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ABSTRACT The mean objective cost of uncertainty (MOCU) quantifies the performance cost of using
an operator that is optimal across an uncertainty class of systems as opposed to using an operator that is
optimal for a particular system. MOCU-based experimental design selects an experiment to maximally
reduce MOCU, thereby gaining the greatest reduction of uncertainty impacting the operational objective.
The original formulation applies to finding optimal system operators, where optimality is with respect to a
cost function, such as mean-square error; and the prior distribution governing the uncertainty class relates
directly to the underlying physical system. Here, we provide a generalized MOCU and the corresponding
experimental design. We, then, demonstrate how this new formulation includes as special cases MOCU-
based experimental design methods developed for materials science and genomic networks, when there is
experimental error. Most importantly, we show that the classical knowledge gradient and efficient global
optimization procedures are specific implementations of MOCU-based experimental design under their
modeling assumptions.

INDEX TERMS Bayesian methods, experimental design, complex systems, uncertainty.

I. INTRODUCTION
Optimal experimental design is critical for autonomously
learning physical models. This is because experiments can be
costly and time-consuming, such as the ones in biology and
materials design. It is desirable to help design the experiments
that reduce the uncertainty pertaining to the ultimate oper-
ational objective, be it control, filtering, classification, drug
design, materials design, or some other operational goal.

From the Bayesian perspective, Lindley’s paradigm posits
a general framework for Bayesian experimental design [1].
Two standard procedures within this paradigm are the
Knowledge Gradient (KG) [2], [3] and Efficient Global
Optimization (EGO) [4], which provide (one-step) optimal
experimental design under Gaussian belief and observation
noise (KG only) for an offline ranking and selection problem.
A more recently introduced method is based on the mean
objective cost of uncertainty (MOCU), which quantifies the
performance cost of using an operator that is optimal across
an uncertainty class of systems as opposed to an operator
that is optimal for a particular system within the class [5].

MOCU-based experimental design selects an experiment
that maximally reduces MOCU, thereby optimally reducing
uncertainty with respect to the operational objective [6]. For
instance, if one wishes to design aWiener filter when the rele-
vant power spectra are not fully known but belong to an uncer-
tainty class of power spectra, then the problem is to design a
linear filter that is optimal relative to both mean-square error
(MSE) and the probability mass over the uncertainty class.
An optimal experiment maximally reduces MOCU relative
to uncertainty in the relevant power spectra [7].

Here we consider a generalized formulation of MOCU that
is neither necessarily dependent on the particularities of the
underlying system model nor necessarily involves a design
problem focused on operators. We show that the correspond-
ing generalized experimental design encompasses existing
formulations in signal processing, genomics, and materials
discovery, and that it fits within Lindley’s paradigm for
Bayesian experimental design.Within this generalized frame-
work we examine the connection and differences of MOCU-
based formulations with other Bayesian experimental design
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methods. In particular, we show that the generalized MOCU
generates the same policies as Knowledge Gradient and Effi-
cient Global Optimization under their modeling assumptions.
Not only does the generalized MOCU framework unify dis-
parate problems, it opens up Bayesian experimental design
for reduction of objective related uncertainty, as demonstrated
by materials discovery using Ginzburg-Landau theory.

II. GENERALIZED MOCU
We first formulate experimental design in terms of general-
ized MOCU and then give the standard method by simply
defining the terms in the generalized model appropriately. In
this paper, the lower case Greek letters denote random vari-
ables or distribution functions and capital Greek letters denote
the corresponding domain space. We assume a probability
space 2 with probability measure π , a set 9, and a function
C : 2 × 9 → [0,∞), where 2,π,9, and C are called
the uncertainty class, prior distribution, action space, and
cost function, respectively. Elements of 2 and 9 are called
uncertainty parameters and actions, respectively. For any
θ ∈ 2, an optimal action is an element ψθ ∈ 9 such
that C(θ, ψθ ) ≤ C(θ, ψ) for any ψ ∈ 9. An intrinsically
Bayesian robust (IBR) action is an element ψ2IBR ∈ 9 such
that Eθ [C(θ, ψ2IBR)] ≤ Eθ [C(θ, ψ)] for any ψ ∈ 9.

Whereas ψ2IBR is optimal over2, for θ ∈ 2, ψθ is optimal
relative to θ . The objective cost of uncertainty is defined by
the performance loss of applying ψ2IBR instead of ψθ on θ :

U9 (2) = C(θ, ψ2IBR)− C(θ, ψθ ). (1)

Averaging this cost over 2 gives the mean objective cost of
uncertainty (MOCU):

M9 (2) = Eθ [C(θ, ψ2IBR)− C(θ, ψθ )]. (2)

The action space is arbitrary so long as the cost function is
defined on 2 × 9. It can be a set of filters defined on a
random process with C being mean-square error or a set of
drug interventions with C quantifying patient condition.
As noted in [5], MOCU can be viewed as the minimum

expected value of a Bayesian loss function that maps an oper-
ator to its differential cost (for using the given operator instead
of an optimal operator). The minimum expectation is attained
by an optimal robust operator that minimizes the average
differential cost. In decision theory, this differential cost is
called the regret, which is defined as the difference between
themaximumpayoff (formaking an optimal decision) and the
actual payoff (for the decision that has been made). From this
perspective, MOCU can be viewed as the minimum expected
regret for using a robust operator.

Suppose there is a set 4, called the experiment space,
whose elements, ξ , called experiments, are jointly distributed
with the uncertainty parameters θ . To avoid overly complex
notation, we denote both an experiment and its outcome by ξ .
More specifically, when used in conditioning the probability
spaces and distributions, ξ represents an outcome, and when
in a minimization/maximization argument, it corresponds to
an experiment. Given ξ ∈ 4, the conditional distribution

π (θ |ξ ) is the posterior distribution relative to ξ and 2|ξ
denotes the corresponding probability space, called the con-
ditional uncertainty class. Relative to 2|ξ , we define IBR
actions ψ2|ξIBR and the conditional (remaining) MOCU,

M9 (2|ξ ) = Eθ |ξ [C(θ, ψ
2|ξ
IBR )− C(θ, ψθ )], (3)

where the expectation is with respect to π (θ |ξ ). Taking the
expectation over ξ gives the expected remaining MOCU,

D9 (2, ξ ) = Eξ [M9 (2|ξ )]

= Eξ [Eθ |ξ [C(θ, ψ
2|ξ
IBR )− C(θ, ψθ )]], (4)

which is called the experimental design value. An optimal
experiment ξ∗ ∈ 4 minimizes D9 (2, ξ ) , i.e.,

ξ∗ = argmin
ξ∈4

D9 (2, ξ ). (5)

ξ∗ also minimizes the difference between the expected
remaining MOCU and the current MOCU (maximizes the
absolute difference):

ξ∗ = argmin
ξ∈4

D9 (2, ξ )−M9 (2)

= argmin
ξ∈4

Eξ [Eθ |ξ [C(θ, ψ
2|ξ
IBR )− C(θ, ψθ )]]

− Eθ [C(θ, ψ2IBR)− C(θ, ψθ )]

= argmin
ξ∈4

Eξ [Eθ |ξ [C(θ, ψ
2|ξ
IBR )]]− Eθ [C(θ, ψ2IBR)]. (6)

In the standard formulation, MOCU depends on a class of
operators applied to a parameterized physical model in which
θ is a random vector whose distribution depends on a physical
characterization of the uncertainty. For instance, in a gene
regulatory network, uncertainty arises regarding regulations
and experimental design decides which unknown regulations
should be determined via experiments so as to minimize the
cost of uncertainty relative to the objective of minimizing the
long-run likelihood of the cell being in a cancerous state [5],
[6], [8].2 is an uncertainty class of systemmodels parameter-
ized by a vector θ governed by a probability distribution π (θ )
and 9 is a class of operators on the models whose perfor-
mances are measured by C . For each operator ψ , C(θ, ψ) is
the cost of applyingψ on model θ ∈ 2. Initially proposed for
optimal intervention in Markovian regulatory networks [5]
and optimal robust classification [9], IBR operators have
been designed for linear and morphological filters [10] and
Kalman filters [11].
It is often the case in standard optimal operator design that

an optimal operator can be formulated in terms of charac-
teristics of the underlying system – for instance, a Wiener
filter is expressed in terms of power spectra and a Kalman
filter makes use of the Kalman gain matrix. When this is the
case, under appropriate probabilistic assumptions it is often
possible to express an IBR operator in precisely the same
form, with the original characteristics replaced by effective
characteristics, these being averages of the model-specific
characteristics over the uncertainty class. The IBR Wiener
filter takes the same form as the Wiener filter, with the
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effective power spectra replacing the model-specific power
spectra. The IBR Kalman filter is generated by a similar set
of recursive equations, with the Kalman gain matrix replaced
by the effective Kalman gain matrix (and other characteristics
replaced by their effective counterparts).

As originally formulated [6], experimental design involves
k experiments T1, . . . ,Tk , where experiment Ti exactly deter-
mines the uncertain parameter θi in θ = (θ1, θ2, . . . , θk ) ∈ 2.
The conditional uncertainty vector θ |θi is composed of all
uncertain parameters other than θi, with θi now determined
by Ti.2|θi is the reduced uncertainty class given θi. The IBR
operator for 2|θi, the remaining MOCU given θi, and the
experimental design value take the forms ψ2|θiIBR , M9 (2|θi),
and D(θi) = Eθi [M9 (2|θi)], respectively. The optimal exper-
iment Ti∗ is specified by i∗ = argmini=1,...,k D(θi).
Returning to the generalized MOCU formulation, there

is wide flexibility in experimental design, depending on the
assumptions regarding the uncertainty class, action space, and
experiment space, leading to many existing Bayesian exper-
imental design formulations. Bayesian experimental design
has a long history, in particular, utilizing the expected gain
in Shannon information [12]–[15]. In 1972, Lindley [1] pro-
posed a general decision theoretic approach incorporating a
two-part decision involving the selection of an experiment
followed by a terminal decision. Supposing λ is a design
selected from a family 3 and X is a data vector, and leaving
out the terminal decision, an optimal experiment is given by

λ∗ = argmax
λ∈3

EX[E2 [U (θ,X, λ)|X, λ] |λ], (7)

where U is a utility function (see [16] for the full decision-
theoretic optimization).

With generalized MOCU, recalling that ξ represents both
an experiment and its outcome, each experiment ξ corre-
sponds to a data vector X|ξ and the expected remaining
MOCU is

Eξ [M9 (2|X, ξ )]

= EX|ξ [E2[Cθ |(X|ξ )(ψ
2|(X|ξ )
IBR )− Cθ |(X|ξ )(ψθ |(X|ξ ))]]

= EX|ξ [E2[U9 (θ,X, ξ ;2)]]. (8)

From (8), the optimization of (5) can be expressed in the
same form as (7), with ξ in place of λ and utility function
−U9 (θ,X, ξ ;2).
Hence, in descending order of generality, we have Lind-

ley’s procedure, generalizedMOCU, andMOCU. The salient
point regarding the latter is that the uncertainty is on the
underlying random process, meaning the science, and its aim
is to design a better operator on the underlying process.

With sequential experiments, the action space and experi-
ment space can be time dependent, i.e., they can be different
for each time step. Hereafter, in sequential experiment setups,
the action space and experiment space at time step t , and
the optimal experiment selected at t to be performed at the
next time step are denoted by 9 t , 4t , and ξ∗,t , respectively.
Let π (θ |ξ :t ) be the posterior distribution given the selected
experiments’ outcomes from the first time step through t ,

FIGURE 1. A design loop for designing optimal operators under
uncertainty.

and 2|ξ :t denote the corresponding conditional uncertainty
class. When experiments are selected sequentially and there
is no fixed limited budget of experiments but instead the
experimenter wants to stop the iterative procedure when only
negligible knowledge regarding the objective can be gained
from additional experiments, the form in (6) is useful because
it incorporates the difference between the expected remaining
MOCU and the current MOCU. The iterative procedure may
be stopped if it falls below a threshold. While this procedure
is optimal at each step, it is not optimal given a fixed number
of experiments to be performed. This latter kind of finite-
horizon optimal design using MOCU is treated in [17] using
dynamic programming.

Sequential experiments can be understood in terms of a
design loop for designing optimal operators under uncer-
tainty. Referring to Fig. 1, and considering the standard
MOCU formulation, the base of the design loop is con-
struction of the prior. This can be done in numerous ways;
however, a very general procedure can be used to derive
the Maximal Knowledge-driven Information Prior (MKDIP)
that minimizes an information-based cost function subject to
constraints characterizing our prior knowledge [18], [19]. The
prior can then be updated to a posterior using data. Assuming
the existence of effective characteristics, following posterior
update, these are computed and an IBR operator determined.
Uncertainty is quantified by MOCU and, if desired, optimal
experiments performed to produce new knowledge that can be
used to supplement the original knowledge or directly condi-
tion the original prior, in either case producing a new prior to
re-institute the design process. The design loop involves two
optimizations, and therefore two cost functions, one for prior
construction and one for operator design.

We next show how generalized MOCU can be applied
in real-world applications, specifically in life and materials
science research. We also show that the generalized MOCU
experimental design includes other existing objective-based
experimental-design formulations.
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III. GENERALIZED MOCU IN APPLICATIONS
A. DYNAMICAL GENETIC NETWORKS
In [8], optimal objective-based experimental design is derived
for networks with multiple dynamic trajectories, model-
ing in [8] being based on [20]. Briefly, the network’s
nodes and their corresponding values represent entities, pro-
teins/chemicals or genes, and their corresponding concentra-
tion levels or expression levels, respectively. The values are
assumed to be nonnegative integers. Each edge represents
an interaction with its input, regulation, and output nodes.
Each interaction can dynamically happen if all of its input and
activator nodes are nonzero and its inhibitor nodes are zero.
All interactions are known. When the network is in state x,
it can have one or more possible interactions based on the
node values, where if any takes place, the network transitions
to a next state. When multiple interactions exist, if knowl-
edge of the relative priorities of these competing interactions
exist, we can completely determine the state trajectory of the
network from an initial state x0.

The assumption is that these relative priorities are not
known but can be measured one at a time with experimental
error. If the network has R of these competing interactions,
i.e., interactions that can dynamically happen at the same
time, then the uncertainty class consists of a set of R Boolean
random variables, 2 = {0, 1}R, and θ = (θ1, . . . , θR), where
θi ∈ {0, 1}i=1,...,R. The i th experiment can determine the
value of θi with an experimental error having probability δi.
Specifically, if θi is selected to be measured, with probability
1−δi the outcome of the experiment is θi, andwith probability
δi is 1 − θi. Here, 4 = {ξ1, . . . , ξR}, each experiment ξi
corresponds to measuring θi, and

ξi|θi =

{
θi with probability 1− δi,
1− θi with probability δi.

(9)

An action blocks an interaction from happening, so the action
space is 9 = {ψ1, . . . , ψA}, where A is the number of
interactions that can be blocked. Each action changes the
dynamic trajectory of the network. If the set of possible state
trajectories is denoted by S2ψi when the i

th action (ψi) is taken,
then the probability of each trajectory s ∈ S2ψi is

PS2ψi
(s) = Ex0

[
Eθ [1sx0,θ (ψi)=s]

]
, (10)

where 1w is the indicator function (1w = 1 if w is true and is
0 otherwise), and sx0,θ (ψi) is the deterministic trajectory for
a fixed initial state x0 and θ , when action ψi is taken. Here,
S2ψi = ∪x0∈X0 ∪θ∈2 sx0,θ (ψi), where X0 denotes the set of
all possible initial states. For each trajectory s, the dynamic
performance cost ε(s) is defined as the distance (in terms of
any appropriate norm) of the steady-state vector correspond-
ing to that trajectory (xsf ) from a desired distribution v, i.e.
ε(s) = ||xsf − v||. Thus, the cost function for a fixed θ and
action ψ is the expected cost over the possible trajectories,
C(θ, ψ) = ES2ψ [ε(s)].

The IBR action for this problem is

ψ2IBR = arg min
ψ∈{ψ1,...,ψA}

Eθ [C(θ, ψ)]. (11)

According to (4) and (5), the optimal experiment can be
derived as

ξ∗ = argmin
ξi∈4

Eξi [Eθ |ξi [C(θ, ψ
2|ξi
IBR )− C(θ, ψθ )]]

= argmin
ξi∈4

Eξi [Eθi|ξi [Eθ\θi [C(θ, ψ
2|ξi
IBR )− C(θ, ψθ )]]]

= argmin
ξi∈4

Eθi [Eξi|θi [Eθ\θi [C(θ, ψ
2|ξi
IBR )− C(θ, ψθ )]]]

= argmin
ξi∈4

Eθi [Eξi|θi [Eθ\θi [C(θ, ψ
2|ξi
IBR )]]], (12)

where ‘‘\’’ denotes set subtraction in the subscripts. The sec-
ond line holds because only the posterior distribution of θi
depends on experiment ξi; and the last equality follows from
the independence of C(θ, ψθ ) from ξi. The last line is exactly
the policy derived in [8] but there the policy derivation was
based on adding the objective-based cost of experimental
error to the previous notion of objective cost of uncertainty,
whereas here we directly apply the generalized formulation
of MOCU as we have formulated in Section II.

B. GUIDING SIMULATIONS IN MATERIALS DISCOVERY
In [21], optimal experimental design based on MOCU is
applied to a computational problem for shape memory
alloy (SMA) design with desired stress-strain profiles for
a particular dopant at a given concentration utilizing time-
dependent Ginzburg-Landau (TDGL) theory. The TDGL
model simulates the free energy for a specific dopant with
a specified concentration, given the dopant’s parameters. The
assumption is that there is a setD = {d1, . . . , dN } ofN poten-
tial dopants and each dopant di can be characterized by two
parameters, its strength hi and its range of stress disturbance
ri. The concentration of the dopants can be selected from a
set O = {o1, . . . , oP} of P pre-specified values. The true
values of these dopant parameters are unknown; however,
there exists a prior distribution over the dopant parameters.
In summary, we have 2 = H × R and θ = [h, r], where
h = [h1, . . . , hN ] and r = [r1, . . . , rN ], and H and R
represent the sample spaces of h and r , respectively. Thus,
θi = [hi, ri] fully characterizes dopant di.
Since the computational complexity of the TDGLmodel is

enormous, the goal is to find an optimal dopant and concen-
tration to minimize the simulated energy dissipation, with the
least number of times running the TDGLmodel (least number
of experiments). Following [21], for this purpose, a surrogate
model g(h, r, o) is trained based on fitting some initial data
generated from the TDGL model. The surrogate model can
approximately predict a dissipation energy for a specified
dopant and concentration, and it is used as the cost function
throughout the experimental design iterations. The TDGL
model acts as the true underlying system, or Nature, and the
surrogate model is the model of the true system. The action
space is 9 = {ψdi,oj}di∈D,oj∈O, where each action ψdi,oj is
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using the ith dopant with the jth possible concentration. The
cost function is C(θ, ψdi,oj ) = g(hi, ri, oj). The experiment
space is 4 = {ξdi,oj}di∈D,oj∈O, where ξdi,oj corresponds to
obtaining a noisy measurement of the dissipation energy
when using the ith dopant with the jth concentration. ξdi,oj ∼
f (ξdi,oj |θi), where f is a probability distribution.
In this framework, the IBR action at time step t is

ψ
2|ξ :t

IBR = argmin
ψ∈9

Eθ |ξ :t
[
C(θ, ψ)

]
= arg min

ψdi,oj∈9
Eθ |ξ :t

[
g(hi, ri, oj)

]
. (13)

From (4) and (5), the optimal experiment at time step t (to be
performed at t + 1) is

ξ∗,t = argmin
ξ∈4

Eξ [Eθ |ξ [C(θ, ψ
2|ξ,ξ :t

IBR )− C(θ, ψθ )]]

= arg min
ξdi,oj∈4

Eξdi,oj [Eθ |ξdi,oj ,ξ :t [C(θ, ψ
2|ξ :t+1

IBR )]], (14)

where the second equality is due to the independence of
C(θ, ψθ ) from ξdi,oj . The last line of (14) is exactly the policy
proposed in [21] for this materials science problem.

In the genomic application, the parameters of the cost
function come from an underlying physical system. Another
example of this kind is Karhunen-Loève compression, where
the parameters characterize the image structure and the cost
function measures the difference between the original and
compressed images [22]. In the materials application, the sur-
rogate model, instead of the actual physical model, is used for
the experimental design.

A third possibility is that we do not possess a physical
model and we lack sufficient knowledge to posit a surrogate
model relating to our objective. Nevertheless, we can take an
ad hoc approach and select a model with known predictive
properties. This model can be a kernel-based model, for
instance, a Gaussian Process Regression model [23]. More
generally, the model can consist of a set of possible para-
metric families, or be a kernel-based model with different
possible feature sets, or even kernel-based models with dif-
ferent choices for the kernel function. In [24] no knowledge
is assumed regardingwhich feature set ormodel familywould
be the best. Instead, Bayesian model averaging is used based
on different feature sets for a Gaussian process regression
model, weighted by their posterior probabilities of being
the correct model, where possible feature sets are selected
based on domain knowledge. Assuming a single objective,
generalized MOCU can be applied to all three scenarios.

IV. CONNECTION OF MOCU-BASED EXPERIMENTAL
DESIGN WITH KG AND EGO
Knowledge Gradient (KG) [2], [3], which is used in different
fields, from drug discovery to material design [25], [26], was
originally introduced as a solution to an offline ranking and
selection problem, where the assumption is that there are
A ≥ 2 actions (alternatives) that can be selected, i.e., 9 =
{ψ1, . . . , ψA}. Each action has an unknown true reward (sign-
flipped cost) and at each time step an experiment provides a

noisy observation of the reward of a selected action. There is
a limited budget (B) of the number of measurements we can
make before the time arrives to decide which action is the
best, that being the one having the lowest expected cost (or
the highest expected reward).

The assumption is that we have Gaussian prior beliefs over
the unknown rewards, either independent Gaussian beliefs
over the rewards when the rewards of different actions are
uncorrelated, or a joint Gaussian belief when the rewards
are correlated. In the independent case, for each action-
reward pair (ψi, θψi ), θψi ∼ N (mψi , βψi ). In the correlated
case, the vector of rewards, [θψ1 , . . . , θψA ], has a multi-
variate Gaussian distribution N (m, 6) with the mean vector
m = [mψ1 , . . . ,mψA ] and covariance matrix6, with diagonal
entries [βψ1 , . . . , βψA ]. If the selected action to be applied at
t is ψ t , then the observed noisy reward of ψ t at that iteration
is ξ t = θψ t + εt , where θψ t is unknown and εt ∼ N (0, λψ t )
is independent of the reward of ψ t .

Here, the underlying system to learn is the unknown reward
function and each possible model is fully described by a
reward vector θ = [θψ1 , θψ2 , . . . , θψA ] in the uncertainty
class2. For the independent case, π (θ ) =

∏A
i=1 N (mψi , βψi ).

For the correlated case, π (θ ) = N (m, 6). The experiment
space is 4 = {ξ1, . . . , ξA}, where experiment ξi corresponds
to applying ψi and getting a noisy observation of its reward
θψi , that is, measuring θψi with observation noise, where
ξi|θψi ∼ N (θψi , λψi ). In the independent case the state of
knowledge at each time point t is captured by the posterior
values of the means and variances for the rewards after incor-
porating observations ξ :t as S t = [(mtψ , β

t
ψ )]ψ∈9 , and in

the correlated case by the posterior vector of means and a
covariance matrix after observing ξ :t as S t = (mt , 6t ), where
mt = [mtψ1

, . . . ,mtψA ] and the diagonal of 6t is the vector
[β tψ1

, . . . , β tψA ]. The probability space 2|ξ
:t is equal to 2|S t

and the cost function is C(θ, ψ) = −θψ .
For this problem, the IBR action at time step t is

ψ
2|ξ :t

IBR = argmin
ψ∈9

E2|ξ :t
[
C(θ, ψ)

]
= argmin

ψ∈9
E2|ξ :t

[
− θψ

]
= argmax

ψ∈9
E2|ξ :t

[
θψ
]
= argmax

ψ∈9
mtψ . (15)

Again, by (4) and (5), the optimal experiment selected at time
step t (to be performed at t + 1) can be derived:

ξ∗,t = argmin
ξi∈4

Eξi|ξ :t [Eθ |ξi,ξ :t [C(θ, ψ
2|ξ :t ,ξi
IBR )]]

−Eθ |ξ :t [C(θ, ψ
2|ξ :t

IBR )]

= argmin
ξi∈4

Eξi|ξ :t
[
Eθ |ξ :t+1

[
− θ

ψ
2|ξ :t+1
IBR

]]
−Eθ |ξ :t

[
− θ

ψ
2|ξ :t
IBR

]
= argmax

ξi∈4
Eξi|ξ :t

[
Eθ |ξ :t+1

[
θ
ψ
2|ξ :t+1
IBR

]]
− Eθ |ξ :t

[
θ
ψ
2|ξ :t
IBR

]
= argmax

ξi∈4
Eξi|ξ :t

[
max
ψ ′∈9

mt+1
ψ ′

]
− max
ψ ′∈9

mtψ ′ . (16)

The policy (16) derived by direct application of the gener-
alized MOCU is exactly the same as the original KG policy
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in [2], [3], and [27]. As KG is shown to be optimal when the
horizon is a single measurement and asymptotically optimal
(the number of measurements goes to infinity), the same
holds for the MOCU-based policy for this problem.

Efficient Global Optimization (EGO) [4], which is based
on expected improvement (EI), is widely used for black-
box optimization and experimental design. As shown in [26],
KG reduces to EGO when there is no observation noise
and choosing the best action at each time step is limited to
selecting from the set of actions whose rewards have been
previously observed; that is, at each time step if we want
to make a final decision as to the best action to be applied,
it must be an action whose performance has been previously
observed from the first time step up to that time. Thus,
MOCU-based learning can also be reduced to EGO under its
model assumptions. We will show this directly.

Consider the ranking and selection problem with no noise
in the observations, so that εt = 0 for all t . Each experiment
ξi corresponds to applying ψi and observing the true value
of θψi . Moreover, the choice of the best action at each time
step is confined to the set of actions whose rewards have
been previously observed. Let 9 t denote this set: 9 t

=

{ψ t ′
}t ′=1,...,t . The IBR action at time t is

ψ
2|ξ :t

IBR = arg min
ψ∈9 t

E2|ξ :t [−θψ ] = argmax
ψ∈9 t

θψ , (17)

where the last equality is due to the fact that the reward of
an action whose performance is already observed is known,
since there is no observation noise. Let Z t = {ξ t

′

}t ′=1,...,t
denote the set of experiments performed up to the current
time t , where experiment ξ t

′

corresponds toψ t ′ being applied
at t ′ and its reward being observed, in other words, mea-
surement of θ

ψ t′ at t ′. Since there is no point in measuring
an action’s reward more than once, the next experiment is
selected from the set of remaining experiments, so that the
experiment space at time step t is 4t

= 4\Z t . From (4), (5),
and (17), the optimal experiment selected at t is

ξ∗,t = argmin
ξi∈4t

Eξi|ξ :t
[
Eθ |ξ :t+1

[
− θ

ψ
2|ξ :t+1
IBR

]]
−Eθ |ξ :t

[
− θ

ψ
2|ξ :t
IBR

]
= arg max

ξi∈4\Z t
Eθψi |ξ :t

[
max

(
θψi , max

ψ ′∈9 t
θψ ′
)]

− max
ψ ′∈9 t

θψ ′

= arg max
ξi∈4\Z t

Eθψi |ξ :t
[
max

(
θψi − max

ψ ′∈9 t
θψ ′ , 0

)]
, (18)

which is exactly the EGO policy in [4].
There are fundamental differences between the general

MOCU formulation and KG (or EGO): (1) with MOCU the
experiment space and action space can be different, enabling
more flexible experimental design compared to the assump-
tion of the same experiment and action space inKG (or EGO);
(2) MOCU considers the uncertainty directly on the underly-
ing physical model, which allows direct incorporation of prior
knowledge regarding the underlying system, whereas in KG

(or EGO) the uncertainty is considered on the reward function
and there is no direct connection between prior assumptions
and the underlying physical model.

V. A SIMULATION STUDY TO COMPARE MOCU-BASED
EXPERIMENTAL DESIGN AND KG
In this section, we perform a simulation study to illustrate the
flexibility of MOCU-based experimental design compared to
KG, especially the importance of the flexibility of dissect-
ing the uncertainty class assumptions to better incorporate
prior knowledge regarding the underlying model. Here we
compare the experimental design performances by MOCU
and KG based on a simulated quadratic function example
with one input variable as the underlying reward function
that we want to maximize: f (θ, ψ) = θ1ψ

2
+ θ2ψ + θ3,

i.e. C(θ, ψ) = −f (θ, ψ) . The observation noise is additive
Gaussian with the distribution N (0, θ24 ). In this simulation
model, θ1, θ2 , θ3 and θ4 are unknown parameters. We take
9 = {ψ1, . . . , ψ20} = {0.5, 1, 1.5, . . . , 10} as the set of
actions (possible input values ψ ). The corresponding experi-
ment for each action is to apply ψi so that we can observe the
outcome ξi (the reward):

ξi|θ ∼ N (θ1ψ2
i + θ2ψi + θ3, θ

2
4 ). (19)

Note that as shown in Section IV, under model assumptions
of KG,MOCU-based experimental design results in the same
policy as KG. But here, as opposed to KG that directly
models the rewards (and corresponding costs) of actions
with Gaussian distributions with (prior) fixed parameter val-
ues (either known or estimated), MOCU-based experimental
design computes the generalized MOCU by modeling the
uncertainty of the reward function by incorporating the uncer-
tainty over the underlying parameters, to guide the experi-
mental design procedure.
For both MOCU-based experimental design and KG,

we assume that there is no prior knowledge on the model
parameters θ = [θ1, θ2, θ3, θ4]. For MOCU, the non-
informative prior π (θ ) ∝ θ−24 is used, which updates to a
Gaussian-inverse-gamma distribution π∗(θ ) when measure-
ments become available as experiments are carried out in
sequence. For KG, to model the rewards of actions directly
with correlated Gaussian distributions, approximate beliefs
are constructed at each experiment since the noise variance
is unknown and no joint Gaussian prior distribution exists
over the reward values of the actions. For this approxima-
tion, following [28] and [26], a Gaussian process regression
(GPR) model [23] with a quadratic basis (mean) function
and a squared exponential covariance matrix with additive
Gaussian observation noise is trained using themeasurements
performed (experiment outcomes observed) up to that time
step (by maximizing the marginal log-likelihood of the obser-
vations).
In our simulation, θ1 is drawn from U (−5, 2) (U (a, b)

denotes the uniform distribution over the interval (a, b)); θ2
is set to −2θ1r , where r is drawn from U (−2.5, 13); θ3 is
sampled from U (−5, 5); and θ4 is set to σ (f ) × w, where
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w ∼ U (0.075, 0.7) and σ (f ) denotes the true standard
deviation of the reward values of actions based on the
given model parameters. Each simulation starts with four
randomly selected actions, for which noisy observations of
their rewards are simulated as initial training data to both
MOCU-based experimental design and KG. The sequential
experimental design procedures based on MOCU and KG
are both continued for five iterations. For KG at each time
step t , the (posterior) vector of means (mt ), the covariance
matrix (6t ), and the noise variance are estimated by training
a GPR model on the available measurements, and the next
experiment is selected by (16). For MOCU-based experi-
mental design at each time step t , the (posterior) Gaussian-
inverse-gamma distribution after incorporating the available
measurements is used in (6) to optimally select the next
experiment.

To compare the performances, we check the average oppor-
tunity cost metric, defined as the difference between the true
maximum of the reward among all the actions and the true
reward of the action selected as the best one based on the
two experimental design strategies. Note that this best action
might be different from the next suggested experiment by
each policy. The best action at each time step is the one that
would be selected to be applied if the iterative experiments are
stopped at that time. In other words, each experimental design
policy suggests the next experiment, and after observing the
outcome and based on its updated beliefs selects the best
action (that would be applied if the iterative experiments
were to stop) and the next experiment to be performed (if
experimental budget is not exhausted). When following the
MOCU-based policy, the next suggested experiment is the
minimizer of the expected remaining MOCU, but the best
action at each time step is the IBR action that maximizes
(minimizes) the expectation of the reward (cost) with respect
to the (posterior) Gaussian-inverse-gamma distribution of
uncertain parameters based on the latest belief at that time
step. When following the KG policy, the best action at each
time step is the one that maximizes the (posterior) GPR mean
value at that time step which might be different from the
suggested next experiment by KG.

Fig. 2 illustrates the average opportunity cost for MOCU-
based experimental design and KG over 1,000 simulation
runs. As can be seen from the figure, as soon as the exper-
imental design iterations begin MOCU-based policy con-
sistently has the lower average opportunity cost compared
to KG. This confirms that directly incorporating the model
uncertainty (the uncertainty of model parameters in this sim-
ulation study as we assume that we have the model functional
form) in the generalized MOCU framework results in a better
experimental design policy. Note that at iteration 0 no exper-
iment selection by any of the methods is performed, and only
four randomly selected experiment outcomes are available.
Since the flat (non-informative) prior is assumed for the
parameters in the MOCU-based framework, the IBR action
selection as the best action can be very conservative before
beginning the experimental design procedure. Themaximizer

FIGURE 2. Average opportunity cost of MOCU-based policy compared
with KG policy.

of the direct approximation of the reward function by GPR
at iteration 0 is better than the IBR action for this simple
simulation model. But as soon as the first experiment is
selected by the policies, MOCU-based policy greatly reduces
the uncertainty pertaining to the objective very sharply with
the observed measurements and performs consistently better
than KG.

VI. CONCLUSIONS
This paper presents a generalized MOCU framework, lead-
ing to the MOCU-based experimental design pertaining to
the maximum uncertainty reduction of differential cost with
respect to the actual operational objectives. The proposed
framework fits into Lindley’s utility paradigm [1] in classical
Bayesian experimental design and is more flexible for the
development of corresponding experimental design strategies
for different real-world applications compared to the exist-
ing KG and EGO methods with their corresponding model
assumptions. As we have shown in the simulation study
(Section V) and in the recent applications to life andmaterials
science (Sections III-A and III-B), our generalized MOCU
framework, with the benefits from flexible dissection of the
uncertainty class, action (operator) space, experiment space,
and utility function depending on operational objectives,
can lead to better objective-based uncertainty quantification
and thereafter better experimental design to achieve desired
objectives with smaller operational cost.
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