similarity
between two distributions. There is another similar mea-
surement named Jensen-Shannon divergence (JS divergence),
which is defined by Eq.(11).

JSD(pr ||pg) =
1
2
KL(pr ||

pr + pg
2

)+
1
2
KL(pg||

pr + pg
2

)

(11)

Then, the Eq.(9) can be rewritten as

V (D, θθθ (G)) = 2JSD(pr ||pg)− 2log2 (12)

The optimization of the original loss function is equivalent
to minimizing the JS divergence JSD(pr ||pg). The closer the
two distributions are, the smaller the JSD(pr ||pg) is. By opti-
mizing the JS divergence, the generated samples look more
and more like real ones. However, when pr and pg have
no or little overlapped parts, the JSD(pr ||pg) is a constant
log2, implying that its gradient with respect to pr and pg
is zero, which makes it hard to train the model. Actually,
the possibility that no overlap between pr and pg is 1, when
the support set of pr and pg is low-dimensional manifold in
high dimension. This is the main cause of gradient vanishing
and disappearance.

Moreover, note that the probability of pr and pg overlap is
too low to be calculated, because the input of the generator
is generally a low-dimensional coding vector (such as 100).
But the dimension of real sample is usually much larger than
100, so the JS divergence is a constant, resulting in 0 of the
gradient of generator and thus its disappearance.

Another challenge of GAN is that it is difficult to train
the network. When the discriminator is trained optimally,
the feedback from D is significantly close to 0, leading to the
decrease of convergence rate. When the discriminator is not
well trained and then the gradient of generator is not accurate.
GAN can only work properly when the discriminator is well
trained, but there is no indicator to show whether the discrim-
inator is properly trained or not.

Poor diversity of GAN generation is another problem and
will be addressed in the following. Firstly, we introduce
another expression of generator loss function [55].

V (G) = Ex∼pg [−logD(x)] (13)

Making the KL(pg||pr ) to the following transformations

KL(pg||pr ) = Ex∼pg [log
pg(x)
pr (x)

]

= Ex∼pg [log
pg(x)/(pr (x)+ pg(x))
pr (x)/(pr (x)+ pg(x))

]

= Ex∼pg [log
1− D∗(x)
D∗(x)

]

= Ex∼pg [log(1− D
∗(x))]− Ex∼pg [logD

∗(x)]

(14)

The equivalent equation (13) can be obtained by the formulas
(12) and (14)

Ex∼pg [−logD
∗(x)] = KL(pg||pr )− 2JSD(pr ||pg)

+ 2log2+ Ex∼pr [logD
∗(x)] (15)

The last two terms in Eq.(15) are not functions of the genera-
tor, and therefore, to minimize (15) is equivalent to minimize
Eq.(16).

KL(pg||pr )− 2JSD(pr ||pg) (16)
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However, there are two problems with Eq.(16). Firstly,
tominimize (16), theKL divergence should beminimized and
the JS divergence should be maximized, which are contradic-
tory and cause unstable BP process. Secondly, the preceding
KL(pg||pr ) divergence term is much different from the previ-
ousKL(pr ||pg). Note that the KL divergence is asymmetrical.
Taking KL(pg||pr ) as an example.
When pg(x) → 0 and pr (x) → 1, then KL(pg||pr ) → 0;

When pg(x)→ 1 and pr (x)→ 0, then KL(pg||pr )→+∞.
The punishment is different for the above two cases. In the

first case, the generated sample lacks diversity and the penalty
is small. Whereas in the second case, the generated sample
lacks accuracy and the punishment is very huge. Accordingly,
the generator tends to generate some repetitive but safe sam-
ples rather than diverse samples to avoid penalties, because of
the huge punishment for the latter. The above phenomenon is
called mode collapse.

All of the above analysis shows that under (approximate)
optimal discriminator of the original GAN, the first kind of
generator loss Eq.(7) faces the problem of gradient disap-
pearance and difficulties in training, and the second kind
of generator loss Eq.(13) suffers from the optimization goal
absurdity, gradient instability and mode collapse. The fun-
damental causes of these problems can be attributed to two
points. Firstly, the distance measurement (such as KL diver-
gence and JS divergence) of the equivalent optimization is
unreasonable. Secondly, the generated distribution is difficult
to overlap with the real distribution [55].

D. THE ADVANTAGES OF GAN
Since the emergence of GAN, it has been applied in different
fields with modifications either structurally improved or the-
oretically developed. Its advantages include the following
aspects: 1) There are few prior assumptions and hardly any
hypothesis about data sets which almost could be any dis-
tribution in original GAN proposed by Goodfellow. 2) The
final goal is that GAN has infinite modeling power and can fit
all distributions. 3) The design of GAN model is simple and
it is not necessary to pre-design complex function models.
4) GAN provides a powerful method for unsupervised deep
learning models, and it subverts traditional artificial intelli-
gence (AI) algorithms which are limited by human thinking.
5) GAN uses machines to interact with machines through the
continuous confrontation which can learn inherent laws in the
real world after adequate data training.

III. THE EVOLUTION OF GAN MODEL
To solve problems of the original GAN, such as gradient
disappearance, unstable training, and poor diversity, many
newGANmodels have been proposed to increase the stability
and to improve qualities of generated results [56], [43]. In this
section, we will introduce the evolution of GAN models,
including deep convolutional generative adversarial network
(DCGAN) [20], conditional GAN (CGAN) [28], Wasser-
stein GAN (WGAN) [25], WGAN with gradient penalty
(WGAN-GP) [31], Energy-Based GAN (EBGAN) [30],

Boundary Equilibrium GAN (BEGAN) [8], Information
GAN (InfoGAN) [29], Least Squares GAN (LSGAN) [32],
Auxiliary Classifier GAN (ACGAN) [6], Degenerate
avoided GAN (DRAGAN) [33], Spectral Normaliza-
tion GAN (SNGAN) [34], Jacobian Regularization GAN
(JR-GAN) [36], CapsGAN [37], Banach Wasserstein GAN
(BWGAN) [38], Decoder-Encoder GAN (DEGAN) [39].

FIGURE 2. A classification of GAN models.

To be specific, we classify GANs into different types
in terms of objective functions, structures and conditions,
as shown in Fig. 2. The objective functions belong to the
improvements of loss function, the structures and conditions
belong to the developments of architecture. The time of each
model proposed is also marked in the figure to show the
pedigree relationships between them.

The evolution of GAN models are classified from two
aspects: the development of the architecture and the improve-
ment of loss function. The structural improvement combined
GANs with other models or other algorithms. For exam-
ple, the structure includes different models that combined
GAN with CNN [20], capsule network [37] and encoder
decoder [39]. The conditional GANs are to enhance the
control of GAN. In this section three different GAN models
CGAN, ACGAN and InfoGAN are introduced according to
the way that conditions work. On the other hand, objec-
tive functions refer to the improvement of loss function in
respect of the modifications of theory. Four models, WGAN
for example, use Wasserstein distance to improve their loss
function. LSGAN introduces least squares method as its loss
function. SNGAN and SAGAN use spectral normalization,
and JR-GAN proposes Jacobi regularization method. Their
evolutionary relationships are shown in Fig. 2. Furthermore,
some models show both theoretical and structural innova-
tions, but are classified only to one type based on their
distinctive features. For example, even though EBGAN
changes and uses reconstruction loss as object function,
its structural improvements are more typical. In a word,
we evaluate classical models quantitatively and qualitatively
through experiments and analyze each model fairly and
comprehensively.
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A. THE EVOLUTION OF GAN STRUCTURE
The improvement of GAN structure is mainly from stabi-
lizing the model and reducing convergence delay. To better
control the models, different conditional GANs that can carry
more information (such as CGAN, InfoGAN, ACGAN) are
proposed.

1) CONDITIONAL GENERATIVE ADVERSARIAL
NETWORK (CGAN)
As a method of unsupervised learning, GAN learns the
law of probability distribution from unlabeled datasets and
expresses it during a slow and free process. However, when
the dataset is complex or large-scale, it is difficult for GAN
to control generated results. To solve this problem, a natural
idea is to add constraints and set targets for the generator.
This forms CGAN. It takes random variable z and real data x,
together with a conditional variable c to guide the data gener-
ation process. Thus, the convergence speed has been greatly
accelerated. The structure of CGAN is shown in Fig. 3.

FIGURE 3. The basic framework structure of CGAN.

The conditional variable c of CGAN can be a category
label which turns the unsupervised GAN into a supervised
model; c can be texts, such as sentences which describe the
corresponding images; c can also be a particular generated
target, which proposes a goal to learn. CGAN can not only
generate images with specified categories and labels, but
also use image features as a conditional variable to generate
word vector for the image. This straightforward improvement
proves to be very effective and is widely used in subsequent
works.

2) DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL
NETWORK (DCGAN)
One milestone in the history of GAN is DCGAN [20], whose
structure of generator is shown in Fig. 4. DCGAN combines
GANwith CNN,which performswell in the field of computer
vision. DCGAN sets a series of limitations on CNN’s network
topology, so that it can be stably trained and use learned
feature representations to classify images. DCGAN improves
the quality of generated images by making the following
improvements. Firstly, DCGAN uses strided convolutions on
the discriminator and fractional-strided convolutions on the
generator to replace pooling layers [57]. Generally, CNN is
used to extract features, but the CNN structure in DCGAN

needs to generate samples, which is opposite with feature
extraction. The strided convolutions and fractional-strided
convolutions can transmit most of the information to next
layer to ensure the completeness and clarity of generated sam-
ples. Secondly, DCGAN uses Batch Normalization algorithm
to solve the problem of gradient disappearance. The BN algo-
rithm solves poor initializations, conveys the gradient to each
layer and prevents the generator from converging all samples
to the same point [58]. Thirdly, different activation functions
are used in DCGAN, such as Adam optimization [59], ReLU
activation function [60], leakyReLU activate function [61].
The results show the good performance of DCGAN in prac-
tice, and confirm the capability of GAN structure in generat-
ing samples. DCGAN is generally regarded as the standard
when compared with different GAN models.

Other structural improvement models will also be intro-
duced, such as Information GAN (InfoGAN) [29], Aux-
iliary Classifier GAN (ACGAN) [6], Energy-Based GAN
(EBGAN) [30], CapsGAN [37] and Decoder-Encoder GAN
(DEGAN) [39]. InfoGAN adds latent information c as the
control condition of the generator, and c does not enter the
discriminator, but the control information c will be output
by the discriminator, which allows InfoGAN to learn more
information.

The recent ACGAN model adds a category label on the
basis of CGAN, which requires the discriminator to output
both the probability and the category. EBGAN interprets
GAN from an energy perspective, which uses an automatic
encoder as discriminator and reconstruction loss as loss func-
tion. In addition, EBGAN introduces a pull-away item to
prevent generators from focusing on one or a few modes.
EBGAN shows better training stability and enhanced robust-
ness, which can reduce human work for regulating GAN.
CapsGAN combines GAN and Capsule network [62] by
replacing the CNN of the discriminator in DCGAN with
a capsule network. CapsGAN uses dynamic routing algo-
rithm that occurs between the main capsule layer and the
output digital capsule. In addition, CapsGAN uses binary
cross entropy as a loss function that allows the model to
converge without any pattern collapse. DEGAN consists of
two parts: a DCGAN component and a pre-trained decoder-
encoder structure, combining both adversarial training and
variational Bayesian inference to improve image generation
performance. Furthermore, the hidden space loss function is
added to the adversarial loss function to enhance the model
stability.

B. THE IMPROVEMENT OF GAN LOSS FUNCTION
Gradient disappearance is one of the most common problems
in the training of GAN, because the generator is generally
an encoding vector sampled from random distribution of low
dimensions (ie, z is usually taken as 100 dimensions), but it
is then used to generate high-dimensional samples via neural
networks. Even if the sample dimensions of the generator are
definite, the probability distribution of generated samples is
defined in a space of 4096 dimensions. All possible changes
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FIGURE 4. The structure of the generator of DCGAN [20].

have been defined by the 100-dimensional random distri-
bution, but the practical dimension is still 100. Therefore,
the support set for generated sample distributions constitutes
a low-dimensional manifold with up to 100 dimensions in a
4096-dimensional space. Hence, the probability of the over-
lapping between the generated distribution and the data distri-
bution is close to 0. Then the divergence of Jensen-Shannon
(JS), which is a measure of similarity between generated
distributions and true distributions, will become a constant,
and the gradient will disappear so the model training is unable
to continue [63].

1) WASSERSTEIN GENERATIVE ADVERSARIAL
NETWORK (WGAN)
To solve the problem that JS distance is unable to,Wasserstein
distance (also called Earth-Mover (EM) distance) (Eq.(17))
was firstly used in WGAN [25] to measure the distance
between real samples and generated ones instead of JS diver-
gence.

W (pr , pg) = inf
γ∼

∏
(pr ,pg)

E(x,y)∼γ [‖x − y‖] (17)∏
(pr , pg) is the set of all possible joint distributions that pr

and pg combine, and γ is every possible distribution. Wasser-
stein distance has the following advantages: It can measure
distance even when two distributions do not overlap; it has
excellent smoothing properties; and it can solve the problem
of gradient disappearance to some extent. In addition,WGAN
solves the problem of instability in training and makes gener-
ated samples diverse. There is no need to carefully balance
the training of G and D [64]. However, using Wasserteion
distance needs to satisfy strong conditional lipschitz conti-
nuity, so WGAN limits the weight to a range to enforce the
continuity of lipschitz. However, the forced cutting weights
can easily cause the gradient to disappear or explode.

2) WGAN WITH GRADIENT PENALTY (WGAN-GP)
To solve the problem of disappearance or explosion of the
gradients and find a suitable way to meet the lipschitz conti-
nuity, a gradient penaltymethod termedWGANwith gradient

penalty (WGAN-GP) is proposed by Gulrajani et al. [31].
WGAN-GP replaces the weight pruning in WGAN to imple-
ment Lipschitz constraint method. The Lipschitz constraint
requires the gradient of the discriminator no more than K.
The discriminator tries to widen the score gap of the true and
false samples as much as possible. After the discriminator is
fully trained, the gradient norm will get close to K. K takes
1 to simplify the calculation, the new discriminator loss of
WGAN-GP is

V (D) = −E(x)∼pr [D(x)]+ E(x)∼pg [D(x)]

+ λE(x)∼p∗x [‖OxD(x)‖p − 1]2 (18)

In the Eq.(18), x∗ = εxr + (1 − ε)xg, xr ∼ pr , xg ∼ pg and
ε ∼ Uniform[0, 1], x∗ is a random interpolation sample
on the line of xr and xg. Experiments show that the quality
of samples generated by WGAN-GP is better than that of
WGAN. WGAN-GP provides stable training without hyper-
parameters and trains a variety of generating tasks success-
fully. However, experiments also show that the convergence
rate of WGAN-GP is slower, as it takes more time to con-
verge under the same dataset. WGAN and WGAN-GP have
improved the GAN on optimization methods and constraint
approaches without changing the structure of it. In essence,
they improve the original GAN by increasing constraints to
generate better samples. The comparison of four landmark
models of GANsis shown in Table 2. DCGAN and CGAN
are representatives of structural improvements of GAN. They
design more stable network structures or add conditions.
WGAN and WGAN-GP improve the objective function the-
oretically, and make the training more stable.

Some other methods that modify the loss function in
different ways will be introduced. LSGAN replaces cross-
entropy loss of objective function with the least squares
loss, and it partly repaires two defects of low quality and
instability of training process. BEGAN proposes a balance
concept to balance the abilities of the discriminator and pro-
vides a hyperparameter that can make a balance between
the diversity of image and the generation quality. DRAGAN
uses a gradient penalty to avoid degraded local equalization.
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TABLE 2. Comparisons of typical GAN models.

TABLE 3. The loss functions of discriminators and generators.

SNGAN proposes a new weight regularization method called
spectral normalization, which can stabilize training process of
the discriminator. The spectral normalization allows parame-
ter matrix to use as many features in images as possible and
satisfy local 1-Lipschitz constraints. SNGAN could even fit
all 1000 classes of ImageNet. BWGAN replaces the l2 norm
in WGAN-GP with dual norm and generalizes the WGAN
theory with gradient penalty on Banach space. Furthermore,
BWGAN extends WGAN-GP to any separable complete
normed space. JR-GAN suggests a new Jacobian regulariza-
tion method, which can simultaneously alleviate the Phase
Factor and the Conditioning Factor to ensure good conver-
gence behavior of GAN. While the gradient-based regular-
ization methods can only avoid one factor, the other factors
are more serious. JR-GANmakes the GAN architecture more
robust. Table 3 shows loss functions of different models.

C. THE EXPERIMENTAL RESULTS OF DIFFERENT MODELS
To evaluate the performance of different GAN models,
DCGAN, CGAN, WGAN, WGAN-GP, EBGAN, BEGAN,
INFOGAN, LSGAN, VAE [40], Conditional Variational
Autoencoders (CVAE) [41], ACGAN, DRAGAN are com-
pared on the same datasets. The loss functions of generators

and discriminators are shown as in Table 3. The code is
from [65] and [66], with the generated results compared when
relevant parameters are consistent (see Table 4 and Table 5).
In this section, we will introduce the basic setups and network
structures of the experiment, and analyze experimental results
from qualitative and quantitative comparisons.

1) EXPERIMENTAL SETUP
The experiments are conducted on two common public
datasets: MNIST [19] and Fashion-MNIST [67]. The lat-
ter is a new image database like the MNIST and includes
10 categories of frontal images of 70,000 different prod-
ucts, including T-shirts, pants, pullovers, skirts, jackets, san-
dals, sweatshirts, sneakers, bags and ankle boots, labeled
from 0 to 9. In addition, the name, size, format and train-
ing set of Fashion-MNIST are exactly the same as the
original MNIST that contains 60,000 training pictures and
10,000 test pictures, with the size of 28 × 28 grayscale.
The listed results of different models are to verify the per-
formance of generation from human vision. The experimen-
tal results are shown in Table 4 and Table 5. The images
in Table 4 generated in Epoch1 reflect the convergence rate
of different models. Those models with fast convergence
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TABLE 4. Comparisons of images generated by different models.

include WGAN, CGAN, DCGAN, LSGAN and InfoGAN.
The images generated in Epoch40 reflect the generation qual-
ity of different models. Those models with high generation

quality are BEGAN, WGAN, LSGAN, WGAN-GP, Info-
GAN, EBGAN, DCGAN, CGAN. The images in Table 5
generated in Epoch1 reflect the convergence rate of
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TABLE 5. Comparisons of images generated by different models.

different models. The models with fast convergence include
ACGAN, CVAE, DRAGAN, VAE. The images generated
in Epoch40 reflect the generation quality of different mod-
els. Those models with high generation quality are CVAE,
DRAGAN, ACGAN, VAE.

Table 4 and Table 5 show generated results of differ-
ent GAN models, whose network architectures of genera-
tor and discriminator are the same as InfoGAN based on
DCGAN. To compare the key ideas of different GANmodels
fairly, their parameters and settings are kept consistent except
VAE, EBGAN and BEGAN. The number of output nodes in
encoder is different for VAE and GAN. Small modification
is made for EBGAN and BEGAN, since they adopt auto-
encoder structure for the discriminator. The experiments use
unified setup: a discriminator includes an input layer, an out-
put layer, two convolutional layers and a fully connected
layer. The generator includes an input layer, an output layer,
two fully connected and deconvolutional layers, and identical
activation functions and batch standardization operations.

2) QUALITATIVE COMPARISONS
In terms of the quality of generated images from the first itera-
tion in TABLE 4 and TABLE 5, WGAN converges the fastest
and generate clearer images than others. The edges of images
generated by WGAN are easy to distinguish from the back-
ground, since WGAN uses weight penalty which can learn

image distributionsmore quickly. In contrast,WGAN-GP has
the slowest convergence rate in all models. The final genera-
tive results also show that its generated images in 40 iterations
are not clear, while converged under the same conditions with
other models. Instead of using weight penalty of WGAN,
WGAN-GP calculates the weight gradient according to the
input of the discriminator, then it penalizes the gradient
norm [31]. WGAN-GP needs to train more parameters, so the
convergence rate is slow. But WGAN-GP is out of box and
needs no adjustment, in other words, parameter changes have
little effects on its learning rate and the model is pretty stable.
Therefore,WGAN-GP can produce high-quality images after
60 iterations. DRAGAN is similar to WGAN-GP with slow
speed but high-quality images. It uses gradient clipping to
avoid local equilibrium and obtains more stably training.

In the above tables, CGAN, ACGAN, InfoGAN and CVAE
add controllable conditions in their generators, and they can
generate samples in specified category with faster convergent
rate. The differences are that CGAN directly adds conditional
information c together with random variable to the input of
the generator to control output mode. While ACGAN adds
information of category c to both D and G, telling G how to
generate better category simulations. InfoGAN explores new
ways to generate samples of the same categories by maximiz-
ing mutual information. CVAE is a variation of VAE which
adds controllable information c to encoders and decoders.
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TABLE 6. The FIDs of different models trained on MNIST AND fashion-MNIST, the smaller the FIDs, the better the performance (* represents the model
easily crashed during training).

Experiments show the quality of images generated by
CVAE is lower than that of GAN, since VAE uses KL distance
and relies on a hypothetical loss function without adversar-
ial training. While GAN directs G and D to compete with
each other without assuming a single loss function. In the
experiment, ACGAN generates clear images on epoch 11,
but it tends to fall into mode-collapse in latter training. Its
stable training requires suitable hyper-parameters. Instead of
inputting noise z, the generator of InfoGAN inputs a control
variable c, so the internal texture generated by InfoGAN is
not good and the external shapes are similar. This poor diver-
sity is a result of the variable c, as it contains interpretable
information on the data to control generated result.

EBGAN interprets GAN from the view of energy.
Generated results show that this model can learn the proba-
bility distribution of images, but with a low convergence rate.
When othermodels have been able to roughly express the out-
line of images, samples that EBGAN produced are still disor-
ganized. But BEGAN generates rich and diverse results with
the sharpest edges, because its discriminator draws lessons
from EBGAN and its generator refers to the definition of
WGAN loss. BEGAN also proposes a hyperparameter which
can measure the diversity of generated samples to balance D
and G and stabilize the training process [8]. LSGAN gener-
ates high quality images, dues to the replacement of cross-
entropy loss of objective function by the least squares loss,
which partly solves two defects of low quality and instability
of training process. Generally, images generated by DCGAN
are more diverse, especially inside textures and details.

3) QUANTITATIVE COMPARISONS
The above results are judged by human visual observa-
tion, which is only one aspect of evaluating GAN models.
Comprehensive evaluations of the performance of GANs are
being investigated. However, no single indicator could fully
evaluate GAN, because which indicator to use depends on
what researchers want to do with GAN. Quantitative indi-
cators commonly used to automatically estimate the GAN

include inception score (IS) [43] and frechet inception dis-
tance (FID) [42]. IS offers a method to evaluate the quality
of generated examples. When calculating FID, the real data
and the generated data are firstly embedded into a feature
space through Inception Net. Then, the embedding layers
are treated as a continuous multivariate, and the mean and
covariance of real data and generated data are estimated to
obtain FID [42]. IS has a good correlation with scores of
human annotators, but with one disadvantage of insensitivity
to the prior distribution of labels. FID is considered to be
the best evaluation criteria currently, because it is robust in
pattern dropping and coding network selection. These indi-
cators are still an ongoing important research area, if GAN
is used to generate high-quality examples, and thus requires
human raters to evaluate the texture, details, diversity and
rationality of generated examples; and if GAN is used for
semi-supervised learning, and the accuracy of test set needs
to be used as the evaluation criteria.

Table 6 shows different models measured from the time
required for each model to run 40 iterations on both data sets.
And the FID indicators calculated on 32000 generated and
real examples. The time index can measure the number of
parameters and rate of convergence. In experiments, VAE,
CVAE, EBGAN and BEGAN spend less time and have faster
convergence rate. From Table 6, it can be observed that VAE
and CVAE show better performance on time consumption.
This is because an encoder or decoder is employed in the
generator of discriminator. EBGAN and BEGAN use auto-
matic encoders for their discriminators, and both of them
have fewer parameters than others that use neural networks.
EBGAN treats the discriminator as an energy function. It has
a smaller energy value when near the real data region and
a higher energy value in other regions. Therefore, EBGAN
interprets GAN from the perspective of energy. Its generator
aims to produce samples with minimal energy, while its
discriminator tries to assign higher energy to these generated
samples. In this way, GAN can be trained withmore extensive
structures and loss functions.
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The discriminator of BEGAN borrows structure from
EBGAN, and the generator draws lessons from Wasserstein
GAN to define loss, which derives fromWasserstein distance
to match the self-encoding loss distribution. BEGAN also
introduces a hyperparameter γ , the ratio between expected
loss of generated samples and real ones, to measure the diver-
sity of generated samples. This hyperparameter γ balancesD
and G to stabilize training process. If the generator performs
too well, then the discriminator is focused. This hyperpa-
rameter also provides a measurable indicator for judging the
convergence rate and the quality of images, resulting in a bit
slower training speed than that of EBGAN.

Retaining the same conditions, the convergence speed
ranking of other models from fast to slow is DCGAN,
LSGAN,WGAN, CGAN, DRAGAN,WGAN-GP, InfoGAN
and ACGAN. DCGAN is a benchmark model, other models
add different constraints or improvements on it, for exam-
ple, WGAN uses weight pruning to reduce the number of
parameters to converge quickly. Its speed of convergence is
directly proportional to the quality of images. In addition,
the above typical GANmodels have been quantitatively eval-
uated by FID, which is consistent with human judgment and
more robust to noise. There is a negative correlation between
FID and the visual quality of generated samples. However,
one disadvantage of the indicator is that over-fitting cannot
be detected, in other words, when GAN stores all training
samples, the FID will still score perfectly [66].

As shown in Table 4, table 5 and Table 6, there is a
trade-off between the quality of generated samples and the
time consuming. For example, WGAN-GP generates higher
quality samples but takes more time. When a model shows
good performance in one aspect, it may not be able to per-
form well in another. For example, WGAN-GP has good
robustness and can produce high quality samples, but its
convergence rate is relatively slow. Therefore, basic theories
of GAN to develop more stable and easily trained models
are in demand. For example, a combination of global and
local regularization in generators and discriminators could
be used to capture more features. The latest Self-Attention
generative adversarial network (SAGAN) [35] has unified
attentionmechanism and spectral normalization and achieved
the best results. Currently, there is still a lack of a systematic
evaluation system that can evaluate each model fairly and
neutrally. Therefore, if you intend to use GAN, you need to
choose appropriate model according to your purpose.

IV. APPLICATIONS OF GAN IN COMPUTER VISION
Computer vision is a simulation of biological vision using
computers and related devices. It seeks to automate tasks that
human visual system can do and deals with how computers
can bemade for gaining high-level understanding from digital
images or videos [68]. GAN has performed exceptionally
well in many fields of computer vision. Due to characteristics
of adversarial mechanism and constant self-improvement,
GAN stands out at learning features from existing dis-
tributions and capturing reasonable visual characteristics.

From image generation to a series of applications, more
and more new GAN models have been proposed, and they
have produced significant results than traditional methods
in different computer vision fields. In this section, we will
introduce several representative cutting-edge applications of
GAN, including high quality samples generation, style trans-
fer and image translation, text-image mutual generation,
image in painting and restoration and others.

A. GENERATE HIGH QUALITY SAMPLES
The most extensive application of GAN as a generative
model is sample generation. GAN learns the distribution of
real data in ways of supervised learning, semi-supervised
learning or unsupervised learning [20], [69]. Compared with
traditional machine learning algorithms that design a certain
functional expression, GAN works in a way of end-to-end.
GAN learns feature distributions or mappings of real data
and generates new samples through artificial neural networks.
The most basic GAN application is to imitate distributions of
real samples and to generate the same samples. For example,
GAN is trained on MNIST and generates new handwritten
numbers [70]. The quality of generated samples is one of
the indicators to measure a model. Several models that can
generate high quality images would be introduced in this
section.

Researchers have been devoting themselves to make gener-
ated image look like a real one, and they have developed some
successful models, such as DCGAN, WGAN and Laplacian
Pyramid of Adversarial Networks (LAPGAN) [45]. DCGAN
combines GANwith deep CNN and adds constraints to stabi-
lize the model, and it has obtained inspiring results on several
data sets. In addition, its generator can perform interesting
vector arithmetic, proving that generated pictures are not
the memory of picture elements in database, but that these
pictures are drawn by particular filters. Currently, DCGAN is
the model with the highest usage rate and is suitable for most
generation tasks. However, one of its disadvantages is that
the resolution of generated sample is low. Since the number
of images in general datasets is large, the pixel of images is
low. For instance, ImageNet contains tens of millions images
of low resolution. It can satisfy the requirement of training a
model, but the generated images will not be clear. Then, how
to improve the quality of generated images with the dataset
has become a focus of research.

The LAPGAN proposed in literature [45] is a tandem
network. A set of images is arranged hierarchically according
to their resolution from low to high. Based on a low-resolution
sample, LAPGAN first generates a low-resolution image,
which will be input together with another higher resolution
image to the next phase. The generator of each phase corre-
sponds to a discriminator which judges whether input image
is fake or real. The model is shown in Fig. 5. One of the
advantages of LAPGAN is that the generators in each stage
can learn different distributions and pass them to next layer
as supplementary information. After several times of feature
extraction, the resolution of the final generated image will be
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FIGURE 5. The process of generating samples of LAPGAN, which is divided into multiple stages, a short period of output is
used as the input for next stage [45].

TABLE 7. Comparisons of different models used in generating high quality examples.

greatly improved and more authentic. Apart from adopting
the above methods, LAPGAN also incorporates CGAN to
transform unsupervised approaches into supervised learning
with significant efficiency improvements. Since LAPGAN
must be trained under supervised learning, it is more suit-
able for scenarios where high-resolution images need to be
generated.

Then, Self-Attention generative adversarial network
(SAGAN) is proposed in the literature [35], which adopts
self-attention mechanism to improve the quality of generated
images. Unlike traditional convolution GANs, which focus
on local features of images and are difficult to capture
geometric patterns or structural patterns, SAGAN allows
attention-driven, long-range dependency modeling for image
generation tasks and uses clues from all feature locations
to generate details. In addition, the generator of SAGAN
also adopts the spectral normalization which was previously
only used in the discriminator to enhance its adjustment.
In addition, it uses two-timescale update rule (TTUR) to
accelerate the training of the regularization discriminator.
SAGAN has greatly improved the training dynamics of GAN
as well as the quality of generated images. It is compared with
DCGAN, LAPGAN in Table 7.

B. STYLE TRANSFER AND IMAGE TRANSLATION
Style transfer is another interesting application of GAN,
it also called image translation, which transforms images
from one style to another. Traditional methods of image gen-
eration can only solve one certain task, such as converting an

image into a corresponding semantic label map [71], or trans-
lating the outline into a real image [72], and it requires
different systems for each task. GAN can solve different tasks
of style transfer and image translation, because it provides a
unified framework for different tasks by adversarial training.

One typical GAN based style transfer model is pix2pix,
which is a one-to-one image style migration model [4].
Pix2pix uses two datasets A and B, one being the collection
of images of one style, and the other being the collection of
the same set of images but in another style. For example,
dataset A is outlines of shoes, and correspondingly dataset
B is real shoe images. In training, one dataset is used as
input, and the other is used as a conditional input, also called
target. Pix2pix learns mappings between the two datasets
and generates images. The errors between generated images
and targets are calculated by loss function, which further
adjusts the parameters to generate better images that are as
similar as the target image. To make generated images more
authentic, pix2pix has been optimized in the following ways:
firstly, its generator uses U-NET architecture, which adds
skip connections between each layer i and (n− i) (i.e. n is the
total number of layers) [73]. In style transfer, normal convo-
lutional and pooling operations are replaced by U-NET while
many pixel permutations remain fixed, then images could be
passed directly to the next layer in skip connections to ensure
the content of images unchanged. Secondly, its discriminator
uses PatchGAN architecture, which has been proved effective
in classifying effect with a local classifer rather than a global
one, to pay attention to local image. PatchGAN also reduces
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the number of parameters, which improves the speed and
efficiency of training. Pix2pix model is sufficiently trained
to achieve realistic artistic style transitions between pairs
of images, such as styles transfer of different maps, objects
and their contour maps. However, the model also has its
disadvantage, to be specific, it requires a one-to-one paired
data set.

Another method based on GAN is employed by
Kim et al. [47] to discover cross-domain relationships, known
as DiscoGAN. With the discovered relationship, DiscoGAN
retains the main features of images while successfully trans-
ferring the style of one domain to another and withhold key
attributes, such as the changeover of apple and orange, cat and
dog, etc. DiscoGAN improves the quality of generated image
by implementing one-to-one bidirectional mappings, which
requires one-to-one paired data sets, therefore, DiscoGAN
also has limitations as pix2pix. On the other hand, unsuper-
vised cross-domain image generation can be obtained by the
domain transfer network (DTN) [48]. DTN employs com-
posite loss functions which include several GAN losses and
specification components to produce a convincing new image
and to maintain original identities of the entities. For exam-
ple, it generates visual appealing facial emoticons symbols
that capture more facial features than human-created, and
transfers photos to emojis (Fig. 6 Shown). Therefore, DTN
is suitable for generating anime images from photographs of
people. However, due to the asymmetry of input function and
lower information content in new source domain, the results
produced are less attractive.

FIGURE 6. Transfer photos to emoji by DTN model [48].

To break the constraints of paired data sets, the cycle-
consistent adversarial network (CycleGAN) proposed by lit-
erature [46] introduces cycle loss function, whose core idea
is to generate samples for twice. CycleGAN consists of
two-step transformations to realize self-constraint. Firstly,
it maps original images to the target domain, then returns
first-generation images to original domain to get second-
generation images and eliminates requirements for matching
images in target domain. The G network maps initial images
to target domain through the matching generator and discrim-
inator to improve the quality of generated images. It can be

assumed that the first-generated output images are reasonable
when the secondary generated samples are the same with
the original images. However, CycleGAN has its limit due
to strict constraints of the model. For instance, when two
datasets to be converted differ greatly, the generated images
are not alike; in other words, it tends to perform better when
the two datasets are similar. CycleGAN can be applied to
many aspects, such as painting style conversion, seasonal
migration, two-dimensional drawings to three-dimensional
image conversion, and the conversion of historical celebrity
images to real people and so on. However, the quality of its
generated image is lower than that of pix2pix, since the latter
is easier to learn the exact mappings than the former.

Sem-GANproposes a semantically consistent GAN frame-
work in which semantics are defined by the class identi-
ties of image fragments generated by semantic segmentation
algorithms in the source domain [26]. Sem-GAN combines
GAN loss and cycle constraints to make the images gen-
erated from source images inherit the appearances of the
target domain, and it also introduces semantic loss to improve
consistency loss. Sem-GAN is suitable to handle unpaired
image-to-image transformations, but requires datasets to be
semantically identified.

GAN is good at image style transfer, since two networks
of GAN are able to check and balance each other. Five GAN
based models are compared and contrasted in Table 8 in
terms of their advantages, disadvantages and usage scenar-
ios in style transfer and image translation. Based on GAN,
it is convenient to realize mutual conversion between two
styles or to create some works with a certain artistic style.
The future directions of GAN in image style transfer and
image translation are to generate more accurate and desired
images through semantic control and to realize the real-time
interaction with the model. For instance, StarGAN represents
the generation of semantically controlled multi-domain trans-
formations [74], whilemost currentmodels learn a fixedmap-
ping, and generate results randomly and cannot be intervened
during the generation process. In addition, another future
direction is to add more constraints to the model to increase
the quality of generated images in the absence of constraints
on the datasets.

C. TEXT-IMAGE MUTUAL GENERATION
The most common applications of GAN are to generate
images on image datasets. For example, GAN is trained to
generate handwritten numerals and face images that cannot
be differentiated with real ones. All these applications learn
features and generate distributions directly. A creative appli-
cation is to generate corresponding images based on input
text. It is more difficult than simply generating an image,
because it does not only involve semantic understanding of
texts, but is also a many-to-many task. Compared with tra-
ditional approaches that describe an object by attributes and
encode the features into corresponding vectors, but difficult
to obtain a large number of tags [75], [77]. GAN can learn
the feature mappings between characters and image pixels
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TABLE 8. Comparison of different GAN models used in style transfer and image translation.

FIGURE 7. StackGAN generates an image in two phases [44].

directly and can process large quantity of data to generate new
visual images.

Reed [75] proposes a model that combine the deep con-
volutional structure and GAN, which bridge text and images
to transform visual concepts from characters to pixels. It can
generate natural pictures of birds and flowers from a detailed
text description. The implementations of this model are as
follows: Gaussian noise is embedded in G network together
with the input of text descriptions to learn mappings and to
generate images as described by the texts. Generated images,
real images and corresponding descriptions and false descrip-
tions of real image are entered together intoD. Through train-
ing with these pictures and descriptions, the discriminator’s
ability is increasing, and accordingly it drives the generator
to produce more authentic pictures. By producing simple
objects with some simple descriptive words, such as ‘‘flowers
with overlapping pink pointy petals and surrounded by yellow
stamens’’, this model [75] realizes image generation from
text descriptions to images and generates authentic image
representations in simple scenes. It is suitable for simple
text-to-image generation, such as flower generation and bird
generation. The disadvantage of this model is that it works
well only for simple descriptions of image generation, and

fails to generate clear images for complex descriptions, unless
with extensive training.

A better improvement is StackGAN [44] which is different
from general GAN models. StackGAN takes two stages to
generate images. In the first stage, generated images are
rough, while in the second stage, higher resolution images
are generated. If needed, more stages can be added to gen-
erate images with rich details and delicate textures. GAN
can generate higher quality images after changing struc-
ture or adding more constraints. For example, the improved
StackGAN-v2 model is a multi-stage generative adversar-
ial network architecture. It contains multiple generators and
discriminators arranged in a tree-like structure [78]. Fig. 7
shows generated images described by ‘‘this flower has white
petals with a yellow tip and a yellow pistil’’. The upper
row images are generated in the first stage and the bottom
row is the results of the second stage. Different stages of
image generation improve the resolution of images gen-
erated. Despite the advantage of clear image generation
from texts, it is possible that StackGAN will fail generating
sample because it takes multiple phases to finish complex
generation tasks, and each phase may not be clear about
what to do.
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TABLE 9. Comparison of different GAN models used in text and image transforming to each other.

The modified GAN-CLS model is proposed by
Gong and Xia [76] to generate images from correspond-
ing text descriptions. The modified GAN-CLS revises the
objective function of original GAN-CLS [75] to make
the discriminator matching sensing ability. In other words,
the discriminator can judge whether the input text and the
image match with each other. In addition, a pre-trained deep
convolutional-recurrent text encoder is used to encode the
text. The modified model is very efficient and can generate
corresponding images based on a given text in two datasets.
However, this model is sensitive to the initialization of hyper-
parameters and parameters, and in some cases, the generated
results do not have clear boundaries.

It is easier to generate textual descriptions for given
images than to generate images from texts. The computer
has already been able to describe image content, but how
to make a computer speak and write articles like a human
being remains a question. The literature [50] proposes a semi-
supervised generative framework Recurrent Topic-Transition
GAN (RTT-GAN) for paragraph generation. RTT-GAN con-
structs a confrontational framework between a structured
paragraph generator and a multi-level paragraph discrimina-
tor. Paragraph generator synthesizes sentences sequentially
by introducing regional-based visual and verbal attention
mechanisms at each step. RTT-GAN reasons over local
semantic regions and exploits linguistic knowledge to synthe-
size diverse and semantic descriptions of paragraphs. It real-
izesmachine speaking andwriting as human beings do, on the
condition of supervised learning. Table 9 shows comparisons
for mutual generation of text and image.

D. IMAGE INPAINTING AND RESTORATION
Image inpainting and restoration are processes of image
reconstruction, which restores an incomplete image to a com-
plete one, or obtains a global image from a local image. For
example, local or non-local information are often used to
recover images in traditional methods. Local approaches rely
on prior distribution of input image [82], but it is less effective

when the missing content is different from the surrounding
region. Non-local approaches predict missing region by train-
ing massive complete images [83], but it is difficult to repair
images when the missing image is not in the training set.
Unlike traditional methods, GAN reconstructs an image by
generating a similar missing image and finding the closest
vector.

At present, the results of face recognition are getting more
and more accurate. Different face recognition algorithms
have been applied in crowded areas such as subways, train
stations and airports. However, it is still a bit difficult to detect
each pedestrian accurately in such dense crowds. At the same
time, people appear with various forms and expressions, espe-
cially when only one side or part of them appearing in lens,
they will not be identified by the existing face recognition
techniques. How to use scientific and technological methods
to obtain overall information from the locality is an urgent
issue that needs to be solved. The literature [27] proposes
a two-pathway generative adversarial network (TP-GAN)
inspired by human visual recognition process to quickly
identify human faces. TP-GAN combines global structure
and local details to generate photo-like images and retains
original identity features of people. It can synthesize an
image of a front face based on the information of partial
faces shot from different viewpoints or under different light-
ening conditions, or with different postures. Fig. 2 shows
frontal images synthesized from different angles. To get these
images, TP-GAN has made the following changes: it has two
paths for the generator; it has one global network focusing
on processing global structure and four landmark located
patch networks attending to local textures around four facial
landmarks to obtain two feature maps; then the two feature
maps are merged together for final synthesis [27]. Not only
the synthetic front view and real photo are input to the
discriminator, but also the distribution information of front
faces are incorporated to GAN, thus restoring the process
under a very good constraint. In addition, TP-GAN com-
bines multiple types of loss functions to synthesize missing
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FIGURE 8. TP-GAN synthetizes frontal images from different angles [27].

parts to preserve facial features. Therefore, the synthesized
images are authentic and have well-preserved identity fea-
tures. Trough this way, a large number of different postures
could be dealt with. Furthermore, TP-GAN can be applied to
face analysis or in scenes that require identification of identity
information through side faces, such as airport, train station
and so on. However, when the rotation angle is too large,
the generated facial details are different real photos.

GAN has also been used in the field of image restoration.
Literature [79] proposes a novel method for semantic image
restoration. It generates missing content by adjusting avail-
able data. It search the closest encoding of corrupted images
in latent images with the context and previous losses, then
the encoding is used to infer missing contents. This method
has successfully predicted a large amount of missing region
information and achieved pixel-level fidelity, and it is used
to recover the occlusion area and generate missing content.
However, in the case of large area loss, the generated results
are not authentic.

Literature [80] proposes an unsupervised feature learning
algorithm driven by a context-based pixel prediction. A con-
text encoder is proposed. It is a pre-trained convolutional
neural network that can generate contents of any image area
with its surroundings. When a context encoder is trained,
usages of standard pixel reconstruction loss and adversarial
loss can complement images and produce clearer results. This
model [80] indicates that when the context encoder learns to
acquire features, it does not only capture characteristics of
appearance but also captures semantics of visual structure,
so that it can also be used for semantic repair tasks. It is
suitable for unsupervised visual feature learning, as outer
conditions may influence its results. Therefore, it can gen-
erate better results than in supervised training.

Li et al. [81] proposes a face completion algorithm using
a depth generative model. The algorithm is based on neural
network to directly generate contents of missing regions.
It uses reconstruction loss as well as the combination of two
adversarial losses and semantic parsing loss to train themodel
to ensure the consistency of pixel loyalty and local global
content. It is able to handle large areas of missing pixels of
any shape and produce realistic faces. It can also generate the
missing area directly. The problem of this algorithm is that it
uses too many loss functions, and each loss function contains

some parameter settings; once the loss function is not prop-
erly chose, the results of training may not be satisfactory.

PGGAN is an image restoration model that combines
the global GAN (G-GAN) architecture and the patchGAN
method to construct a discriminator network to capture global
and local information [49]. The discriminator of PGGAN has
two paths, which share a weighting architecture at first few
layers, where they learn common low-level visual functions
and separate after a certain layer. The first path decides
whether the output image is real, and the other evaluates local
details. PGGAN combines reconstruction loss, adversarial
loss and joint loss and has made considerable progress in both
visual and quantitative assessments. It is suitable for repairing
high resolution images.

Table 10 shows comparisons of different models for image
restoration. Compared with other generative models, GAN
is more flexible and effective. The generative models need
to be further developed to complete inpainting. In contrast,
the superior performance of GAN in modeling of two-
dimensional data distribution has solved many unreasonable
low-level visual problems. GAN makes generated images
more authentic by cooperating with encoders, CNN, contex-
tual semantics, and a combination of multiple losses.

E. OTHER APPLICATIONS OF GAN TO COMPUTER VISION
In addition to the applications mentioned above, GAN
has also shown great potential in other areas of computer
vision [84], [85]. For instance, GAN combines simulated
and unsupervised algorithms to generate synthetic images
as samples for training, which is also a promising direc-
tion [86]. Mathieu [87] proposes a GAN network for video
prediction. It can reasonably predict next frame of scene with
spatio-temporal convolutional architecture by distinguishing
the scene’s foreground from background [88]. The motion
and content GAN (MoCoGAN) maps random noise vectors
to video frames one by one, and generates video clips to
achieve future frame predictions [51]. GAN has achieved
great success in super resolution, which is to promote low
resolution images to higher resolution [89], [90]. GAN is
also used for road detection [91] and object detection. For
example, perceptual generative adversarial network [92] is
for small object detection by reducing the representation
difference between small and large objects. GAN can learn
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TABLE 10. Comparison of GAN models used in image inpainting and restoration.

potential probability of object shape through 3D modeling,
and translate real images to new 3D views by using a genera-
tive network [93], [94]. It can also detect multi-spectral image
changes [95], generate realistic results in limited training
data [96], and generate time series such as music wave-
form [97], ICU record in intensive care units [98], electronic
health records [99], and be applied in medical image segmen-
tation and so on [100], [101].

V. CONCLUSION AND PROSPECT
A. CONCLUSION
In this paper, we reviewed GAN and its typical applications
in computer vision. Both state-of-the-art and classical GAN
models have been evaluated in detail from the perspectives
of principles adopted, visual results of generated examples
and so on. GAN is not only novel in algorithm, but also
capable of achieving good results in practice. Furthermore,
GAN provides a better solution for solving problems of
insufficient samples, poor quality of generations and diffi-
culties in extracting features as a generative model. We have
showed the ability of different GAN models, and generated
samples from theoretical and experimental results. However,
the experiments also show a complete scientific evaluation
system is absent to evaluate the model objectively, com-
prehensively and fairly. We have summarized advantages,
disadvantages and scenarios of different models to provide
suggestions for further improvement. In addition, we have
analyzed those applications of GAN in different fields that
have achieved remarkable achievements in computer vision,
and proposed solutions to the problems in each field. In a
word, GAN is an inclusive framework that can be combined
with many deep learning models to solve problems that tra-
ditional machine learning algorithms cannot solve.

B. PROSPECT
To develop faster and better GAN, it is necessary to do
the following: 1) Improve the GAN theory, which must be

provable and guaranteed. For example, to look for a suitable
distance, which can work well under various conditions to
replace JS divergence. Although Wasserstein distance can
measure the distance when two distributions are not over-
lapping, certain constraints must be met, otherwise gradient
disappearance or explosion will still occur. 2) Find a more
suitable evaluative indicator and prove why it is the right
indicator. Commonly used indicators such as IS and FID
can only reflect the performance of GAN in some aspects.
Since GAN supervises itself, its boundary is unclear, then
it is difficult to evaluate it comprehensively. 3) More killer
application scenarios of GAN need to be found. At present,
GAN has not been applied to a certain scene on a large scale.

Furthermore, GAN has a more extensive application
prospect when combined with other machine learning algo-
rithms. It is expected to make progresses in the following
areas:

1) Theory breakthroughs. The incompleteness of GAN
basic theory is a barrier for GAN models to produce high
quality generated examples. Therefore, the most important
direction for future research is to make breakthroughs in the-
oretical aspects to solve problems such as non-convergence,
model collapse and training difficulties [43]. In spite of
some commonly improved methods such as weights prun-
ing [25], weights regularization [31], [34], [35], new loss
functions [32] and Nash equilibrium [33], further improve-
ment is still necessary.

2) Algorithm evolutions. GAN can entail the latest theories
and research results in machine learning, for instance, atten-
tionmechanism can be introduced intoGAN to capture global
features [35]. GAN and adversarial samples are applied to
solve security problems of deep learning systems [102]. GAN
works with reinforcement learning to solve weaknesses in
dealing with discrete variables, where policy gradient algo-
rithms of reinforcement learning are used, so that GAN could
work in discrete scenarios to further widen its scope of
application [103].
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3) Performance evaluations. As a new generative model,
GAN has no relevant indicators that can evaluate different
models from their performance, accuracy, over-fitting degree,
and visual quality of generated samples and other aspects
comprehensively. Therefore, a scientific and uniform perfor-
mance evolution standard needs to be developed. It is urgent
to establish a standardized and universal scientific evaluation
system [66].

4) Special killer applications. Transform the current solu-
tion to one type of problem to one specific practical applica-
tion problem and develop killer applications based on existing
problems. That is, GAN should solve more specific appli-
cation problems, such as a system of specific scene gener-
ation [104] or a system that enhances the resolution of a
specific part of images [90]. It can also generate high-quality
visual scenes of complete game scenes and characters through
combination with the game system [105].

5) Cross applications. The cross-integration of GAN with
certain special healthcare industries facilitates the gener-
ation of hard-to-obtain sample data to complement real
data. For example, to generate more medical samples with
available data when datasets on medical sciences are not
sufficient [98], [99].

In conclusion, for the long-term development of artificial
intelligence, using GAN to enhance the abilities of machines
to understand the world and let machines have ‘‘awareness’’
is a question worth studying.
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