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ABSTRACT The occurrence of fog, mist, smog, or haze significantly reduces the visibility of the scenes and
images, resulting in limited recognition of computer vision and computer graphics. So, removing haze from
images is a must. In this paper, we regard image dehazing as a mathematical inversion process and image
restoration based on atmospheric scattering models. The atmospheric light can be accurately estimated by
combining the gray threshold segmentation and the skyline method. The improved least squares filtering
method is used to optimize the transmittance map so that the edge details can be highlighted and the
halo effect can be alleviated. A large number of test images show that our algorithm can achieve better
experimental results than the other seven most advanced dehazing strategies.

INDEX TERMS Grey-level threshold segmentation, skyline, least-square filter, halo artifact, dehazing.

I. INTRODUCTION
In digital image processing, ensuring accurate image extrac-
tion is the key. In haze or fog conditions, the details of objects
in the image are often unclear due to the suspended particles
in the atmosphere. Nevertheless, current computer vision
systems are increasingly relying on clear and high quality
images. Therefore, how to deal with the visual effects of the
images caused by bad weather is extremely important. More-
over, even in good weather conditions, due to the suspended
dust in the air and water vapor, and the limitations of the hard-
ware, the images obtained by the processor are often poor in
quality, which largely increases the risk of algorithm failure in
continuous image processing. To update the hardware devices
requires funding. Therefore, it is not quite possible. In this
backdrop, it is more realistic to improve the dehazing quality
and image processing algorithms to cope with the haze prob-
lems in the pictures. Our research has wide applications in the
computer-based vision systems, such as security surveillance,
machine learning, feature recognition, object detection etc.,
as well as many scene-based applications such as driving
assistance, navigation, traffic monitoring, target recognition,
crime investigation, routine monitoring in industrial areas,
astronomical observation, etc.

In recent years, great achievements have been made
in the field of dehazing. Dehazing techniques can be

briefly divided into two types: image enhancement-based
techniques and image restoration-based techniques. Image
enhancement-based techniques include histogram equaliza-
tion algorithms [1], [2], retinex algorithm [3], [4], home-
ostasis filtering [5], wavelet transformation [6], and so on.
By using the histogram equalization algorithm to extend
the dynamic range, the overall contrast of the foggy image
can be roughly enhanced [1], but the same processing is
applied to all pixels, inevitably losing detail and gray levels.
Raffei et al. [2] used the local histogram equalization method
to divide the image into sub-blocks that do not overlap,
but this method takes a lot of time and cannot obtain the
optimal value of each local region. In Jiang’s method [3],
the balance of colour constancy and dynamic range control
can be effectively maintained. However, due to the poor edge
retention of this method, the halo effect and colour shift
phenomenon always appear near the obvious area of edge
mutation. In Seow’s method [5], in order to improve image
quality, he combined a spectral shaping and gradation trans-
formation algorithm. This method can effectively maintain
the contour information of the uneven area, but may fail if
the calculation amount of the item is large. By combining the
restoration of the low frequency region and the enhancement
of the high frequency region, in the algorithm [6], the wavelet
transform can significantly improve the image quality [6].
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Tan [7] found that the contrast of the fog-free image is higher
than that of the haze image. This method achieves a better
effect by increasing the contrast of the foggy image as much
as possible. However, since the contrast of the real scene
can hardly be recovered, the processing result of the Tan
method is often supersaturated and unnatural. Zhang et al. [8]
proposed a visibility enhanced dehazing algorithm based on
polarization imaging. However, excessive illumination and
unevenness may occur in dehazing results. In short, due to the
need for visual perception and ease of computer recognition,
physical models (inherent properties of image degradation)
that tend to degrade images are often not considered in
enhancement-based techniques.

To solve the ill-conditioning puzzle, restoration methods
based on extra priors conditions or constraints have been
proposed. Fattal [9] assumed that the transmittance medium
is not correlated with the surface shading of the scene,
so the transmittance can be roughly estimated using the
scene albedo. However, this method has its limitations on the
dehazing process in the absence of statistical information.
Mutimbu and Robles-Kelly [10] restored the haze image
with the Markov random field, where the scene albedo and
the scene depth are two separate statistics. In this approach,
the fine edge detail of the fog-free image can be recovered by
restoring the decomposition of the typical desired maximum,
but the output image is over-enhanced. In order to obtain
the exact value of atmospheric light A, Berman et al. [11]
used a fast bilateral filtering method to optimize the dehazing
method. However, the processing speed of the Berman algo-
rithm is slower than the Tarrel algorithm using the median
filter [12]. He et al. [13] proposed the well-known hypothesis
of dark channel prior (DPC) and estimated the transmittance
based on a large number of observations. The intensity of a
DPC, i.e., a fog-free pixel, typically includes at least one RGB
colour channel being zero or near zero. DCP technology can
achieve impressive dehazing effects, but it does not correctly
handle image areas where the brightness is substantially sim-
ilar to dynamic atmospheric light values. At present, various
DCP-based algorithms [14]–[16] have been proposed. How-
ever, with the processing algorithm based on the DCP model,
the transmittance map is not smooth and there is image noise
also. He et al. [17] used a soft matting algorithm to suppress
block and halo effects. However, the soft mapping algorithm
takes upmost of the processing time. Therefore, He et al. [18]
further used an effect-improving edge-preserving algorithm-
steering filter to optimize the transmittance, thereby reducing
the computational cost.

By studying both the image enhancement dehazing and
restoration-based dehazing algorithms inside China and of
the world, we find three problems in the existent studies:
(1) The enhancement dehazing method is unable to avoid
color distortion and/or color shift for it only relies on increas-
ing the color contrast and the brightness of haze images.
(2) Inaccurate estimation of atmospheric light A and trans-
mittance will lead to gradient inversion effects, large image
noise, and low efficiency. (3) For haze images with a large

proportion of sky area or water space, it may cause over-
exposure and mirror reflection and may create a distorted
foreground color.

To solve the above-mentioned problems, we propose a
novel dehazing method based on precise estimation of the
atmospheric lightA and transmittance. Our experiments show
that the Gray-level threshold segmentation algorithm [19]
can not only locate a specific target position but is very
efficient. The modified least-square filter method can help
retain the details of the images and suppress noise as well,
hence offering a good visual sensory experience.

Therefore, in this paper, the Gray-level threshold segmen-
tation algorithm, which is suitable to large areas of sky and
water, is used to locate the approximate area of the atmo-
spheric light A, and the skyline method is used to accurately
identify the A value. Besides, a modified least-square filter
is employed to optimize the transmittance. The experiments
results show that our dehazing results not only perform better
in image quality, but also are closer to the natural state of the
images.

II. RELATED WORK
A. THE ATMOSPHERIC SCATTERING MODEL
The Atmospheric Scattering Model [20], [21] has been
widely used in the field of machine vision and computer
graphics, and its formula is as follow:

F(x, y) = R(x, y)t(x, y)+ A(1− t(x, y)) (1)

FIGURE 1. The atmospheric scattering model.

In this formula, F(x, y) represents the pixel value of the
haze image at the point (x, y), and R(x, y) the pixel value
of the haze-free image at the point (x, y) and t(x, y) the
transmittance. A is the atmospheric light value and is usually
considered to be the maximum intensity of the sky region.

As the atmospheric scattering model is given, the aim of
the paper is to estimate A and t(x, y) with only the known
parameter F(x, y). Restoring blurred images with limited
information is a challenge due to the ill conditioning nature
of atmospheric scattering models.
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We assume that the pictures were taken in an atmospheric
environment with the same homogeneous medium, and the
transmittance t(x, y) can be expressed as:

t(x, y) = e−βd(x,y) (2)

β refers to the scattering coefficient of atmospheric light,
d(x, y) the depth field. The exponential attenuation relation-
ship between the received light intensity and the depth of field
obtained in scenes can be shown in this formula.

From the perspective of computer graphics, the equation
of the atmospheric scattering model indicates that the atmo-
spheric light A holds the geometric correlation with F(x, y)
and R(x, y), and the transmittance t(x, y) can be represented
by the ratio of two line segments.

t(x, y) =
||A− F(x, y)||
||A− R(x, y)||

=
AC − F(x, y)
AC − R(x, y)

(3)

B. DARK-CHANNEL
In non-sky areas, based on the definition of DCP, there exists
at least one colour channel with quite low pixel value, or even
close to 0. The dark channel value of resultant haze-free
image R(x, y), obtained in the atmospheric scattering model,
can be described by Eq.(4).

Rdark(x, y) = min
z∈�(x,y)

( min
C∈(r,g,b)

RC (z)) = 0 (4)

Here, C denotes the RGB colour channel of pixel (x, y) in
haze-free image R(x, y), � (x, y) the pixel block around (x,
y). There are three main reasons for low pixel values in dark
channels: shadows, colored targets, and dark targets.

C. DARK-CHANNEL PRIOR ALGORITHM
We suppose that the atmospheric light AC has been given,
then Eq.(1) can be transformed to Eq.(5) by AC .

FC (x, y)
AC

= t(x, y)
RC (x, y)
AC

+ 1− t(x, y) (5)

Based on the fact that every colour channel is independent,
we make dark-channel calculation to the both sides of the
equation by assuming that transmittance will remain constant
at �(x, y).

min
Z∈�(x,y)

( min
C∈[r,g,b]

(
FC (x, y)
AC

))

= t(x, y) min
Z∈�(x,y)

( min
C∈[r,g,b]

(
RC (x, y)
AC

))+ 1− t(x, y) (6)

Then one term can be eliminated and t (x, y) can be got by
substituting Eq.(4) into Eq.(6), as shown in Eq.(7).

t(x, y) = 1− min
Z∈�(x,y)

( min
C∈[r,g,b]

(
FC (x, y)
AC

)) (7)

The resultant images will be quite unnatural if haze is
entirely eliminated. So we retain a certain amount of fog
for the distant target object, and introduce parameter w0

into Eq.(8) for adjustment. Based on the validity of multiple
experiments, the value of w0 is usually set to 0.95.

t(x, y) = 1− w0 min
Z∈�(x,y)

( min
C∈[r,g,b]

(
FC (x, y)
AC

)) 0 < w0 < 1

(8)

In He’s method [18], the value of λ can be set as 10−4.
Considering U and L are unit Laplacian matrices with the
same size, calculation of soft matting algorithm is adopted to
obtain the optimized transmittance t1(x, y).

(L + λU )t(x, y) = λt1(x, y) (9)

III. PROPOSED STRATEGY
In many restoration-based techniques, strong visual effect
areas in haze images can inevitably be selected to estimate
atmospheric light A, which leads to reflection problems. For
example, the surface of the reflector is often used incorrectly
for the estimation of A. In He’s method [18], it is confirmed
that the atmospheric light A is set by selecting the first pixel
maximum pixel value in the entire image, which results in
low A precision. In the paper, Gray-level threshold segmen-
tation algorithm [19] is employed to separate and locate
the approximate region of atmospheric light value A, and
then the maximum value of atmospheric light is identified
by the skyline method. Hence, the atmospheric light A is
obtained accurately. Besides, the efficiency of our algorithm
can be improved by estimating transmittance through modi-
fied least-square filter.

A. GRAY-LEVEL THRESHOLD SEGMENTATION
The purpose of adopting Gray-level threshold segmentation
algorithm [19] is to separate the approximate area S, which
involve the atmospheric light A from the background. It is
crucial to select the appropriate threshold value in Gray-level
threshold segmentation algorithm. Based on the prior infor-
mation, we can learn that most of the atmospheric light
has pixel values between 218 and 223. So in this paper,
the threshold value can be manually set to 215 in order to
save the processing time. By setting a single threshold value,
Gray-level threshold segmentation algorithm can effectively
divide initial haze images into the background and the target.
In this section, firstly, the original image is transformed into
a Gray-level image, then the probability of every gray level is
used to draw a histogram.

Here, F1(x, y) denotes the segmented image of F(x, y), T
the selected threshold value and is set to 215 on the basis of
the experiments. The basic formula is as follows:

F1(x, y) =

{
0 F(x, y) < T
1 F(x, y) > T

(10)

B. IN SEARCH OF LIGHT A BY USING
SKYLINE ALGORITHM
As described above, the approximate area S which contains
the atmospheric light A is obtained by Gray-level threshold
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FIGURE 2. Approximate region of A positioning using Gray-level
threshold segmentation algorithm with different T. (a) Original picture.
(b) T=150. (c) T=200. (d) T=215.

segmentation. In order to accurately acquire atmospheric
light A, we use skyline algorithm to search in area S. The
function of skyline algorithm [22] is to make the optimum
choice. In other words, this is a way to find the maximum
pixel value in the area S, and use that value as A.
The searching strategy of skyline algorithm is to

find the control points. Assuming there are two points
E[i] = [E[1],E[2], ...,E[n]](iε[1, n]) and F[i] =

(F[1],F[2], ...,F[n]). To satisfy the condition that the value
of E[i] is not worse than F[i] in any dimension, and E[i] must
be stronger than F[i] in at least one dimension, then we can
express that E[i] control F[i]. In brief, if E[i] and F[i] satisfy
E[i] ≥ F[i], and E[i] > F[i] in at least one dimension, then
the point E[i] controls another point F[i].
Supposing there are points E[i], F[i], G[i], H [i], I [i], J [i],

K [i] in two-dimensional coordinate system, which we can see
clearly in Fig.3. F[i], H [i] and I [i] are controlled by E[i],
H [i] and I [i] are controlled by G[i], K [i] is controlled by
J [i]. While E[i],G[i] and J [i] are not controlled by any point,
so these points are skyline points. By comparing the skyline
points, the maximum value can be set to atmospheric light A.

FIGURE 3. Skyline model.

C. MODIFIED LEAST-SQUARE FILTER METHOD TO
OPTIMIZE TRANSMITTANCE
In the process of dehazing, the use of the original trans-
mittance leads to the problem of deep discontinuity. For
the original transmittance, He et al. [13] used soft matting
algorithm to process the transmittance, which is costly and

time consuming. Considering that the transmittance t(x, y)
and depth of field are in exponential relationship as shown
in Eq.(2), large deviations on field of depth along the edges
can hardly be avoided. Besides, there are often serious halo
effects in edge areas of the haze images. The selected algo-
rithms should preserve as many edge details as possible
while removing noises. The least-square filter method [23] is
widely used in image restoration, and has performed well in
maintaining image details, However, it is susceptible to image
noises. In this paper, the modified least-square filter is used
to optimize the transmittance. It can also avoid the defects
of traditional least-square filter. The modified least-square
filter [24] can not only preserves the fringe details of the
projected image but alsominimizes noise to the largest extent.

The mathematical expression of the least-square filter is
based on the two-dimensional discrete convolution of image
degradation model, and it can be modified by introducing
constraints. In the image degradation model, f (x, y) is the
original image, n(x, y) the correlated noise, and g(x, y) the
degraded image.

g(x, y) = H [f (x, y)]+ n(x, y) (11)

The discrete model of two-dimensional convolution is as
follows:

h(x, y) ∗ f (x, y) =
1
MN

M−1∑
m=0

N−1∑
n=0

f (m, n)h(x − m, y− n)

(12)

For the linear operators B1 and B2, provided in modified
least-square filter [24], the optimized transmittance t1(x, y)
is structured as ||B1t(x,y)||2 + ||B2t(x,y)||2, and satisfies the
condition of ||t(x, y) − Ht1(x,y)||2 = ||n(x, y)||2. In order to
calculate the minimum value, the Lagrange factor λ should
be selected on the basis of the two conditions above. We can
structure the function as follows.

J (t1(x, y)) = ||B1t(x, y)||2 + ||B2t(x, y)||2

+ λ(||t(x, y)− Ht1(x, y)||2−||n(x, y)||2) (13)

The differential operator is used to obtain Eq.(14).
Assuming that Rt(x,y) and Rn(x,y) are the auto-correlation

matrices of t (x, y) and n (x, y), respectively, and we define
BT1B1 = R−1t(x,y)Rn(x,y), B

T
2B2 = CTC .

∂J (t1(x, y))
∂(t1(x, y))

= 2BT1 B1t(x, y)+ 2BT2 B2t(x, y)

+ (2λ− 2λH−T )t(x, y) = 0 (14)

t1(x, y) = (1+
1
λ
BT1 B1 +

1
λ
BT2 B2 − H

−T )−1t(x, y)

(15)

t1(x, y) = (1+
1
λ
R−1t(x,y)Rn(x,y) +

1
λ
CTC − H−T )−1

× t(x, y) (16)

We set the diagonal matrix as D, A, B, E , and define
H = WDW−1, Rt(x,y) = WAW−1, Rn(x,y) = WBW−1,
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C = WEW−1, then formula (16) is converted to formula (17).

t1(x, y) = (1+
1
λ
WABW−1 +

1
λ
WE∗EW−1

−WD∗−1W−1)−1t(x, y) (17)

The improved transmittance t1(x, y) is transformed to a fre-
quency domain expression by convolutionmodel, as shown in
Eq.(18) :

T1(u, v) = [
H∗(u, v)

|H (u, v)|2 + 1
λ
[Sn(u, v)/St (u, v)+ 1

λ
[p(u, v)]2]

]

×T (u, v) (18)

In it, H (u, v) and T (u, v) are the Fourier conversions of
the point spread function (PSF) h(x, y) [25] and the initial
transmittance t(x, y), respectively. St (u, v) means the power
spectrum [26] of the initial transmittance, Sn(u, v) the noise
power spectrum, T1(u, v) and p(u, v) the Fourier conversion
of optimized transmittance and Laplace operator [27], respec-
tively. Fig.4 presents the initial images, gray-scale images, the
transmittance after the guided filtering by He’s method, and
the transmittance of our method herein. Compared with He’s
approach [18], the transmittance of our method can obtain
more overall information and its edge parts are closer to the
natural state.

FIGURE 4. Comparison of transmittance processed by guide filter and
modified least-square filter. (a) Haze images. (b)Original transmittance.
(c) Transmittance processed by guide filter. (d) Transmittance processed
by modified least-square filter.

For the foggy images of ‘‘road’’, ‘‘community’’, and
‘‘city’’, Fig.5 shows the three-dimensional (3D) represen-
tation of the transmittance after being processed by the
algorithms [10], [11], [16], [18] and our method. It can be
clearly seen that the halo effects in the red box are mod-
erated by our method. However, the individual pixels of
algorithms [10], [18] in the red box area are protruded due to
noise. The improved algorithm [16] based on algorithm [18]
can not avoid the deficiency mentioned above. As we can
see, in our algorithm, the dynamic range and image contrast

FIGURE 5. Transmittance of restoration-based techniques. (a) The
algorithm [10]. (b) The algorithm [11]. (c) The algorithm [16]. (d) The
algorithm [18]. (e) Improved algorithm.

can be expanded and boosted without enlarging the noise.
In Fig.5, we can see that the transmittance processed by
technique [11] and our technique are smoother than algo-
rithms [10], [16], [18]. This is because the transmittance
of our method retains the maximum amount of information
in the four methods while the transmittance of the algo-
rithm [11] contains plenty of details.

Besides, the transmittance performance of our algorithm
and other four restoration-based algorithms are also related to
the average SSIM [28], [32] index values of R, G andB colour
channel. As can be seen from Table 1, our method obtained a
better transmittance.

TABLE 1. The indexes of SSIM [28], [32] for R, G, B.
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D. IMAGE DE-HAZING
As the atmospheric lightA and the transmittance are obtained,
on the basis of Eq.(1), the haze-free image scene R(x, y) can
be given by Eq.(19).

RC (x, y) =
FC (x, y)− AC

max{t1(x, y), t0}
+ AC (19)

Here, t0 is the low limit of the transmittance and can be set
to 0.1 based on the empiric value. Fig.6 shows the procedure
of our method.

FIGURE 6. Improved algorithm flowchart.

IV. EXPERIMENT AND RESULT
In order to verify the reliability of our method, the effect of
our method is compared with that of the other seven state-
of-the-art methods. The experiments run on a computer with
Inter corei7-990X 5GHz CPU and 4GB memory. MATLAB
2017a is operated on Windows 8 system. The test set used
in this paper are either downloaded from the Internet or taken
by us. Altogether 418 real-world fog scenes and 100 synthetic
fog scenes of lake views, architectures, fields, woods, subur-
ban landscapes, street corners, bird-view landscapes, vistas
and close-ups etc. are used in our experiments [33].

A. VISUAL ASSESSMENT
We choose five kinds of fog-day images from the test set
to conduct the comparison experiments. Five groups of haze
removal results are presented in following illustrations, which
are named as ‘boat’ (resolution ratio: 280∗320), ‘commu-
nity’ (resolution ratio: 350∗550), ‘city’ (resolution ratio:
400∗600), ‘road’ (resolution ratio: 500∗800), ‘field’ (reso-
lution ratio: 960∗1280). In Fig.7, Fig.8, Fig.9, Fig.10, and
Fig.11, (a) is the original image, (b)-(i) are the dehazing
results.

The large scale of sky and lake areas in Fig. 7 (a) occu-
pies the entire image, which presents a challenge to the
haze removal process and is prone to specular reflection
problems [29] if improperly handled. The visual effects of
Fig. 7 (b)-(i) are enhanced after being processed by using our
approach and seven other advanced algorithms. In Fig.7 (b)
and Fig.7 (c), the algorithms [3], [4] significantly improve the
contrast of the output image. However, most of the dehazing
image areas have the colour shift phenomenon. The con-
trast and definition of Fig.7 (d) are significantly enhanced,
while unnatural color depth and block effects occur in areas
with significant depth changes. Fig.7 (e) has good visual

FIGURE 7. Comparison of different dehazing algorithms. (a) Haze
image (b) The algorithm [3]. (c) The algorithm [4]. (d) The algorithm [8]. (e)
The algorithm [10]. (f) The algorithm [11]. (g) The algorithm [16]. (h) The
algorithm [18]. (i) Improved algorithm.

FIGURE 8. Comparison of different dehazing algorithms. (a) Haze
image (b) The algorithm [3]. (c) The algorithm [4]. (d) The algorithm [8].
(e) The algorithm [10]. (f) The algorithm [11]. (g) The algorithm [16].
(h) The algorithm [18]. (i) Improved algorithm.

effects, but the foreground colour in Fig. 7(e) is unnatural.
Method [10] demonstrates the problem of oversaturation,
hence causes the look of pure white sky area in Fig.7(e).
We note that the result image from Fig.7(f) is blurred by
the edge details, which means that the estimation of the
atmospheric light A is inaccurate. Besides, similar inaccurate
estimation problem result in dark luminance of Fig.7 (g) and
Fig.7(h). As shown in Figure 7 (i), the de-fogging effect of
our method is more natural.

As regard to the dense haze image shown in Fig.8 (a),
the visual quality is greatly improved by algorithms
[3], [4], [8], [10], [11], [16], [18] and our algorithm, and
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FIGURE 9. Comparison of different dehazing algorithms. (a) Haze
image (b) The algorithm [3]. (c) The algorithm [4]. (d) The algorithm [8].
(e) The algorithm [10]. (f) The algorithm [11]. (g) The algorithm [16].
(h) The algorithm [18]. (i) Improved algorithm.

the above mentioned algorithms can alleviate the effect of
haze to some extent. Among those, algorithms [4], [16], [18]
and our algorithm can obtain better visual effects in dense
haze images when the depth of scene changes rapidly.
This is because that the transmittance acquired by algo-
rithms [16], [18] and our algorithm are more close to the
natural state; the visual effect is primarily considered in
algorithm [4]. For Fig.8(d) and Fig.8(f), we used the algo-
rithms [8], [11], which demonstrate colour shift phenomenon
and image noise.

Fig.9 presents a downward landscape, however, directed
at the border of buildings and trees in dehazing images,
there are colour cast phenomenon in techniques [3], [10],
as we can see in Fig.9 (b) and Fig.9 (e). By artificially
enhancing the image contrast, Fig.9 (c) has bright image
foreground color. The haze-free images tend to yield colour
shift in different degrees, as shown in Fig.9(d) and Fig.9(f).
Techniques [16], [18] behave better in keeping close to the
colour of the source image, yet it is lack of competitiveness
in overall effect, and the details are shown in Fig.9(g) and
Fig.9(h). Fig.9(i) shows the haze removal results handled by
our algorithm. As we can see, the haze is eliminated clearly
and many other objects can not be overwritten.

As for Fig.10, there is another aerial view of the whole
image that is almost monotonous in colour. The result image
of algorithms [3], [4], [8] show a distorted colour and are
clearly demonstrated in Fig.10 (b), Fig.10 (c) and Fig.10 (d).
In Fig.10 (e), we can see that the haze image recovered by
method [10] often looks blurry and susceptible to gradient
reversal effects.Method [11] can dramatically pump up visual
effects, while underexposure usually occurred in areas with
dark subjects. Fig.10 (h) shows that the DCPmethod does not
apply to the mirror or overexposure areas in the haze images.

FIGURE 10. Comparison of different dehazing algorithms. (a) Haze
image (b) The algorithm [3]. (c) The algorithm [4]. (d) The algorithm [8].
(e) The algorithm [10]. (f) The algorithm [11]. (g) The algorithm [16].
(h) The algorithm [18]. (i) Improved algorithm.

On the contrary, the improved DCP-based algorithm [16] and
our approach can obtain visually compelling dehazing results,
as shown in Fig.10 (g) and Fig.10 (i).

A near view scene in dense haze situation is shown
in Fig.11(a). The visual performance of seven dehazing tech-
niques and our technique are shown in Fig.11(b)-(i) respec-
tively. The effect of Fig.11(b) has higher contrast than the
results of other techniques, while some areas are too bright
and have in-homogeneous enhancement. In the results of
algorithms [4], [8], [11], the details of haze image can be
displayed, however, the colour of image is significantly dis-
torted, especially in the sky region and the edge of the object.
The dehazing results of method [10] usually look very fuzzy
and are mostly affected by halo problem, as can be seen
in Fig.11(e). We note that the result image from Fig.11 (g) is
blurred by the edge details, which means that the estimation
of the atmospheric light A is inaccurate. As for the effect
of the technique [18], there are both halo effect and image
noise in sky area, as shown in Fig.11 (h). Since we use
the method of modified least-square filter in transmittance,
the improved method does not sacrifice the fidelity of colour
and expand the halo effect when dealing with the sky area.
It can be confirmed in Fig.11(i) that our method can obtain
better results in both the close and distant regions.

In short, the improved algorithm can be applied to non-
homogeneous haze and dense haze conditions. The atmo-
spheric scattering model and DCP utilized in our technique
can obtain the estimation of atmospheric light A and trans-
mittance more accurately. Besides, a small amount of haze
preserved in moderation makes the dehazing recovery results
more natural as shown in above figures.
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FIGURE 11. Comparison of different dehazing algorithms. (a) Haze
image (b) The algorithm [3]. (c) The algorithm [4]. (d) The algorithm [8].
(e) The algorithm [10]. (f) The algorithm [11]. (g) The algorithm [16].
(h) The algorithm [18]. (i) Improved algorithm.

B. COMPARISON OF TIME EFFICIENCY
In order to verify the superiority of our approach in terms
of running time, various images of different sizes were
used for observation. Comparing our method with the algo-
rithms [3], [4], [8], [10], [11], [16], [18], it can be seen that
the approach [18] in table 2 has the poorest process efficiency
due to the application of soft matting algorithm to the sparse
matrices, which brings about the problem of low computing
efficiency. The DCP-based algorithm [16] performs poorly
as far as time consumption is concerned. This is due to the
use of a distributed ordering method with scaled brightness to
select pixel values at the chosen spot of the pictures. Besides,
the polarization imaging method will limit the execution per-
formance of the algorithm [8]. The algorithm [3] introduces
ICA technique, so as the image size increases the algorithm
can maintain high-speed data processing efficiency, even
faster than our method. The efficiency of algorithm [4], based
on the improved Retinex colour vision model, is also remain
fast. Algorithm [10] also has good performance too because
it employs the fast Fourier transform in the frequency domain
for convolution operation. The approach [11] is advanced
by utilizing fast bilateral filter algorithm. However, the pro-
cessing time will increase when the picture resolution is
increased.

TABLE 2. Comparison of time complexity (Unit:ms).

C. QUALITY EVALUATION
Since the subjective evaluation has inevitable bias, qual-
ity evaluation criteria are usually employed to assess
the effects of dehazing results. For a comprehensive
evaluation, we not only adopt three full reference
evaluation metrics to measure the effectiveness of the algo-
rithms [3], [4], [8], [10], [11], [16], [18], including index
MSE [30] (Mean squared error), PSNR [31], [32] (peak signal
to noise ratio) and SSIM [28], [32] (Structural similarity), but
also add no reference indexes, including e, r , σ .
The MSE [30] can be expressed as Eq.(20).

MSE(F ′,R) =
1
3IJ

I∑
x=1‘

J∑
y=1

3∑
c=1

(F ′(x, y, c)− R(x, y, c))2

(20)

where IJ indicates that the image block dimension contains
I × J pixels, subscript c the number of colour channels, F ′

(x, y, c) the haze removal image, and R (x ,y, c) the haze-free
image.

PSNR = 10 lg
f 2max

MSE
(21)

In Eq.(21), fmax denotes the maximum grayscale intensity
value. SSIM [28], [32] is the one of the frequently-used
ways to measure image quality, and SSIM [28], [32] can be
expressed as:

SSIM =
1
IJ

I∑
x=1′

J∑
y=1

(2uF ′,x,yuR,x,y + d1)(2αF ′R,x,y + d2)

(u2F ′,x,y+u
2
R,x,y + d1)(2α

2
R,x,y+α

2
F ′,x,y)

(22)

In this paper, we choose an image block of size 3×3, which
centered in a pixel point (x, y) of haze removal image F ′.
uF ′,x,y and α2F ′,x,y represent local mean and variance of the
haze removal image, respectively, and uR,xy and α2R,xy the
counterparts of the haze-free image R. αF ′R,xy means the co-
variance between the haze removal and haze-free images in
the same scene, which can be estimated by Eq.(23).

αF ′R,x,y =
1

xy− 1

xy∑
x=1

(Ix,y − uF ′,x,y)(Ix,y − uR,x,y) (23)

Here, xy denotes the amount of pixels in the block area,
and d1 and d2 are usually set as 0.01 and 0.03 according to
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the empirical values. After that, we can calculate the average
SSIM [28], [32] value of three RGB colour channels.

For our method, the minimum MSE and maximum
PSNR values for a single dehazing image are 6.5238 and
24.8659 respectively. Table 3 shows MSE, SSIMave and
PSNR results of the eight different methods. To simplify the
calculation, the ratios of MSE and PSNR in parentheses are
obtained by dividing 6.5238 and 24.8659 individually.

TABLE 3. Objective comparison of our method and
methods [3], [4], [8], [10], [11], [16], [18] using MSE, SSIMave and PSNR
results.

For the above three metrics, a higher PSNR [31], [32],
a larger SSIM [28], [32] or a small value of MSE [30] lead to
better results.

For the need of accurate comparison, we should normalize
the dimensional distinction of three index types. The equation
is represented as follows:

b =
(bmax − bmin)× (a− amin)

amax − amin
+ bmin (24)

In it, a means the index data, amax and amin the highest
and lowest values of index data before normalization, bmax
and bmin the highest and lowest values of index data after
normalization. To simplify the calculation procedure, we set
bmax = 1 and bmin = 0.5.

Since MSE [30] is inversely changed with the other two
indexes, the comprehensive evaluation index is given by
Eq.(25).

Inte = PSNR+ SSIM −MSE (25)

Table 3 can be converted to a normalization form according
to Eq.(25), as shown in Table 4.

TABLE 4. Objective comparison of our method and
methods [3], [4], [8], [10], [11], [16], [18] using MSE [30], SSIMave [28], [32]
and PSNR [31], [32] in normalization form.

The columns in blue, red, green and purple represent
the indexes of MSE [30], SSIMave, PSNR [31], [32] and

Inte, respectively, and the histogram indicators are utilized
in Fig.12 to describe the objective comparison of our method
and methods [3], [4], [8], [10], [11], [16], [18]. Among those
metrics, MSE represents the average difference between the
haze removal image and the haze-free image. SSIM indicates
the scene-awareness of the human visual system(HVS), and
implies the ability to preserve the structure information of the
methods. Besides, a higher result of PSNR indicates that the
distortion of the haze removal result is smaller.

As can be seen from Table 3 and Table 4, method [8]
provides the best SSIM result. It is because that the visual
impact is improved by artificially increasing the contrast and
brightness of images. Whereas the MSE and PSNR results
of method [8] are not very satisfactory. Method [16] obtains
good results ofMSE and PSNRwhile poor result of SSIMdue
to the inaccurate estimation of A. The algorithm [3] always
brings about serious color shift phenomenon and halo effects,
so the overall results are poor. The overexposure and image
noises lead to poor results of MSE and SSIM in method [10],
and too much unwanted information brings about unsatis-
factory PSNR result in method [11]. As can be seen from
Fig.12, our approach achieves better results among the eight
dehazing algorithms. After testing, through our method, you
can get the colour fidelity and good dehazing effect of the
image structure.

FIGURE 12. Histogram indicators of
method [3], [4], [8], [10], [11], [16], [18] and our method.

For no reference image quality assessment, the e indicates
the ratio of visible edge recovered from the output of the haze
removal results, mi and mo the number of visible edges in
input and output images.

e =
mo − mi
mi

(26)

In Eq.(27), r means the contrast restoration quality in the
output image, hi the correlation factor within the set ϕ, ri the
gradients ratio between the input and output image.

r = exp[
1
mo

∑
hi∈ϕ

log(ri)] (27)

Besides, the σ index represents the ratio of over-exposed
or under-exposed pixels in output image, mt the number of
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TABLE 5. Objective comparison of our method and
methods [3], [4], [8], [10], [11], [16], [18] using e, r and σ .

pixels beyond the feasible range, and six and siy the size of
output image.

σ =
mt

six × siy
(28)

In general, if e and r are bigger, it shows better smog
removal, with more levels, abundant details, sharp edges
and strong contrast. Whereas a smaller σ implies a better
dehazing performance.

As can be seen from Table 5 that our method performs
better than methods [3], [4], [8], [10], [11], [16], [18] for
e and σ . Fig.7 and Fig.10 demonstrate that the r metric of
our method is slightly inferior to method [8], because algo-
rithm [8] increases the contrast of the foggy image to achieve
a better result, and hence causes colour shift phenomenon.

V. RESULT AND PROSPECT
The occurrence of haze greatly reduces image and visual
quality. Besides, dehazing is a real challenge owing to its ill
conditioning nature. Hence, it is essential to research dehaz-
ing technologies. In the widely used atmospheric scattering
model, the accuracy of atmospheric light and transmittance
valuation are the key to effective haze removal.

Based on the innovative approaches of estimation of
unknown parameters in atmospheric scatteringmodel, an effi-
cient and effective single image dehazing method is pro-
posed in this paper. In order to obtain a precise value
of A and increase accuracy of estimation of transmit-
tance, we use Gray-level threshold segmentation to deter-
mine the sky region, then use skyline algorithm to search
in the sky area, and replace the guide filter of tradi-
tional haze removal method with modified least-square
filter algorithm on transmittance. In comparison with
approaches [3], [4], [8], [10], [11], [16], [18], although there
exist a small amount of image noise and colour shift phe-
nomenon in our dehazing images, the experimental results
demonstrate that the image results processed by our method
is more vivid, distinct and efficient.

The main contributions of this paper are outlined below.

1) A simple and effective way for processing haze images,
especially with large proportion of sky areas, is pro-
posed based on the theory of essence of haze image
degradation. Our method demonstrates a good perfor-
mance in avoiding color shift phenomenon, halo effects
and block effects.

2) Two different algorithms are combined to locate and
identify the atmospheric light. Our method can over-
come the deficiency of low precision of the atmo-
spheric light value and gradient inversion effects in
traditional methods.

3) To overcome the ill conditioning problem of atmo-
spheric scattering model, an modified least-square
filter is adopted to refine course transmittance.
In comparison with previous restoration-based dehaz-
ing methods, our method has both impressive and
compelling impact on transmittance estimation and the
capability of anti-noise.

For our future work, we plan to apply our still image haze
removal approach to dynamic video processing.
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