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ABSTRACT Wideband direction-of-arrival (DOA) estimation is a key part in array signal processing.
The existing algorithms for the wideband DOA estimation are often studied in the situation of uniformly
distributed energy. In addition, all the frequency bins are weighted equally in these algorithms. However,
these algorithms perform unsatisfactorily when encountering wideband colored signals with nonuniform
energy spectrum. To improve the performance of DOA estimation for wideband colored signals, we proposed
two weighting methods, which are based on the perturbed subspace theory and random matrix theory,
respectively. The two methods weight the space spectrum from all the frequency bins according to the mean
square error of DOA estimation in each frequency bin. The numerical results show that the random matrix
theory based method performs well, due to the inference premise that the dimensions of matrices increase
at the same rate. The perturbed subspace-based method, which is concise in calculating the weights, shows
high accuracy only at high-signal-to-noise ratio and with adequate snapshots. The effectiveness of the two
algorithms are also demonstrated by comparing them to various existing algorithms and the Cramér–Rao
bound.

INDEX TERMS Direction-of-arrival estimation, random matrix theory, signal subspace method, wideband
signal.

I. INTRODUCTION
Arrays have been widely used in radar and communi-
cation systems, and provide an invaluable tool in smart
cities [1], [2]. In array signal processing, direction-of-
arrival (DOA) estimation is an important part [3], [4]. The
array signal model of narrowband sources can be simpli-
fied from the straightforward correlation between the DOA
and the phase shift [5]–[7]. Methods for DOA estimation
of narrowband sources have been presented in literatures,
such as the maximum likelihood (ML) method [8], the mul-
tiple signal classification (MUSIC) algorithm [6], and the
estimation of signal parameters via rotational invariance
techniques (ESPRIT) [9].

However, DOA estimation of wideband sources has not
been widely investigated. Different from narrowband sensor
arrays, the phase shift between sensor outputs of wideband
arrays not only relies on the DOA, but also on the temporal
frequency, which varies in a large scope. Therefore, methods
for narrowband DOA estimation cannot be applied to wide-
band circumstances directly.

One intuitive way for wideband DOA estimation is
to decompose the wideband signal into a number of

narrowband components, and then take advantage of the
narrowband covariance matrices to obtain better estimation
performance than using narrowband methods directly [10].
One of such methods is known as coherent signal subspace
method (CSSM), which transforms the narrowband covari-
ance matrices from all the subbands into a single frequency
via focusing matrices, and then the narrowband DOA esti-
mation is performed on the focusing frequency [11]. Two
general forms for calculating signal subspace transforma-
tion matrices have been presented [12]. These transformation
matrices are well known for their optimality in terms of
preserving signal to noise ratio (SNR) after focusing different
frequencies. Another method known as weighted average of
signal subspaces (WAVES) combines focusing matrices and
the weighted subspace fitting to improve the robustness of
CSSM [13]. Initial DOA values are necessary to construct the
focusingmatrices in both CSSM andWAVES. The estimation
accuracy of the two methods are sensitive to the initial values
of DOA.

An interpolation technique, constructing a virtual array
for each frequency to obtain the same array manifold [14],
and the array manifold interpolation applied into two
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dimensional arrays with known arbitrary geometries [15]
have been presented. For DOA estimation on wideband sig-
nals without preprocessing initial values, a test of orthog-
onality of projected subspaces (TOPS) method has been
proposed [16]. The TOPS estimates DOAs by measuring the
orthogonal relation between the signal and the noise sub-
spaces of multiple frequency components of the sources.
This method formulates a test in which the rank of a matrix
decreases when the assumed angle in the test equals to one
of the DOAs, and well performs in mid SNR ranges. The
incoherent signal subspace method (ISSM) decomposes the
wideband signal into narrowband components, and carries
out the computation in each narrowband [17], [18]. ISSM
requires no initial DOA value, whereas it suffers when the
SNR at each frequency bin varies, because the DOA estimate
at some frequencies may show poor performance [16].

The ML method can also be used for wideband DOA
estimation. The relationship betweenML of the deterministic
model and ML of the Gaussian model in wideband DOA
estimation has been examined in [19]. ESPRIT algorithm
was extended from narrowband signals to wideband signals
in [20]. Recent development of compressive sensing inspires
researchers to study wideband DOA estimation from the view
of sparse representation [21]–[23]. These sparse representa-
tion methods explore the sparsity of sources in the spatial
space, and estimate DOAs by `1 norm minimisation.
Most of these methods for wideband DOA estimation

assume that the SNRs of all frequency bins keep the same.
While the SNR at different frequency bins usually vary
because of the inherent nonuniform power spectrum of the
wideband sources or the fluctuating amplitude-frequency
characteristic of the sensors in array. This means that we
need to handle wideband colored signals, where the power
spectral density is not flat throughout the frequency spectrum.
In this work, we calculate the weight for each frequency bin
of wideband colored signals to improve the accuracy of the
ISSM. The proposed algorithm performs well and does not
need any initial value.

The rest of the paper is organized as follows. The studied
problem is formulated in Section II. In Section III, we study
the performance of DOA estimation for narrow band sig-
nals in a couple of different approaches, the perturbed sub-
space based approach and the random matrix theory based
approach. The methods for weighting the space spectrum
are proposed in Section IV. The numerical results based on
Monte Carlo simulations are shown in Section V. Section VI
completes the paper with concluding remarks.

II. PROBLEM FORMULATION
Consider Q wideband source signals from the far-field direc-
tions θ = [θ1, . . . , θQ]T impinging on a uniform linear array
with N sensors, which are spaced d apart, where (·)T denotes
the transpose. Each sensor signal is time sampled and par-
titioned into M segments (frequency snapshots). K complex
subband components are generated by applying the discrete
Fourier transform (DFT) to each segment, such that each

subband snapshot can be modeled as [23]

xm(fk ) = Ak (θ )sm(fk )+ nm(fk ), k ∈ [K ], m ∈ [M ], (1)

where xm(fk ) ∈ CN , sm(fk ) ∈ CQ, nm(fk ) ∈ CN are the DFT
coefficients of the received data, source signals and additive
noises, respectively, and [K ] , {1, 2, . . . ,K }, Ak (θ ) =
[ak (θ1), . . . , ak (θQ)] ∈ CN×Q is the steering matrix at the
frequency bin fk with steering vector

ak (θq) =
[
1, e

j2π fk d sin(θq)
c , . . . , e

j2π fk (N−1)d sin(θq)
c

]H
, (2)

where c is the propagation speed and (·)H denotes the conju-
gate transpose.

Due to the power variation among frequency bins of the
transmitted signal and the fluctuations of frequency responses
for the array sensors, the power of each source signal may be
distributed nonuniformly among frequency bins. This means
the array may receive wideband colored signals. The addi-
tive noises within different frequency bins are assumed to
be complex Gaussian distributed, and independent of each
other [18], [23]. Consider the sensors have equal noise power
within the same frequency bin. The variance of the noise
within the kth frequency bin is denoted as σ 2

k . The received
snapshot vectors within each frequency bin are stacked in a
data matrix,

Xk = [x1(fk ), . . . , xM (fk )] = Ak (θ )Sk + Nk , (3)

where Sk = [s1(fk ), . . . , sM (fk )] is the matrix of the source
signals, and Nk= [n1(fk ), . . . ,nM (fk )] is the noise matrix .
Denote the singular value decomposition (SVD) of Xk as

Ûk3̂k V̂H
k , where Ûk = [ûk , Û⊥k ]. The singular values of Xk

are sorted decreasingly. ûk is the left singular vector corre-
sponding to the largest singular value and the corresponding
right singular vector is v̂k . Û⊥k consists of all the vectors in
Ûk except ûk .
We first consider the situation with only one source signal

from direction θ1. Denote the signal of the kth frequency bin
in the mth segment as sm(fk ). Equation (1) can be rewritten as

xm(fk ) =
√
Mσ 2

k

√SNRkuk (θ1) 1
√
MEk

sm(fk )

+
1√
Mσ 2

k

nm(fk )

, k ∈ [K ], m ∈ [M ], (4)

whereEk = 1
M

∑M
m=1 |sm(fk )|

2 is the average power of source
signal at frequency fk , SNRk = NEk/σ 2

k is the array SNR,
and uk (θ1) = ak (θ1) /

√
N is a unit-norm vector. Let vk =

[s1(fk ), . . . , sM (fk )]/
√
MEk . The entries of nm(fk )/

√
Mσ 2

k are
independently, zeromean, and normally distributed with vari-
ance 1/M . The normalized noise, uk (θ1) and vk will be
utilized by the perturbed subspace theory and random matrix
theory in Section III-A and III-B.

In the ISSM, the space spectrum is calculated by com-
bining the resulting measurements for all the frequency bins
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FIGURE 1. Block diagram of the weighted incoherent signal subspace method.

equally [17], [18]. However, the SNR within each frequency
bin of the wideband colored signal is different. The precision
of DOA estimation from the data matrix changes from one
frequency bin to another. We improve the ISSM by assigning
optimal weights to different frequency bins and estimate the
DOA as

θ̂ = argmin
θ

K∑
k=1

wk uHk (θ )Û
⊥
k (Û

⊥
k )

Huk (θ )︸ ︷︷ ︸
ψ̂k (θ )

= argmin
θ

K∑
k=1

wkuHk (θ )
[
I− ûk ûHk

]
uk (θ )

= argmax
θ

K∑
k=1

wk uHk (θ )ûk û
H
k uk (θ )︸ ︷︷ ︸

φ̂k (θ )

, (5)

where wk is normalized such that
∑K

k=1 wk = 1, and uk (θ ) =
ak (θ) /

√
N is the normalized steering vector. All the weights

wk , k ∈ [K ] are chosen to be the same in the ISSM. We will
deduce a method to compute the weights according to the
parameters of each frequency bin in this paper.

The block diagram of the weighted incoherent signal sub-
space method is shown in Fig. 1. The signal from each sensor
is partitioned and each partition is transformed to the fre-
quency domain by DFT. The data at the same frequency from
all the sensors are stacked in a subband snapshot vector. All
the snapshot vectors at the same frequency are then stacked
in a data matrix. The SVD is applied to each data matrix
and the space spectrum of each frequency bin is obtained.
The combined space spectrum is computed by weighting and
accumulating the space spectrum of all the frequency bins.
The DOA is estimated by locating the peak of the combined
space spectrum.

III. PERFORMANCE OF DOA ESTIMATION FOR
NARROWBAND SIGNALS
The mean square error (MSE) of DOA estimation is used to
calculate the optimal weight. We will study two approaches

to evaluate the DOA estimation for narrowband signals, one
is the perturbed subspace based approach [24], [25], the other
is the randommatrix theory based approach [26]. The deriva-
tions of the two approaches are sketched here under the
weighted multiple frequencies situation.

A. PERTURBED SUBSPACE BASED APPROACH
The perturbed subspace based approach handles Û⊥k as

Û⊥k = U⊥k +1U⊥k , (6)

where U⊥k is stacked by the left singular vectors of AkSk
associated with the zero singular values, and1U⊥k is the per-
turbation in the estimated orthogonal subspace. Also, U⊥k is
the orthogonal complement of the steering vector, i.e.,

uHk (θ1)U
⊥
k = 0. (7)

It is obtained by the perturbed subspace method that [24]

1U⊥k
·
= −

1
√
MNEk

uk (θ1)vHk N
H
k U
⊥
k , (8)

where ·= means equal up to the first order terms.
The performance of DOA estimation is evaluated using the

approximation of the perturbed subspace 1U⊥k . The deriva-
tive of the objective function following the first equal sign
in (5) should be zero at the estimate angle θ̂PS.

K∑
k=1

wk ψ̂
(1)
k (θ̂PS) ,

K∑
k=1

wk
∂ψ̂k (θ )
∂θ

∣∣∣∣∣
θ̂PS

= 0. (9)

Denote1θPS = θ̂PS−θ1 as the estimation error. Expanding∑K
k=1 wk ψ̂

(1)
k (θ̂PS) around the real direction θ1 using Taylor

Series, we obtain
K∑
k=1

wk ψ̂
(1)
k (θ1)+

K∑
k=1

wk ψ̂
(2)
k (θ1) ·1θPS + o(1θPS) = 0,

(10)

where ψ̂
(1)
k (θ1) indicates the first derivative of ψ̂k (θ1),

ψ̂
(2)
k (θ1) indicates the second, and o(1θPS) means domination

by 1θPS asymptotically.
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Neglecting the o(1θPS) terms, we obtain

1θPS = −

K∑
k=1

wk ψ̂
(1)
k (θ1)

K∑
k=1

wk ψ̂
(2)
k (θ1)

. (11)

Evaluating the derivatives at θ1 by differentiating ψ̂k (θ )
with respect to θ , we have

ψ̂
(1)
k (θ1) = 2Re

[
uHk (θ1)Û

⊥
k (Û

⊥
k )

Hu(1)k (θ1)
]
, (12a)

and

ψ̂
(2)
k (θ1) = 2Re

[
uHk (θ1)Û

⊥
k (Û

⊥
k )

Hu(2)k (θ1)
]

+ 2
∥∥∥(Û⊥k )Hu(1)k (θ1)

∥∥∥2 . (12b)

where Re[·] is the function of taking the real part of a complex
number, and ‖·‖ the `2 norm of a vector.
Substituting (6) into (12a) and keeping (7) in mind,

we have

ψ̂
(1)
k (θ1) = 2Re

[
uHk (θ1)1U⊥k (U

⊥
k )

Hu(1)k (θ1)
]
, (13)

where only the first order perturbation in 1U⊥k is kept.

The the first order perturbation of ˆU⊥k in1U⊥k is neglected
when approximating ψ̂ (2)

k (θ1), so that only the first order

perturbation of ˆU⊥k remains in 1θPS. Then we have

ψ̂
(2)
k (θ1) = 2u(1)Hk (θ1)U⊥k (U

⊥
k )

Hu(1)k (θ1). (14)

Substituting (8) into (13), we obtain

ψ̂
(1)
k (θ1) = −2Re

[
ζHk N

H
k βk

]
, (15)

where ζ k = vkuHk (θ1)uk (θ1)/
√
MNEk = vk/

√
MNEk , and

βk = U⊥k (U
⊥
k )

Hu(1)k (θ1).
Substituting (15) and (14) into (11) and considering

u(1)Hk (θ1)U⊥k (U
⊥
k )

Hu(1)k (θ1) = ‖βk‖
2, we have

1θPS =

K∑
k=1

wkRe
[
ζHk N

H
k βk

]
K∑
k=1

wk‖βk‖2
. (16)

Considering the zeromean and independence ofNk , we get
the expectation E[1θPS] = 0, and the MSE

E[1θ2PS] =

K∑
k=1

w2
k

∥∥ζ k∥∥2 ∥∥βk∥∥2 σ 2
k

2
(

K∑
k=1

wk‖βk‖2
)2 , (17)

where var
[
Re
[
ζHk N

H
k βk

]]
=

1
2var

[
ζHk N

H
k βk

]
is utilized.

Here var[·] denotes taking the variance.

B. RANDOM MATRIX THEORY BASED APPROACH
Most estimation methods rely on the asymptotic statistics
that the number of snapshots grows large relative to the
sensor size, i.e.,M/N tends to∞. However, on encountering
extremely large systems or systems requiring fast dynamics,
which appearmore andmore frequently inmodern signal pro-
cessing, the M/N may not be large [27]. An effective tool to
handle this arising problem is the large dimensional random
matrix theory [28]. Large dimensional random matrix theory
usually adopts a new asymptotic statistics that M ,N → ∞,
and N/M → t ∈ (0,∞) [29], [30]. For the asymptotic
results, in theory, the infinite size of the matrix is required,
which is infeasible in practice. However, the results are
remarkably accurate, even for relatively moderate matrix
sizes [31]. The new asymptotic statistics implies that the
number of snapshots and the number of the sensors are of
the same magnitude, which is much close to the practical
situations, thus the result from the random theory is appli-
cable more generally than that from the perturbed subspace
theory.

The random matrix theory based approach calculates the
MSE of DOA estimation by evaluating the inner product of
the steering vector and the signal subspace in the regime that
the dimensions of matrices increase at the same rate. In the
random matrix theory, as M ,N →∞, N/M → t ∈ (0,∞),∣∣〈ûk ,uk (θ1)〉∣∣2 a.s.

−→ α2k

=

1−
t(1+ SNRk )

SNRk (SNRk + t)
, if SNRk > t1/2

0, otherwise
(18)

where
a.s.
−→ means almost sure convergence [32]. This phase

transition phenomenon is an important result in large dimen-
sional random matrix theory dealing with the spiked model.
Equation (18) states that the sample singular vector is an
informative estimate of the normalized steering vector only
in the regime when the SNR is greater than some threshold.
Furthermore, in this regime, the sample singular vector lies
on a cone around the normalized steering vector, and the
angle of the cone is determined by the array SNR and the
constant t.
The inner product

〈
ûk ,uk (θ1)

〉
appears in the objective

function in (5) in the form of
∣∣〈ûk ,uk (θ1)〉∣∣2, which depends

only on the magnitude of
〈
ûk ,uk (θ1)

〉
and is invariant

to its phase. Therefore, the performance may be carried
out assuming

〈
ûk ,uk (θ1)

〉
∈ R [26]. Then we have the

approximation 〈
ûk ,uk (θ1)

〉
≈ αk . (19)

The results in (18) and (19) is about the inner product of
the steering vector and the signal subspace. The objective
function following the third equal sign in (5) is employed to
leverage results from the random matrix theory. Differentiat-
ing the objective function with respect to θ and let the result
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be zero at the estimated θ̂RMT, we get

1θRMT = −

K∑
k=1

wk φ̂
(1)
k (θ1)

K∑
k=1

wk φ̂
(2)
k (θ1)

, (20)

where 1θRMT = θ̂RMT − θ1.
Evaluating the derivatives at θ1 by differentiating φ̂k with

respect to θ , we have

φ̂
(1)
k (θ1) = 2Re

[
uHk (θ1)ûk û

H
k u

(1)
k (θ1)

]
, (21a)

φ̂
(2)
k (θ1) = 2Re

[
uHk (θ1)ûk û

H
k u

(2)
k (θ1)

]
+ 2

∣∣∣ûHk u(1)k (θ1)
∣∣∣2 .
(21b)

Decomposing the derivatives of steering vector in the sig-
nal subspace and orthogonal to it, we have

u(1)k (θ1) = γ1,kuk (θ1)+ δ1,ku⊥k (θ1), (22a)

u(2)k (θ1) = γ2,kuk (θ1)+ δ2,ku⊥k (θ1), (22b)

where uk (θ1)⊥ is a basis vector of the subspace orthogonal to
the signal subspace which makes δ1,k and δ2,k real numbers.
Then

γ1,k = uHk (θ1)u
(1)
k (θ1), (23a)

γ2,k = uHk (θ1)u
(2)
k (θ1), (23b)

δ21,k =

∥∥∥u(1)k (θ1)
∥∥∥2 − ∣∣γ1,k ∣∣2 , (23c)

δ22,k =

∥∥∥u(2)k (θ1)
∥∥∥2 − ∣∣γ2,k ∣∣2 . (23d)

Similar to the inner product in (18), it is given by random
matrix theory [26] that as M ,N →∞, N/M → t ∈ (0,∞),

E
[
Re
[√

N ûHk u
⊥
k (θ1)

]2] a.s.
−→

1− α2k
2

. (24)

Note that the basis vector u⊥k (θ1) is usually different in (22a)

and (22b), however, E
[
Re
[√

N ûHk u
⊥
k (θ1)

]2]
remains the

same for every basis vector in the subspace orthogonal to the
signal subspace [26]. Therefore, the same symbol u⊥k (θ1) is
utilized for simplicity.

The vector uk (θ1) is normalized, then uHk (θ1)uk (θ1) = 1.
Differentiating both sides of this equation with respect to θ1,
we get

Re
[
uHk (θ1)u

(1)
k (θ1)

]
= Re

[
γ1,k

]
= 0. (25)

Differentiating (25) again with respect to θ1, we obtain

Re
[
uHk (θ1)u

(2)
k (θ1)

]
+

∥∥∥u(1)k (θ1)
∥∥∥2 = 0. (26)

Substituting (23b) and (23c) gives

|γ1,k |
2
+ Re

[
γ2,k

]
= −δ21,k . (27)

Substituting (22a) into (21a) and applying (19) and (25),
we obtain

φ̂
(1)
k (θ1) = 2Re

[
γ1,k

] ∣∣∣uHk (θ1)ûk ∣∣∣2
+ 2δ1,kRe

[
uHk (θ1)ûk û

H
k u
⊥
k (θ1)

]
≈ 2δ1,kαkRe

[
ûHk u

⊥
k (θ1)

]
. (28)

Squaring (28) and taking expectation, we obtain

E
[(
φ̂
(1)
k (θ1)

)2]
≈

2
N
δ21,kα

2
k (1− α

2
k ), (29)

Similarly,

Re
[
uHk (θ1)ûk û

H
k u

(2)
k (θ1)

]
= Re

[
γ2,k

] ∣∣∣uHk (θ1)ûk ∣∣∣2 + δ2,kRe [uHk (θ1)ûk ûHk u⊥k (θ1)]
≈ Re

[
γ2,k

]
α2k + δ2,kαkRe

[
ûHk u

⊥
k (θ1)

]
. (30)

Applying (22a) into
∣∣∣ûHk u(1)k (θ1)

∣∣∣2 gives∣∣∣ûHk u(1)k (θ1)
∣∣∣2 = |γ1,k |2 ∣∣∣ûHk uk (θ1)∣∣∣2 + δ21,k ∣∣∣ûHk u⊥k (θ1)∣∣∣2

+ 2δ1,kRe
[
γ1,k ûHk uk (θ1)û

H
k u
⊥
k (θ1)

]
≈ |γ1,k |

2α2k + δ
2
1,k

∣∣∣ûHk u⊥k (θ1)∣∣∣2
+ 2δ1,kαkRe

[
γ1,k ûHk u

⊥
k (θ1)

]
. (31)

Substituting (30) and (31) into (21b) and retaining only the
dominant part, we obtain [26]

φ̂
(2)
k (θ1) ≈ 2Re

[
γ2,k

]
α2k + 2|γ1,k |2α2k = −2δ

2
1,kα

2
k , (32)

where (27) is used.
Considering the first order approximation of ûHk around

uHk as in [24] and the orthogonality between uHk and u⊥k (θ1),
we have E

[
φ̂
(1)
k (θ1)

]
≈ 0 in the light of (28). The noises

within each frequency bin is independent of each other. As a
function of the noise within the kth frequency bin only,
φ̂
(1)
k (θ1), k ∈ [K ], is also independent of each other. By apply-

ing (32) and (29), we obtain

E[1θ2RMT ] =

K∑
k=1

w2
kδ

2
1,kα

2
k (1− α

2
k )

2N
(

K∑
k=1

wkδ21,kα
2
k

)2 . (33)

IV. METHODS FOR WEIGHTING SPACE SPECTRUM
The MSE of DOA estimation for wideband signals is a func-
tion of the weight for each frequency bin. The weight can be
computed by minimizing the MSE. Leveraging the deduced
MSE, we have following two theorems.
Theorem 1: The weight minimizing the estimation MSE

deduced by the perturbed subspace based approach is

ŵPS
k =

1∑K
k=1 SNRk

SNRk , k ∈ [K ]. (34)
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The derivation of Theorem 1 can be found in
APPENDIX A.
Theorem 2: The weight minimizing the estimation MSE

deduced by the random matrix theory based approach is

ŵRMT
k =

1∑K
k=1

1
1−α2k

1

1− α2k
, k ∈ [K ]. (35)

The derivation of Theorem 2 can be found in
APPENDIX B.

As the SNRk approaches t1/2 from above, the limit of α2k
is 0. Therefore, α2k is continuous as a function of SNRk .
It should be noted that, if SNRk ≤ t1/2, then α2k = 0, and
E[1θ2RMT ] tends to infinity. For SNRk = t1/2+ε with ε being
any positive number, α2k > 0. The weight minimizing the
MSE derived from the random matrix theory based approach
is calculated by 1/(1−α2k ) followed by normalization accord-
ing to Theorem 2. When α2k approaches 0, we can also use
1/(1 − α2k ) as the weight before normalization. Therefore,
we leverage (35) as the weight for any SNRk . If the array
SNR for the kth frequency bin is less than t1/2, α2k equals to
zero, then 1/(1− α2k ) constantly equals to 1. This means that
the optimal weight of a frequency bin does not change with
SNR if the SNR of the frequency bin is less than a certain
threshold. This is different from most conventional methods,
in which the weight will continuously vary with respect to
some parameters, such as the SNR.

It can be seen from (18) that ŵPS
k approximately equals

to ŵRMT
k when the array SNR is high and the ratio between

the number of snapshots and the number of array sensors is
large. The comparison between the perturbed subspace based
method and the random matrix theory based method will be
further studied in Section V.

As for the situation of multiple sources, we can focus
on each source respectively. The weighting method can be
applied to each source and then the DOA of the source can be
calculated as the approach for the situationwith single source.
This process is repeated until all the DOAs are estimated.
However, this method is subjected to heavy computational
loading and requires preliminary knowledge of DOAs. As an
alternative, the optimal weighting can be applied to each
direction, since there is usually at most one source at each
direction. We calculate weights for each frequency bin and
accumulate them at each hypothesized DOA to obtain the
space spectrum function, then estimate DOAs by locating the
peaks of the space spectrum function. This method does not
require preliminary knowledge for DOAs.

When calculating the weights at each direction, we need
the array SNR at certain direction, which can be calculated
by the signal after beamforming at this direction. For exam-
ple, the array SNR at direction θ within the kth frequency bin
can be estimated as

SNRk (θ ) =
max

(
ak (θ )HXkXH

k ak (θ )−MN σ̂
2
k , 0

)
MN σ̂ 2

k

. (36)

where σ̂ 2
k is the noise power within the kth frequency bin

predicted from the received data without any source signal.

The steps of the scheme is described as follows.
1) Divide the sensor signal into M segments and compute

the temporal DFT of each segment.
2) Form Xk , k ∈ [K ] and apply SVD to Xk . Sort the

singular values of Xk in decreasing order.
3) For each hypothesized DOA θ , calculate the array SNR

according to (36), and the optimal weight ŵk (θ ) of each
frequency bin according to (34) or (35). Then the spectrum
function is obtained:

P(θ ) =
K∑
k=1

Q∑
q=1

ŵk (θ )aHk (θ )ûk,qû
H
k,qak (θ ), (37)

where ûk,q is the left singular vector corresponding to the
qth singular value of Xk .
4) Estimate DOAs by locating the peaks of P(θ ).

V. NUMERICAL RESULTS
We test the proposed weighted incoherent signal subspace
method (WISSM) using Monte Carlo simulations. A uniform
linear array composes of 30 sensors received the signals radi-
ated by two far-field independent Gaussian sources located at
11◦ and 17◦ respectively. The frequency of the sources ranged
from 95MHz to 105MHz. The sensor spacing was half the
wavelength corresponding to the highest frequency. The DFT
was performed using 10 frequency bins. The variance of the
noise within all the frequency bins was set to 1. The weighted
incoherent signal subspace method using the weight in (34)
was denoted as WISSM-PS and the algorithm leveraging the
weight in (35) was denoted as WISSM-RMT.

FIGURE 2. The performance comparison among the proposed weighted
methods and the ISSM. The far-field sources located at 11◦ and 17◦.
The number of sensors was 30. The number of frequency bins was 10.
The sensor SNR was uniformly distributed from −10dB to 10dB.

Fig.2 shows the root mean square error (RMSE) of the
WISSM-RMT, the WISSM-PS, and the ISSMwith respect to
the number of snapshots. The Cramér-Rao bound (CRB) [23]
is also shown. The RMSE is defined as

RMSE ,

√√√√√1
I
1
Q

I∑
i=1

Q∑
q=1

(
θ̂ iq − θq

)2
, (38)
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where I is the number of trials and θ̂ iq denotes the estimate
of θq in the ith trial. The senor SNR is defined by SNR′k,q =
10 log[Ek,q/σ 2

k ], which is the SNR of each source signal at
a single sensor, with log representing the logarithm to base
10 in this paper. The sensor SNR was uniformly distributed
from −10dB to 10dB in Fig. 2. Each RMSE in Fig. 2 was
evaluated by 10000 trials.

It can be seen from Fig.2 that the WISSM-RMT per-
forms better than the ISSM. At small number of snapshots,
the RMSE of the WISSM-RMT is smaller than that of the
WISSM-PS. The superiority of the WISSM-RMT comes
from the usage of the results from random matrix theory.
As the number of snapshots increases, the RMSEs of the
WISSM-RMT and the WISSM-PS tend to close to each
other. The reason is that the weights of the WISSM-RMT
are approximately equal to the weights of the WISSM-PS
while the number of snapshots is large. The weights of the
WISSM-PS will fail under the condition at low SNR and with
few snapshots, which does not agree with the approximation
condition of the perturbed subspace method.

FIGURE 3. The performance comparison among the proposed weighted
methods and the ISSM. The far-field sources located at 11◦ and 17◦.
The number of sensors was 30. The number of frequency bins was 10.
The sensor SNR was uniformly distributed from −20dB to 0dB.

The performance comparison among the WISSM-RMT,
the WISSM-PS, and the ISSM under the condition at low
SNR and with few snapshots is demonstrated in Fig. 3,
where the simulation conditions were the same as that
in Fig. 2, except the sensor SNR uniformly distributed from
−20dB to 0dB. It can be seen from Fig. 3 that theWISSM-PS
even performs worse than the ISSM at small number of
snapshots. While the WISSM-RMT works well under both
the conditions set in Fig. 2 and Fig. 3. The reason is that the
random matrix theory adopting the regime that the number
of snapshots and the number of sensors are comparable in
magnitude, which is more general and more consistent with
the actual situation than the regime adopted by the perturbed
subspace theory, so that the the random matrix theory is
more extensively applicable. Equation (35) and (18) reveal
that those frequency bins with SNR less than some threshold
are weighted equally according to the random matrix theory.

FIGURE 4. The normalized spacial spectrum of the proposed weighted
methods and the ISSM. The far-field sources located at 11◦ and 17◦.
The number of sensors was 30. The number of frequency bins was 10. The
sensor SNR was uniformly distributed from −20dB to 0dB. The number of
snapshots was 2.

Therefore, the ISSM with equal weights performs better than
the WISSM-PS with weights proportional to SNR under the
condition at low SNR and with few snapshots.

To further reveal the algorithm performance, an example
run of the normalized spacial spectrum for theWISSM-RMT,
the WISSM-PS, and the ISSM is shown in Fig. 4, where the
sensor SNR was uniformly distributed from −20dB to 0dB
and the number of snapshots was fixed to 2. The two vertical
lines indicate the directions of the two far-field sources. The
WISSM-RMT and the ISSM can distinguish the two sources
successfully.Whereas The peak of the space spectrum around
17◦ for the WISSM-PS locates at a bias angle. The amplitude
of the peaks locate away from the source direction are also
quite high, which can be even larger than the amplitude of
true peaks at high risk.

FIGURE 5. Estimation performance of different wideband DOA
algorithms. The far-field sources located at degrees of 11◦ and 17◦.
The number of sensors was 30. The number of frequency bins was 10.
The sensor SNR was uniformly distributed from −10dB to 10dB.

Considering the superiority of the WISSM-RMT to the
WISSM-PS, we only compare the WISSM-RMT with other
algorithms for wideband DOA estimation, which is shown
in Fig. 5. The simulation conditions are the same as that
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shown in Fig. 2. In the simulations of WAVES, the initial
value was generated from perturbations of the true DOAs
by adding zero mean Gaussian random noise, the variance
of which equaled to the CRB. Fig. 5 also demonstrates that
all the methods perform better as the number of snapshots
increases. The TOPS is more sensitive to the number of
snapshots, and is applicable to scenarios where there is con-
siderable number of snapshots. The initial values show as an
important factor that impacts the performance of WAVES.
When the number of snapshots is small, the error of the
initial values increases, which degrades the performance of
the WAVES. The WISSM-RMT approaches the CRB well,
and shows better performance than the other algorithms,
especially in the regime of relative few snapshots.

VI. CONCLUSION
This paper presents two methods which are used for DOA
estimation on wideband colored signals. The perturbed sub-
space based method is concise in computing the weights and
performs well at high SNR and with adequate snapshots. The
random matrix theory based method shows better estimation
precision than the perturbed subspace based method, espe-
cially in the regime at low SNR and with few snapshots.
The performance of the random matrix theory based method
is guaranteed by using insights from the large dimensional
random matrix theory. The proposed methods do not need
initial values and is competent to the DOA estimation on
wideband colored signals.

APPENDIX A
DERIVATION OF THEOREM 1
Denote w = [w1, . . . ,wK ]T , b = [‖β1‖, . . . , ‖βK‖]

T , H =
diag

([
‖ζ 1‖σ1, . . . , ‖ζK‖σK

])
and w̃ = H(w ◦ b), where ◦

denotes Hadamard product, we have

E[1θ2PS] =
w̃T w̃

2w̃T (H−1)TbbTH−1w̃
. (39)

The weight to minimize E[1θ2PS] is shown as

ŵ = argmin
w

E[1θ2PS ]

= argmax
w

(
w̃∥∥w̃∥∥
)T

(H−1)TbbTH−1
(

w̃∥∥w̃∥∥
)

︸ ︷︷ ︸
T (w̃)

, (40)

which is a quadratic form restricted to the unit sphere in some
coordinate system.

Let y = w̃/
∥∥w̃∥∥. The maximization of T (w̃) becomes

max yT (H−1)TbbTH−1y, s.t. yT y = 1. (41)

By using the method of Lagrange multipliers and solving
the first derivative condition, the optimal unit-norm ŷ satisfies

(H−1)TbbTH−1ŷ = ν1ŷ, (42)

where ν1 is the Lagrange multiplier, and ŷ is an eigenvector
of (H−1)TbbTH−1 associated with the eigenvalue ν1. Then

ŷT (H−1)TbbTH−1ŷ = ν1ŷT ŷ = ν1. (43)

Therefore, T (w̃) is bounded by the extreme eigenvalues of
(H−1)TbbTH−1, which is a real symmetric matrix with rank
one. The eigenvector associated with the maximum eigen-
value maximizes T (w̃).
Multiplying (H−1)TbbTH−1 by (H−1)Tb, we obtain

(H−1)TbbTH−1(H−1)Tb = bTH−2b · (H−1)Tb. (44)

where the bTH−2b is a scalar. It is implied in (44) that
(H−1)Tb is an eigenvector of (H−1)TbbTH−1 corresponding
to the eigenvalue bTH−2b, which is an eigenvalue larger than
zero and therefore is the maximum one. Then

T (w̃) ≤ bTH−2b. (45)

When w̃ = κ1 · (H−1)Tb, T (w̃) reaches its maximum, where
κ1 is a constant. Replacing w̃ with H(w ◦ b), we obtain the
optimal weighting coefficient

ŵPSk ∝
1

‖ζ k‖
2σ 2

k

. (46)

Considering the normalization and ‖ζ k‖
2
=

1
MNEk

,
we obtain (34).

APPENDIX B
DERIVATION OF THEOREM 2
Denote w = [w1, . . . ,wK ]T , b = [δ1,1α1, . . . , δ1,KαK ]T ,

H = diag
([√

1− α21, . . . ,
√
1− α2K

])
and w̃ = H(w ◦ b),

we have

E[1θ2RMT ] =
w̃T w̃

2 N w̃T (H−1)TbbTH−1w̃
. (47)

The weight to minimize E[1θ2RMT ] is shown as

ŵ = argmin
w

E[1θ2RMT ]

= argmax
w

(
w̃∥∥w̃∥∥
)T

(H−1)TbbTH−1
(

w̃∥∥w̃∥∥
)

︸ ︷︷ ︸
T (w̃)

. (48)

Similar to the computation in APPENDIX A, we obtain

T (w̃) ≤ bTH−2b. (49)

When w̃ = κ2 · (H−1)Tb, T (w̃) reaches its maximum, where
κ2 is a constant. Replacing w̃ by H(w ◦ b), we have

ŵRMTk ∝
1

1− α2k
. (50)

Subject to the normalization, (35) is then obtained.

VOLUME 7, 2019 1231



Y. Bai et al.: Weighted Incoherent Signal Subspace Method for DOA Estimation on Wideband Colored Signals

REFERENCES
[1] F. Rusek et al., ‘‘Scaling up MIMO: Opportunities and challenges with

very large arrays,’’ IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40–60,
Jan. 2013.

[2] G. Han, L. Wan, L. Shu, and N. Feng, ‘‘Two novel DOA estimation
approaches for real-time assistant calibration systems in future vehicle
industrial,’’ IEEE Syst. J., vol. 11, no. 3, pp. 1361–1372, Sep. 2017.

[3] L. Wan, G. Han, L. Shu, and N. Feng, ‘‘The critical patients localization
algorithm using sparse representation for mixed signals in emergency
healthcare system,’’ IEEE Syst. J., vol. 12, no. 1, pp. 52–63, Mar. 2018.

[4] A. Liu, X. Zhang, Q. Yang, andW.Deng, ‘‘Fast DOA estimation algorithms
for sparse uniform linear array with multiple integer frequencies,’’ IEEE
Access, vol. 6, pp. 29952–29965, May 2018.

[5] R. O. Schmidt, ‘‘Multiple emitter location and signal parameter esti-
mation,’’ IEEE Trans. Antennas Propag., vol. 34, no. 3, pp. 276–280,
Mar. 1986.

[6] J. Chen, S. Guan, Y. Tong, and L. Yan, ‘‘Two-dimensional direction of
arrival estimation for improved archimedean spiral array with MUSIC
algorithm,’’ IEEE Access, vol. 6, pp. 49740–49745, Aug. 2018.

[7] B. Liu, G. Gui, S. Matsushita, and L. Xu, ‘‘Dimension-reduced direction-
of-arrival estimation based on `2, 1-norm penalty,’’ IEEE Access, vol. 6,
pp. 44433–44444, Aug. 2018.

[8] M. Li and Y. Lu, ‘‘Maximum likelihood DOA estimation in unknown
colored noise fields,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 44, no. 3,
pp. 1079–1090, Jul. 2008.

[9] R. Roy and T. Kailath, ‘‘Esprit-estimation of signal parameters via
rotational invariance techniques,’’ IEEE Trans. Acoust., Speech, Signal
Process., vol. 37, no. 7, pp. 984–995, Jul. 1989.

[10] J. Li, ‘‘DOA tracking in time-varying underwater acoustic communication
channels,’’ in Proc. OCEANS, Aberdeen, Scotland, Jun. 2017, pp. 1–9.

[11] H. Chen and J. Zhao, ‘‘Coherent signal-subspace processing of acoustic
vector sensor array for DOA estimation of wideband sources,’’ Signal
Process., vol. 85, no. 4, pp. 837–847, Apr. 2005.

[12] M. A. Doron and A. J. Weiss, ‘‘On focusing matrices for wide-band array
processing,’’ IEEE Trans. Signal Process., vol. 40, no. 6, pp. 1295–1302,
Jun. 1992.

[13] E. D. D. Claudio and R. Parisi, ‘‘WAVES: Weighted average of signal
subspaces for robust wideband direction finding,’’ IEEE Trans. Signal
Process., vol. 49, no. 10, pp. 2179–2191, Oct. 2001.

[14] B. Friedlander and A. J. Weiss, ‘‘Direction finding for wide-band signals
using an interpolated array,’’ IEEE Trans. Signal Process., vol. 41, no. 4,
pp. 1618–1634, Apr. 1993.

[15] M. A. Doran, E. Doron, and A. J. Weiss, ‘‘Coherent wide-band processing
for arbitrary array geometry,’’ IEEE Trans. Signal Process., vol. 41, no. 1,
pp. 414–417, Jan. 1993.

[16] Y.-S. Yoon, L. M. Kaplan, and J. H. McClellan, ‘‘TOPS: New DOA
estimator for wideband signals,’’ IEEE Trans. Signal Process., vol. 54,
no. 6, pp. 1977–1989, Jun. 2006.

[17] M. Wax, T.-J. Shan, and T. Kailath, ‘‘Spatio-temporal spectral analysis by
eigenstructure methods,’’ IEEE Trans. Acoust., Speech, Signal Process.,
vol. ASSP-32, no. 4, pp. 817–827, Aug. 1984.

[18] K. Han and A. Nehorai, ‘‘Wideband gaussian source processing using
a linear nested array,’’ IEEE Signal Process. Lett., vol. 20, no. 11,
pp. 1110–1113, Nov. 2013.

[19] M. A. Doron, A. J. Weiss, and H. Messer, ‘‘Maximum-likelihood direction
finding of wide-band sources,’’ IEEE Trans. Signal Process., vol. 41, no. 1,
pp. 411–414, Jan. 1993.

[20] B. Ottersten and T. Kailath, ‘‘Direction-of-arrival estimation for wide-band
signals using the ESPRIT algorithm,’’ IEEE Trans. Acoust., Speech Signal
Process., vol. 38, no. 2, pp. 317–327, Feb. 1990.

[21] Q. Shen, W. Liu, W. Cui, S. Wu, Y. D. Zhang, and M. G. Amin,
‘‘Focused compressive sensing for underdetermined wideband DOA esti-
mation exploiting high-order difference coarrays,’’ IEEE Signal Process.
Lett., vol. 24, no. 1, pp. 86–90, Jan. 2017.

[22] L. Wan, X. Kong, and F. Xia, ‘‘Joint range-Doppler-angle estimation for
intelligent tracking of moving aerial targets,’’ IEEE Internet Things J.,
vol. 5, no. 3, pp. 1625–1636, Jun. 2018.

[23] Z.-Q. He, Z.-P. Shi, H. C. So, and L. Huang, ‘‘Underdetermined DOA
estimation for wideband signals using robust sparse covariance fitting,’’
IEEE Signal Process. Lett., vol. 22, no. 4, pp. 435–439, Apr. 2015.

[24] F. Li, H. Liu, and R. J. Vaccaro, ‘‘Performance analysis for DOA estimation
algorithms: Unification, simplification, and observations,’’ IEEE Trans.
Aerosp. Electron. Syst., vol. 29, no. 4, pp. 1170–1184, Oct. 1993.

[25] F. Li and R. J. Vaccaro, ‘‘Analysis of min-norm and MUSIC with arbitrary
array geometry,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 26, no. 6,
pp. 976–985, Nov. 1990.

[26] R. Suryaprakash and R. Nadakuditi, ‘‘Consistency and MSE perfor-
mance of MUSIC-based DOA of a single source in white noise with
randomly missing data,’’ IEEE Trans. Signal Process., vol. 63, no. 18,
pp. 4756–4770, Sep. 2015.

[27] R. Couillet and M. Debbah, ‘‘Signal processing in large systems: A new
paradigm,’’ IEEE Signal Process. Mag., vol. 30, no. 1, pp. 24–39,
Jan. 2013.

[28] X. He, L. Chu, R. C. Qiu, Q. Ai, and Z. Ling, ‘‘A novel data-driven situation
awareness approach for future grids—Using large random matrices for big
data modeling,’’ IEEE Access, vol. 6, pp. 13855–13865, Mar. 2018.

[29] P. Vallet et al., ‘‘Performance analysis of an improved music DOA esti-
mator,’’ IEEE Trans. Signal Process., vol. 63, no. 23, pp. 6407–6422,
Dec. 2015.

[30] D. Vazquez-Padin, F. Perez-Gonzalez, and P. Comesana-Alfaro, ‘‘A ran-
dom matrix approach to the forensic analysis of upscaled images,’’ IEEE
Trans. Inf. Forensics Security, vol. 12, no. 9, pp. 2115–2130, Sep. 2017.

[31] X. He, Q. Ai, R. C. Qiu, W. Huang, L. Piao, and H. Liu, ‘‘A big data
architecture design for smart grids based on random matrix theory,’’ IEEE
Trans. Smart Grid, vol. 8, no. 2, pp. 674–686, Mar. 2017.

[32] F. Benaych-Georges and R. R. Nadakuditi, ‘‘The singular values and
vectors of low rank perturbations of large rectangular random matrices,’’
J. Multivar. Anal., vol. 111, no. 5, pp. 120–135, Oct. 2012.

YECHAO BAI received the B.S. and Ph.D.
degrees in electronic science and engineering from
Nanjing University, Nanjing, China, in 2005 and
2010, respectively.

Since 2010, he has been with Nanjing Univer-
sity, where he is currently an Associate Profes-
sor with the School of Electronic Science and
Engineering. His current research interests include
array signal processing and parameter estimation.

JIANGHUI LI received the B.S. degree in com-
munications engineering from the Huazhong Uni-
versity of Science and Technology, Wuhan, China,
in 2011, and the M.Sc. degree in communications
engineering and the Ph.D. degree in electronics
engineering from the University of York, U.K.,
in 2013 and 2017, respectively. He was the First
Researcher to receive the IEEE OES Scholarship
in U.K. He received the K. M. Stott Prize for
Excellent Research from the University of York.

From 2011 to 2012, he served as a Research Assistant with the Chinese
Academy of Sciences, Beijing, China. Since 2017, he has been a Research
Fellow with the University of Southampton, U.K. His current research
interests include adaptive signal processing, wireless communications,
underwater acoustics, and ocean engineering.

YU WU received the B.S. degree in electronic
science and engineering from Nanjing University,
Nanjing, China, in 2018. She is currently pursuing
the M.S. degree in electrical engineering with the
California Institute of Technology, CA, USA.

Her research interests include inverse problems
in image processing, sparse signal representation,
and parameter estimation.

1232 VOLUME 7, 2019



Y. Bai et al.: Weighted Incoherent Signal Subspace Method for DOA Estimation on Wideband Colored Signals

QIONG WANG received the B.S. and Ph.D.
degrees in electronic science and engineering from
the PLA University of Science and Technology,
China, in 2004 and 2011, respectively.

Since 2014, she has been a Lecturer with
Nanjing University, China. Her current research
interests include target automatic recognition and
radar target detection.

XINGGAN ZHANG received the B.S. degree in
electrical engineering and the S.M. and Ph.D.
degrees from the Nanjing University of Aeronau-
tics and Astronautics (NUAA), Nanjing, China,
in 1982, 1988, and 2001, respectively.

In 1992, he joined the Department of Electronic
Engineering, NUAA, where he was an Associate
Professor. In 1999, he joined the Department of
Electronic Science and Engineering, Nanjing Uni-
versity, where he is currently a Professor. His

research interests include target recognition and image processing.

VOLUME 7, 2019 1233


	INTRODUCTION
	PROBLEM FORMULATION
	PERFORMANCE OF DOA ESTIMATION FOR NARROWBAND SIGNALS
	PERTURBED SUBSPACE BASED APPROACH
	RANDOM MATRIX THEORY BASED APPROACH

	METHODS FOR WEIGHTING SPACE SPECTRUM
	NUMERICAL RESULTS
	CONCLUSION
	REFERENCES
	Biographies
	YECHAO BAI
	JIANGHUI LI
	YU WU
	QIONG WANG
	XINGGAN ZHANG


