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ABSTRACT Wireless power transfer (WPT) offers a promising solution to power implantable medical
devices (IMDs). Due to the variations of mutual inductance and load, the output voltage of the implantable
WPT system is easily unstable. To maintain a constant voltage for IMDs’ operation, a novel method to
identify the output voltage of the WPT system without any direct measurement on the receiving side is
presented in this paper, where only the input voltage and current need to be measured. First, the output
voltage identification of the WPT system is applied to the classic series—parallel compensation network.
Next, an improved WPT system with S-LCL compensation network is proposed, which has the advantage
that the output voltage identification is independent of mutual inductance and load resistance. Moreover,
the characteristic analysis of the proposed WPT system is carried out, which proves its performance of high
transfer efficiency. Finally, the WPT prototype with the S-LCL compensation network is built and tested.
The experimental results are provided to further verify the correctness of theoretical analysis.

INDEX TERMS Wireless power transfer (WPT), output voltage identification, implantable medical

device (IMD), compensation network.

I. INTRODUCTION
Implantable medical device (IMD) is an electronic device
embedded in the human body, which are mainly used to
monitor changes in physiological parameters [1], [2], diag-
nose and treat some diseases [3], [4] and replace dysfunc-
tional organs [5]-[7]. Because of its prominent role, IMD has
become an extremely important part of biomedical electron-
ics, and has been more prevalent in medicinal applications.
Electronic IMDs mainly include capsule endoscopy [8]-[10],
cardiac pacemaker [11], [12], artificial heart [13], [14],
spinal cord stimulator [15]-[19] and implanted sensor
devices [20]. In general, most IMDs consists of external part
and implantable part [21], the fundamental function of the
system mainly focuses on the power supply and information
exchange between external part and implantable part.
Initially, transcutaneous wire [22] was adopted through
skin to power IMDs, but there is the risk of infections.
At present, lithium battery is the most common power supply

for IMDs [23]. Due to limited space for implants in human
body, the size of the implanted battery is strictly controlled,
which means that the capacity of implanted battery will not be
large. When the battery runs out, surgery is needed to replace
it, which increases physical and financial burden of patient.
In contrast, magnetic resonance-based wireless power trans-
fer (WPT) technique, which enables the electric power trans-
ferring from the transmitter to the receiver over an air gap,
shows an enormous advantage of powering IMDs [24]-[26].

The typical WPT system for IMDs consists of the commu-
nication module and the energy transfer module, as shown
in Fig.1. The communication module transmits the moni-
tored data in vivo to the external part and sends the control
instruction to the implanted part. The typical energy transfer
module includes the DC power supply, the high-frequency
(HF) inverter, the transmitting and receiving coils with com-
pensation capacitors, the rectifier and the DC regulator [27].
The input DC voltage is inverted to an AC voltage by the HF
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FIGURE 1. Wireless power transfer (WPT) system for IMDs.

inverter, which generates AC current in the transmitting coil.
Then, the coupled AC voltage on the receiving coil is rectified
and regulated to a DC voltage to supply the medical implants.

In practical IMD-WPT system, the variations of distance
and alignment between two coils will result in the change of
coupling condition. Furthermore, the equivalent load of IMDs
will vary according to the operation mode or application. The
variations of coupling and load may cause fluctuations in the
output voltage of WPT system. To ensure the proper operation
of IMDs, regulating output voltage of rectifier in response to
variations of coupling and load are essential. A low dropout
regulator or buck converter is commonly used to imple-
ment DC regulation [28], [29]. However, the DC regulator
decreases the power efficiency of WPT system, and the size
of DC regulator is an issue worth considering. In addition to
the direct adjustment on the receiving side, the output voltage
of WPT system is sensed and transferred to the transmitting
side via data communication, then the DC power supply is
adjusted accordingly to regulate the output voltage of WPT
system [30], [31]. However, the extra communication module
complicates receiving circuit and increases power consump-
tion on the receiving side, which are not very suitable for the
implantable WPT

If the output voltage of WPT system can be obtained based
on the transmitting side information, adaptive adjustment of
the input voltage can be implemented to regulate output volt-
age, which will eliminate the extra communication process to
acquire output voltage. Much works of output voltage iden-
tification on transmitting side have been done in [32]-[36].
In [32], the energy injection mode and free resonant mode are
used to detect load resistance before startup. However, it can-
not track the variations of load afterwards. In [33] and [34],
the load resistances are monitored by the information of
transmitting side, but these approaches are all applied to the
condition that mutual inductance is assumed to be known
and constant. In [35] and [36], the method to monitor both
mutual inductance and load resistance has been proposed for
the WPT system with series-series (SS) topology. However,
the operating frequency must not be the resonant frequency
of the receiver circuit for accurate estimation [35]. And the
system is operated at dual frequencies, one is for optimal
power transfer and the other is for parameter estimation,
which will increase the difficulty of system design [36].

In this paper, the output voltage identification for WPT
system with series-parallel (SP) topology is presented in
Section II. Section III presents a novel compensation network
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for WPT system, and describes the corresponding principle of
output voltage identification. The characteristic analysis of
the proposed topology is given in Section IV. Experimental
results are provided in Section V. Finally, some conclusions
are drawn in Section VI.

Il. OUTPUT VOLTAGE IDENTIFICATION OF

WPT SYSTEM WITH SP TOPOLOGY

The power demands of IMDs differ depending on application.
For instance, the power consumption of capsule endoscopy
and nerve stimulator usually ranges from 10 to 30mW [37].
However, the artificial heart consumes more power, like up
to 15W [38]. For transmitting tens of milliwatts using WPT,
the LC tank of the receiving coil is preferably tuned in par-
allel [39]. The equivalent circuit of the WPT system with SP
topology is shown in Fig. 2, where L;, L, and R1, R, are the
self-inductances and inherent resistances of the transmitting
and receiving coils, respectively; C1 and C; are the compen-
sation capacitances of the transmitting and receiving sides,
respectively. The mutual inductance between the transmitting
and receiving coils is defined as M; the equivalent load is
represented by the resistance Ry ; uy is the AC input voltage
of the transmitting coil; 7] is the input current; i, is the current
along the receiving coil; u, and i, is the AC output voltage and
current along the load Ry .

FIGURE 2. Equivalent circuit of the WPT system with SP topology.

According to Fig. 2, the KVL equation of the transmitting
and receiving loops can be written as

—joM

JjoCq
0 R
1+ jwRLC>

x [51] (1)

2
The industrial, scientific and medical (ISM) band fre-
quency, such as 6.78 or 13.56 MHz, is commonly used as
the resonant frequency of the WPT system. In this paper, the

resonant frequency is chosen to be 6.78MHz. The resonant
frequency is defined by

1
. Ry +jol) + ——
H

—joM Ry + jolL, +

1 1
VL1 Ch N VL Co

From (1), the output voltage of the WPT system can be
derived as (3).

@

B —jwMRy,
7 RI(Ry + joLy + joCaRLRy) + (0M)2(1 + jwCaRy)
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Equation (3) indicates that the output voltage is a function
of mutual inductance M and equivalent load R; . As M and Ry,
are not constants but variables, we need to estimate M and Ry,
in order to identify U,.

From (1), the input impedance can be expressed as

(@M)2[Ry + (0C2)*R2R: + Ry ]
R% + (wCoRL Ry + ©L))?
wLy(wM)?

—Jj 4
'R+ (@C2RLR: + wLa)?
and can be written as
Us . .
Zin = ]—ZO = |Zin| cos LO + j|Z;,| sin L6 5)
1

where 6 is the phase angle between u; and i1, Us and I} are
the amplitude of u, and i1, respectively.
When Z;, is obtained by measuring u; and i1, we have

(wM)?[Ry + (wC2)*Ri Ry + Ry ]
R% + (wCoRL Ry + wL))?
wly(wM )2

R+ (WCRLRy + ol )?

|Zin| cos L6 = Ry +

(6)

|Zin|sin 26 =

@)

Obviously, combining (6) and (7), the equation without M
can be expressed as

|Zin|cos L0 — Ry _ R+ R+ (wC2)*RoR2 ®
|Z| sin 6 wly
Assumed that A = M, the estimated result
|Zi | sin )

of the equivalent load Ry can be obtained by solving the
above equation. It is found that there are two solutions
for Ry, the negative one should be ignored, and the reasonable
solution is

—14 1 = 4R(Ry + AwLy)(0Cr)?
2Ry (0 Cr)?

©))

RL ,est —

Then, on the basis of (7) and (9), the estimated mutual
inductance M can be derived as

1 \/|Zi,,| sin 26 [R5 + (0CoRoR L o5t + @L2)?] (10)

M = —
o w —wly

As shown in (9) and (10), the mutual inductance M and the
equivalent load Ry can be estimated by measuring the input
voltage and current of the WPT system (u; and i1), when
the parameters of WPT system (L1, Lo, R1, R2, C1, C3, w)
are constant and known. According to (1), the estimated
amplitude of output voltage can be derived as

U)MestRL,est

[Uol =
VB + @CoRL e Ry + wLa)?

I (1)
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IlIl. OUTPUT VOLTAGE IDENTIFICATION OF

WPT SYSTEM WITH S-LCL TOPOLOGY

As seen from Section II, the load and mutual inductance can
be estimated by the measured input information, then the
estimated M and Ry, are employed to identify U,. Considering
the measurement error, the output voltage identified by the
estimated mutual inductance and load may easily deviate
from the actual value. In [40], an LCL resonant network is
inserted to the transmitting side of WPT system, in which
the output voltage can keep constant despite the variations
of load, an improved WPT system using LCL compensation
network is proposed, in order to reduce the effect of the
estimated errors on output voltage identification.

A. PRINCIPLE OF OUTPUT VOLTAGE IDENTIFICATION

The improved equivalent circuit of WPT system with S-LCL
topology is presented in Fig. 3(a). The whole circuit can
be divided into two parts. The power supply part is shown
in Fig. 3(b), in which the AC voltage source is in series with
filter inductor L,, and the branch of AC source and L, is in
paralleled with filter capacitor C,. The power transfer part
is shown in Fig. 3(c), in which the transmitting coil is in
series with capacitor C, the receiving coil is in paralleled
with capacitor C; and the branch of inductor L; and equiv-
alent output load Ry ; M is the mutual inductance between
transmitting and receiving coils.

i M i

|1
e

L] C

()

FIGURE 3. Improved WPT system with S-LCL topology. (a) Overall
topology of WPT system; (b) Power supply part; (c) Power transfer part.

U,

FIGURE 4. Equivalent circuit of power transfer part.

To analyze the power transfer process more clearly,
the equivalent circuit of power transfer part in Fig. 3(c)
is shown in Fig. 4. The operating frequency wg of U, is
equal to resonant frequency, Uy = —jwoMI> is the effec-
tive voltage induced in transmitting coil by I through the
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mutual coupling M, and U, = jwoMI is the effective volt-
age induced in the receiving coil by /; through the mutual
coupling M.

To keep the system in resonance, the following equations
should be satisfied,

1
woCl = ——
L
w0tz = woly  woLy

According to Fig. 4, because woL, is much larger than Ry
in practice, the resistance of the receiving coil Ry can be
ignored, then the KVL equation of the receiving loop can be
expressed as

U, ; ; U, ..
Ur = [—(RL + jwoLys)jwoCs + — ljwoL>
RL RL
U,
+ (R +jwoLy)  (13)
Ry

On the basis of (12), the output voltage can be derived by

simplifying (13),
woM (14)

L, 2= JwoMly I

As shown in (14), the output voltage is irrelevant to the
load, it is only related to the mutual inductance and the current
on transmitting coil. According to KCL, the current along the
receiving coil can be derived as

U, U,
L = R_”(RL + jwoLy)jwoCa + ==

Rr
U, Rr A+1
= _"(]_LL ) (15)
R; "woly A
where A = L¢/L;.
According to Fig. 4, the KVL equation of the transmitting
loop is

Uin = IR| — jooMI, (16)

Combining (14) and (15), the input voltage of the transmit-
ting loop can be expressed as

2172 2
wfM woM~(A + 1
Up = Ry + 2220 @ EE Dy g9
R, Ly
Then, the corresponding input impedance Zj, can be
obtained,

2172 2
Z, — Ry +A2w0M _ja)oM A+1 (18)
Rp Ly
The unknown parameter in the imaginary part of Z;, is
only M. Similar to the analysis in Section II, the imagi-
nary part of input impedance can be acquired by measur-
ing u;, and i;. Consequently, the mutual inductance can be
derived as

Ly
M,y = ——\Z 0 19
est \/ 2o+ 1) |Zin| sin (19)
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Substituting (19) into (14), the estimated output voltage is

|Uo,est| = )»11\/ m |Zin| sin 0 (20)

From (20), the estimated voltage can be obtained by mea-
suring u;, and i1, and the estimated result is independent of
M and R;..

According to (14), it should be noted that the output voltage
is related to 11, which means the regulation of output voltage
can be accomplished by controlling the current along trans-
mitting coil. To simplify the control, the power supply shown
in Fig. 3(b) is used.

Normally, up is a square wave with constant magnitude.
If the resonant frequency of LC filter equals to the operating
frequency of up, that is

1
~LxCx

Then the relationship between the magnitude of input volt-
age Up and the magnitude of input current /1 can be expressed
as

wo = 2D

—Up (22)

I =—j In

As shown in (22), the input current /1 can be adjusted by
regulating Up.

B. ERROR ANALYSIS OF ESTIMATED OUTPUT VOLTAGE

In practice, the existence of R, may make the estimated result
deviate from the actual value. To verify the feasibility of (20),
the inherent resistance R, of the receiving coil is taken into
consideration in this part. According to the receiving loop
in Fig. 4, the KVL equation is rewritten as

U, . ) U .
Uy = [~ (RL + jwoLy)jwoCr + —1(jwol2 + R2)
Ry Ry
U
+ 2Ry, +jwoLs)  (23)
Ry

As Uy = jwMI,, the output voltage can be derived by
simplifying (23),

jwth _ JjooMI
Vo= ik & Ly —b+ja @
(] A woly RL -

Al R 1
where a = == szb A 2 41

Then, combining (15) and (24) the input voltage U;, can
be expressed as

ﬁ )\b ] a
R AR
Ui, = LR, +11(w0M)2# (25)

According to (25), the imaginary part of input impedance
can be expressed as

a(woM )?

Zin|sing = —— 27
| lﬂ|51n )\,Rz(a2+b2)

(26)
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Thus, the actual mutual inductance can be obtained by

27)

1 \/ AR + b2) | Ziy]| sin 0
Mreal = 4/~
o a

Substituting (27) into (24), the actual output voltage can be
derived as

\Us reat| = A1 \/—‘”O—Lﬂz |'sin 6 (28)
o,real | = M] A+ 1 in
Then, on the basis of (20) and (28), the ratio of estimated
output voltage and actual output voltage can be obtained as

Uo.est

=1 (29)

= ’
Uo.real

Obviously, equation (29) proves the feasibility of the output
voltage estimated method.

IV. CHARACTERISTICS OF WPT SYSTEM

WITH S-LCL TOPOLOGY

According to (24), it can be noted that the existence of Ry
causes the output voltage to be related to the load. To ana-
lyze the effect of load variation on the output voltage, the
actual output voltage U, versus load Ry under different Ly
is shown in Fig.5, where M is assumed to be a constant
value 0.1uH. It is found that the output voltage rises quickly
with the increase of load at the range of 0 to 500%2, and
has slight increase when Ry is larger than 50092. As L
increases, the output voltage increases faster at the range
of 500 to 2500%2.

7

E 6

= 35

& 4

=

c 3

=R — Ly=30pH

£ — Ly=24pH

g1 — L,=18uH
0

0 560 1000 1500 2000 2500
Load R; (Q)

FIGURE 5. Actual output voltage U, versus R;.

Fig. 5 indicates that the output voltage with S-LCL topol-
ogy does not have load-independence in practice. However,
on the basis of (29), it can conclude that the estimated voltage
is the same as the actual one, which means even if the load
changes affect the output voltage, the proposed estimation
method or (20) is correct.

The power transfer efficiency n of the WPT system with
S-LCL topology can be expressed as

Uj
R

U2
ITRy + I3Ry + 3*

NSs—LCL = (30)
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Then, combining (15), (24) and (30), the power transfer
efficiency can be derived as

(a)oM)szzL]?
LIR\Ry, + M?(La + Ly)*RaRy, + (w0oM)2L3L}
(woM)?

= (31)
RIS+ M2(LE22RoR, + (woM)?

ns—LcL =

As shown in (31), the transfer efficiency 7 is related to
not only the parameters of coils and load, but also A. Then
the optimal A should be determined by considering its effect
on the transfer efficiency of the WPT system. Assuming
wp = 6.78MHz, L| = 4.4 pH, Ry = 1.1Q, L, = 1.22uH,
Ry = 0.2Q2, M = 0.08uH, the transfer efficiency n versus
A under different Ry is shown in Fig.6, where the load Ry is
selected to 500€2, 15002 and 2500€2, respectively. It is noted
that as A increases, n increases. Besides, n decreases with
the increase of the load. The transfer efficiency n versus A
under different mutual inductance M is shown in Fig.7, where
M is selected to 0.06H, 0.08uH and 0.1uH, respectively.
Similarly, n increases when A or M increases.

100%

—R 5000
or | |—R=15000
80% 1| _ R 2535000
60%
i
40%
20%
0
0 s 10 15 20 25

A

FIGURE 6. Transfer efficiency  versus A under different R},
where M = 0.08,.H.

100%

—M=0.1pH
80% —M=008pH
—M=0.06puH
60%
Ui
40%
20%
0
0 5 10 15 20 25

A

FIGURE 7. Transfer efficiency n versus 1 under different M,
where R =1500%.

According to Fig. 6 and Fig. 7, X should be as large as
possible to ensure relatively high transfer efficiency. Since the
equivalent load resistance of milliwatt-level IMDs is approx-
imately in the range of 5002 to 25002 [7], [39], and the
mutual inductance of our prototype is approximately 0.05uH
to 0.1uH, the transfer efficiency 7 versus load R; and mutual
inductance M is shown in Fig. 8 when A = 20. It is found that
the transfer efficiency can reach a higher value when load and
mutual inductance vary.
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FIGURE 8. Transfer efficiency 5 versus RL and M, where 1=20.

(a) (b)

FIGURE 9. Configuration of coils. (a) Transmitting coil, (b) Receiving coil.

V. EXPERIMENTAL RESULTS

High-frequency class-D amplifier is commonly used in WPT
system for low power applications. In this paper, a class-D
amplifier with fixed frequency (wp = 6.78MHz) is selected.
Power MOSFET SUDO6N10 is selected as the power switch,
and the corresponding driver IC is SI8271.

The transmitting and receiving coils of the prototype are
shown in Fig. 9. The shape of the transmitting coil is rounded
square with a number of turns of 4, an inner side length
of 100 mm, an outer side length of 120 mm, a copper wire
width of 2 mm, a pitch of 1 mm and a wire thickness
of 0.035 mm. The receiving coil has a diameter of 30 mm and
a height of 10 mm, a wire diameter of 1 mm, and a number
of turns of 6.

The experimental set-up of the WPT prototype with S-LCL
topology is shown in Fig. 10. The prototype parameters are
measured by Impedance Analyzer WK6500B and summa-
rized in Table 1. According to the analysis in Section III,
the inductance Ly should be large to ensure a high efficiency.
Considering A is about 20, the inductance Ly is 24.834H. The
DC input voltage of class-D amplifier ug. is 5V, the distance
between two coils is Scm, the equivalent load resistance
is 1200€2. Experimental waveforms are shown in Fig.11,
where u, is the output voltage of the load on receiving side,
up and i are the output voltage of the class D amplifier and
the current on transmitting coil, respectively.

To verify the output voltage estimation method, the input
voltage u;, and input current i; are captured by a Tektronix
DP04034 Digital Oscilloscope. Then the sampled data of
ui, and iy are processed in MATLAB, and the fundamental
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FIGURE 10. Experimental set-up.

TABLE 1. Prototype parameters.

Symbol Value
L, 4.4pH
R, 1.1Q
L, 1.22pH
R, 0.2Q
C 123.32 pF
G 464.26 pF
Ly 24.83uH
Ly 1.02pH
Cx 539.58 pF
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2
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!
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|
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(VERVERVIRY

2.50GS/s @ 7 -200mv
10M points

FIGURE 11. Experimental waveforms.

amplitude and phase angle of u;, and i1 are obtained. Accord-
ing to previous analysis in Section III, the amplitude of the
output voltage can be calculated. Then the estimated ampli-
tude of output voltage and actual output voltage are shown
in Fig. 12, where the DC voltage represents for the estimated
amplitude of output voltage. In Fig. 12(a), the coil distance
is 3cm, the amplitude of actual output voltage is about 4.2V,
and the estimated result is in accord with the actual value.
Similarly, in Fig. 12 (b) and (c), despite the output voltage
changes with distance, the DC voltage is still at the peak
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FIGURE 12. Actual output voltage and estimated output voltage. (a) Coils
distance is 3cm. (b) Coils distance is 5cm. (c) Coils distance is 6cm.
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FIGURE 13. Measured and calculated transfer efficiency and amplitude of
output voltage at different loads.

of the AC voltage, which indicates the estimated results are
accurate.

The amplitude of load voltage and transfer efficiency with
different load can be calculated based on (19) and (31).
Fig. 13 shows the measured and calculated transfer efficiency
and amplitude of load voltage when the distance between
two coils is fixed at Scm and the load resistance Ry changes
from 560 to 2400€2. From Fig. 13, the measured transfer
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FIGURE 14. Measured transfer efficiency and amplitude of output voltage
at different coil distances.

efficiency and the output voltage have the same trend as
the calculated results. At the resonance frequency 6.78MHz,
the ESR of inductor Ly is about tens of ohms, and Ly is in
series with load resistance. When the load resistance drops,
the current on load increases accordingly. As a result, the volt-
age drop and power consumption on the ESR of inductance Ly
increase. Therefore, when the load resistance decreases,
the measurement result is lower than the theoretical value.

The transfer efficiency and amplitude of load voltage at
different coils distance are presented in Fig. 14, in which the
load resistance is 1200€2. As the distance between two coils
increases, the mutual inductance reduces. Correspondingly,
the transfer efficiency and output voltage decrease.

VI. CONCLUSIONS

This paper presents a method to identify the output voltage for
implantable WPT system, in which only the input voltage and
current along the receiving coil are needed to be measured.
Furthermore, an improved WPT system with S-LCL compen-
sation network has been proposed, where the output voltage
identification is not related to the load and mutual inductance,
and the output voltage estimation is simple and accurate.
Experimental set-ups have been used for practical evaluation.
The experimental results verified the feasibility of output
voltage identification based on transmitting side information,
and the estimated output voltage based on the measured
voltage and current on transmitting side is consistent with
the measured output voltage, which demonstrates the validity
of proposed output voltage identification for WPT system
with S-LCL compensation network. It is concluded that the
identified voltage can be used to regulate output voltage for
free-positioning implantable WPT system. In addition, the
experimental results show that the transfer efficiency is over
50% when the distance between transmitting and receiving
coils is within 6¢cm, which provides an important guidance
for implantable WPT applications.
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