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ABSTRACT Regularized regression problems are ubiquitous in statistical modeling, signal processing,
and machine learning. Sparse regression, in particular, has been instrumental in scientific model discovery,
including compressed sensing applications, variable selection, and high-dimensional analysis. We propose a
broad framework for sparse relaxed regularized regression, called SR3. The key idea is to solve a relaxation
of the regularized problem, which has three advantages over the state-of-the-art: 1) solutions of the relaxed
problem are superior with respect to errors, false positives, and conditioning; 2) relaxation allows extremely
fast algorithms for both convex and nonconvex formulations; and 3) the methods apply to composite
regularizers, essential for total variation (TV) as well as sparsity-promoting formulations using tight frames.
We demonstrate the advantages of SR3 (computational efficiency, higher accuracy, faster convergence
rates, and greater flexibility) across a range of regularized regression problems with synthetic and real data,
including applications in compressed sensing, LASSO, matrix completion, TV regularization, and group
sparsity. Following standards of reproducible research, we also provide a companion MATLAB package
that implements these examples.

INDEX TERMS Nonconvex optimization, sparse regression, compressed sensing, LASSO, total variation
regularization, matrix completion.

I. INTRODUCTION
Regression is a cornerstone of data science. In the age of big
data, optimization algorithms are largely focused on regres-
sion problems in machine learning and AI. As data vol-
umes increase, algorithms must be fast, scalable, and robust
to low-fidelity measurements (missing data, noise, and out-
liers). Regularization, which includes priors and constraints,
is essential for the recovery of interpretable solutions in
high-dimensional and ill-posed settings. Sparsity-promoting
regression is one such fundamental technique, that enforces
solution parsimony by balancing model error with complex-
ity. Despite tremendousmethodological progress over the last
80 years, many difficulties remain, including (i) restrictive
theoretical conditions for practical performance, (ii) the lack
of fast solvers for large scale and ill-conditioned problems,
(iii) practical difficulties with nonconvex implementations,
and (iv) high-fidelity requirements on data. To overcome

these difficulties, we propose a broadly applicable method,
sparse relaxed regularized regression (SR3), based on a
relaxation reformulation of any regularized regression prob-
lem. We demonstrate that SR3 is fast, scalable, robust to
noisy and missing data, and flexible enough to apply broadly
to regularized regression problems, ranging from the ubiq-
uitous LASSO and compressed sensing (CS), to composite
regularizers such as the total variation (TV) regularization,
and even to nonconvex regularizers, including `0 and rank.
SR3 improves on the state-of-the-art in all of these applica-
tions, both in terms of computational speed and performance.
Moreover, SR3 is flexible and simple to implement. A com-
panion open source package implements a range of examples
using SR3.

The origins of regression extend back more than two
centuries to the pioneering mathematical contributions of
Legendre [37] and Gauss [30], [31], who were interested in
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determining the orbits of celestial bodies. The invention
of the digital electronic computer in the mid 20th century
greatly increased interest in regression methods, as compu-
tations became faster and larger problems from a variety
of fields became tractable. It was recognized early on that
many regression problems are ill-posed in nature, either being
under-determined, with an infinite set of candidate solutions,
or otherwise sensitive to perturbations in the observations,
often due to some redundancy in the set of possible models.
Tikhonov [50] was the first to systematically study the use
of regularizers to achieve stable and unique numerical solu-
tions of such ill-posed problems. The regularized linear least
squares problem is given by

min
x

1
2
‖Ax− b‖2 + λR(Cx), (1)

where x ∈ Rd is the unknown signal, A ∈ Rm×d is the
linear data-generating model for the observations b ∈ Rm,
C ∈ Rn×d is a linear map, R(·) is any regularizer, and
λ parametrizes the strength of the regularization. Tikhonov
proposed a simple `2 penalty, i.e. R(x) = ‖x‖2 =

∑
x2i ,

which eventually led to the formal introduction of the ridge
regression strategy by Hoerl and Kennard [34] 30 years
later. Other important regularizers include the `0 penalty,
R(x) = ‖x‖0, and the sparsity-promoting convex `1 relax-
ation R(x) = ‖x‖1, introduced by Shaobing and Donoho [46]
in 1994 as basis pursuit, and by Tibshirani [49] in 1996 as the
least absolute shrinkage and selection operator (LASSO).
More generally, the `1 norm was introduced much ear-
lier: as a penalty in 1969 [42], with specialized algorithms
in 1973 [23], and as a robust loss in geophysics in 1973 [21].
In modern optimization, nonsmooth regularizers are widely
used across a diverse set of applications, including in the
training of neural network architectures [33]. Figure 1(a)
illustrates the classic sparse regression iteration procedure for
LASSO. Given the 1-norm of the solution, i.e. ‖x̂‖1 = τ ,
the solution can be found by ‘inflating’ the level set of the
data misfit until it intersects the ballB1 ≤ τ . The geometry of
the level sets influences both the robustness of the procedure
with respect to noise, and the convergence rate of iterative
algorithms used to find x̂.
Contributions: In this paper, we propose a broad frame-

work for sparse relaxed regularized regression, called SR3.
The key idea of SR3 is to solve a regularized problem that
has three advantages over the state-of-the-art: (1) solutions
are superior with respect to errors, false positives, and con-
ditioning, (2) relaxation allows extremely fast algorithms for
both convex and nonconvex formulations, and (3) the meth-
ods apply to composite regularizers. Rigorous theoretical
results supporting these claims are presented in Section II.
We demonstrate the advantages of SR3 (computational effi-
ciency, higher accuracy, faster convergence rates, greater flex-
ibility) across a range of regularized regression problemswith
synthetic and real data, including applications in compressed
sensing, LASSO, matrix completion, TV regularization, and
group sparsity using a range of test problems in Section III.

II. SR3 METHOD
Our goal is to improve the robustness, computational effi-
ciency, and accuracy of sparse and nonsmooth formulations.
We relax (1) using an auxiliary variable w ∈ Rn that is
forced to be close to Cx. Relaxation was recently shown
to be an efficient technique for dealing with the class of
nonconvex-composite problems [57]. The general SR3 for-
mulation modifies (1) to the following

min
x,w

1
2
‖Ax− b‖2 + λR(w)+

κ

2
‖Cx− w‖2, (2)

where κ is a relaxation parameter that controls the gap
between Cx and w. Importantly, κ controls both the strength
of the improvements to the geometry/regularity of the relaxed
problem relative to the original and the fidelity of the relaxed
problem to the original. To recover a relaxed version of
LASSO, for example, we take R(·) = ‖ · ‖1 and C = I. The
SR3 formulation allows non-convex `p ‘‘norms’’ with p < 1,
as well as smoothly clipped absolute deviation (SCAD) [28],
and easily handles linear composite regularizers. Two widely
used examples that rely on compositions are compressed
sensing formulations that use tight frames [25], and total
variation (TV) regularization in image denoising [45].

In the convex setting, the formulation (2) fits into a
class of problems studied by Bauschke et al. [5], who
credit the natural alternating minimization algorithm to
Acker and Prestel [1] in 1980, and the original alternat-
ing projections method to Cheney and Goldstein [20]
in 1959 and Von Neumann in 1950 [53, Th. 13.7]. The
main novelty of the SR3 approach is in using (2) to extract
information from the w variable. We also allow nonconvex
regularizers R(·), using the structure of (2) to simplify the
analysis.

The success of SR3 stems from two key ideas. First, spar-
sity and accuracy requirements are split between w and x in
the formulation (2), relieving the pressure these competing
goals put on x in (1). Second, we can partially minimize (2)
in x to obtain a function in w alone, with nearly spherical
level sets, in contrast to the elongated elliptical level sets
of ‖Ax − b‖2. In w coordinates, it is much easier to find
the correct support. Figure 1(b) illustrates this advantage of
SR3 on the LASSO problem.

A. SR3 AND VALUE FUNCTION OPTIMIZATION
Associatedwith (2) is a value function formulation that allows
us to precisely characterize the relaxed framework. The value
function is obtained by minimizing (2) in x:

v(w) := min
x

1
2
‖Ax− b‖2 +

κ

2
‖Cx− w‖2. (3)

We assume that Hκ = A>A + κC>C is invertible. Under
this assumption, x(w) = H−1κ

(
A>b+ κC>w

)
is unique. We

now define

Fκ =
[

κAH−1κ C>
√
κ(I− κCH−1κ C>)

]
, Fκ ∈ R(m+n)×n
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FIGURE 1. (a) Level sets (green ellipses) of the quadratic part of LASSO (1) and corresponding path of
prox-gradient to the solution (40 iterations) in x-coordinates. (b) Level sets (green spheres) of the quadratic part
of the SR3 value function (3) and corresponding SR3 solution path (2 iterations) in relaxed coordinates w. Blue
octahedra show the `1 ball in each set of coordinates. SR3 decreases the singular values of Fκ relative to those of
A with a weaker effect on the small ones, ‘squashing’ the level sets into approximate spheres, accelerating
convergence, and improving performance.

Gκ =
[
I− AH−1κ A>
√
κCH−1κ A>

]
, Gκ ∈ R(m+n)×m

gκ = Gκb, gκ ∈ Rm+n (4)

which gives a closed form for (3):

v(w) =
1
2
‖Fκw− gκ‖

2.

Problem (2) then reduces to

min
w

1
2
‖Fκw− gκ‖

2
+ λR(w). (5)

The ellipsoid in Fig. 1(a) shows the level sets of ‖Ax − b‖2,
while the spheroid in Fig. 1(b) shows the level sets of ‖Fκw−
gκ‖

2. Partial minimization improves the conditioning of the
problem, as seen in Figure 1, and can be characterized by a
simple theorem.

Denote by σi(·) the function that returns the i-th largest
singular value of the argument, with σmax(A) denoting the
largest singular value σ1(A), and σmin(A) denoting the small-
est (reduced) singular value σmin(m,d)(A). Let cond(A) :=
σmax(A)/σmin(A) denote the condition number of A. The
following result relates singular values of Fκ to those of
A and C. Stronger results apply to the special cases C =
I, which covers the Lasso, and C>C = I, which covers
compressed sensing formulations with tight frames (C = 8>

with 88> = I) [19], [25], [27].
Theorem 1: When λ = 0, (5) and (1) share the same

solution set. We also have the following relations:

F>κ Fκ = κI− κ
2CH−1κ C> (6)

σi(F>κ Fκ ) = κ − κ
2σn−i+1(CH−1κ C>). (7)

In addition, 0 � F>κ Fκ � κI always, and when n ≥ d and C

has full rank (i.e. C>C is invertible), we have

σmin(F>κ Fκ ) ≥
σmin(A>A)/σmax(C>C)

1+ σmin(A>A)/(κσmax(C>C))
.

When C = I, we have

F>κ Fκ = A>(I+ AA>/κ)−1A (8)

σi(F>κ Fκ ) =
σi(A>A)

1+ σi(A>A)/κ
, (9)

so that the condition numbers of Fκ and A are related by

cond(Fκ ) = cond(A)

√
κ + σmin(A)2

κ + σmax(A)2
. (10)

Theorem 1 lets us interpret (5) as a re-weighted version of
the original problem (1). In the general case, the properties of
F depend on the interplay betweenA andC. The re-weighted
linear map Fκ has superior properties to A in special cases.
Theorem 1 gives strong results for C = I, and we can derive
analogous results when C has orthogonal columns and full
rank.
Corollary 1: Suppose that C ∈ Rn×d with n ≥ d and

C>C = Id . Then,

σi(Fκ ) =


√
κ

σi−(n−d)(A)√
κ + σi−(n−d)(A)2

i > n-d
√
κ i ≤ n− d .

(11)

For n > d, this implies

cond(Fκ ) = cond(A)

√
κ + σmin(A)2

σmax(A)2
. (12)
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Algorithm 1 SR3 for (2), Concept

1: Input: w0

2: Initialize: k = 0, η ≤ 1
κ

3: while not converged do
4: k← k + 1
5: wk ← proxηλR(w

k−1
− ηF>κ (Fκw

k−1
− gκ ))

6: Output: wk

When n = d, this implies

cond(Fκ ) = cond(A)

√
κ + σmin(A)2

κ + σmax(A)2
. (13)

Proof: Let C̄ =
[
C C⊥

]
where the columns ofC⊥ form

an orthonormal basis for the orthogonal complement of the
range of C. Then, by Theorem 1,

C̄>F>κ Fκ C̄ =
[
A>(I+ AA>/κ)−1A

κIn−d

]
. (14)

The result follows from the second part of Theorem 1 .
When C is a square orthogonal matrix, partial minimiza-

tion of (3) shrinks the singular values of Fκ relative to A,
with less shrinkage for smaller singular values, which gives a
smaller condition number as seen in Figure 1 for C = I. As a
result, iterative methods for (5) converge much faster than the
same methods applied to (1), especially for ill-conditioned
A. The geometry of the level sets of (5) also encourages
the discovery of sparse solutions; see the path-to-solution for
each formulation in Figure 1. The amount of improvement
depends on the size of κ , with smaller values of κ giving
better conditioned problems. For instance, consider setting
κ = (σmax(A)2 − σmin(A)2)/µ2 for some µ > 1. Then,
by Corollary 1, cond(Fκ ) ≤ 1+ cond(A)/µ.

B. ALGORITHMS FOR THE SR3 PROBLEM
Problem (5) can be solved using a variety of algorithms,
including the prox-gradient method detailed in Algorithm 1.
In the convex case, Algorithm 1 is equivalent to the alternat-
ing method of [5]. The w update is given by

ŵk+1 = prox λ
κ
R

(
wk −

1
κ
F>κ (Fκw

k
− gκ )

)
, (15)

where prox λ
κ
R is the proximity operator (prox) for R (see

e.g. [22]) evaluated at Cx. The prox in Algorithm 1 is easy
to evaluate for many important convex and nonconvex func-
tions, often taking the form of a separable atomic operator,
i.e. the prox requires a simple computation for each individual
entry of the input vector. For example, proxλ‖·‖1 is the soft-
thresholding (ST) operator:

proxλ‖·‖1 (x)i = sign(xi) max(|xi| − λ, 0). (16)

Algorithm 1 is a conceptual description of the proximal
gradient algorithm applied to (5), and is analyzed below.
However, it is not necessary to form or apply Fκ to imple-
ment the algorithm. To make this clear, a simpler, equivalent

Algorithm 2 SR3 for (2), Implementation

1: Input: w0

2: Initialize: k = 0, η = 1
κ

3: while not converged do
4: k← k + 1
5: xk ← H−1κ

(
A>b+ κC>wk−1

)
6: wk ← proxηλR(Cx

k )

7: Output: wk

Algorithm 3 Prox-Gradient for (1)

1: Input: x0

2: Initialize: k = 0, η ≤ 1
σmax(A)2

3: while not converged do
4: k← k + 1
5: xk ← proxηλR(C·)(x

k−1
− ηA>(Axk−1 − b))

6: Output: xk

method that computes an explicit xk in order to simplify the
update for wk is specified in Algorithm 2. The equivalence of
these algorithms is shown in the Appendix.

In the pseudocode, partial minimization in x is written
using the normal equations, but any least squares solution
may be used. WhenHκ cannot be directly inverted, (e.g. it is
only available through its action on a vector or it is very
large) Algorithm 2 admits an inexact modification, where an
iterative method (e.g. conjugate gradient) is used to get xk .
It is useful to contrast Algorithm 1 with the proximal

gradient algorithm for the original problem (1), detailed in
Algorithm 3. First, Algorithm 3may be difficult to implement
whenC 6= I, as the prox operator may no longer be separable
or atomic. An iterative algorithm is required to evaluate

proxλ‖C·‖1 (x) = argmin
y

1
2λ
‖x− y‖2 + ‖Cy‖1. (17)

In contrast, Algorithm 1 always solves (5), which is reg-
ularized by R(·) rather than by a composition R(C·), with
C instead changing Fκ and gκ , see (4). In the equivalent
Algorithm 2, C affects the update of xk , and w is updated
using the prox of R(·) evaluated at the vector Cxk . Viewing
SR3 as a prox-gradient for the value function in Algorithm 1
has important consequences, since the prox-gradient method
converges for a wide class of problems, including non-
convex regularizers [4]. For regularized least squares prob-
lems specifically, we derive a self-contained convergence
theorem with a sublinear convergence rate.
Theorem 2 (Proximal Gradient Descent for Regularized

Least Squares): Consider the linear regression objective,

min
x

p(x) :=
1
2
‖Ax− b‖2 + λR(x) ,

where p is bounded below, so that

−∞ < p∗ = inf
x
p(x),

VOLUME 7, 2019 1407
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and R may be nonsmooth and nonconvex. With step t =
1/σmax(A)2, the iterates generated by Algorithm 3 satisfy

vk+1 := (‖A‖22I− A>A)(xk − xk+1) ∈ ∂p(xk+1),

i.e. vk+1 is an element of the subdifferential of p(x) at the point
xk+1,1 and

min
k=0,...N

‖vk+1‖2 ≤
1
N

N−1∑
k=0

‖vk+1‖2 ≤
‖A‖22
N

(p(x0)− p∗) .

Therefore Algorithm 3 converges at a sublinear rate to a
stationary point of p.

Theorem 2 always applies to the SR3 approach, which
uses value function (5). When C = I, we can also compare
the convergence rate of Algorithm 1 for (5) to the rate for
Algorithm 3 for (3). In particular, the rates of Algorithm 1
are independent of A when A does not have full rank, and
depend only weakly on A when A has full rank, as detailed
in Theorem 3.
Theorem 3 Suppose that C = I. Let x∗ and w∗ denote the

minimum values of px(x) := 1
2‖Ax−b‖

2
+R(x) and pw(w) :=

1
2‖Fκw−gκ‖

2
+R(w), respectively. Let xk denote the iterates

of Algorithm 3 applied to px , and wk denote the iterates of
Algorithm 1 applied to pw, with step sizes ηx = 1

σmax(A)2
and

ηw =
1

σmax(Fκ )2
. The iterates always satisfy

vxk+1 = (‖A‖22I− A>A)(xk − xk+1) ∈ ∂px(xk+1)

vwk+1 = (κI− F>F)(wk − wk+1) ∈ ∂pw(wk+1).

For general R and any A we have the following rates:

1
N

N−1∑
k=0

‖vxk+1‖
2
≤
‖A‖22
N

(px(x0)− p∗x )

1
N

N−1∑
k=0

‖vwk+1‖
2
≤
κ

N
(pw(x0)− p∗w).

For convex R and any A we also have

px(x)− px(x∗)
‖x0 − x∗‖2

≤
σmax(A)2

2(k + 1)
pw(w)− pw(w∗)
‖w0 − w∗‖2

≤
σmax(Fκ )2

2(k + 1)

≤

σmax(A)2

1+σmax(A)2/κ

2(k + 1)
≤

κ

2(k + 1)
.

For convex R and A with full rank, we also have

‖xk − x∗‖2

‖x0 − x∗‖2
≤

(
1−

σmin(A)2

σmax(A)2

)k
‖wk − w∗‖2

‖w0 − w∗‖2
≤

(
1−

σmin(A)2

σmax(A)2
σmax(A)2 + κ
σmin(A)2 + κ

)k
When C>C = I, Algorithm 3 may not be implementable.

However, SR3 is implementable, with rates equal to those for

1For nonconvex problems, the subdifferential must be carefully defined;
see the preliminaries in the Appendix.

FIGURE 2. Nonconvex sparsity promoting regularizers. (a) `0 norm. (b)
Clipped absolute deviation. (c) `p norm (p = 1

2 ). (d) `p norm (p = 1
4 ).

the C = I case when n = d and with rates as in the following
corollary when n > d .
Corollary 2 When C>C = I and n > d, let w∗ denote the

minimum value of pw(w) := 1
2‖Fκw − gκ‖

2
+ R(w), and let

wk denote the iterates of Algorithm 1 applied to pw, with step
size ηw = 1

κ
. The iterates always satisfy

vwk+1 = (κI− F>F)(wk − wk+1) ∈ ∂pw(wk+1).

For general R and any A we have the following rates:

1
N

N−1∑
k=0

‖vwk+1‖
2
≤
κ

N
(pw(x0)− p∗w).

For convex R and any A we also have

pw(w)− pw(w∗)
‖w0 − w∗‖2

≤
κ

2(k + 1)

For convex R and A with full rank, we also have

‖wk − w∗‖2

‖w0 − w∗‖2
≤

(
1−

σmin(A>A)
κ + σmin(A>A)

)k
Algorithm 1 can be used with both convex and nonconvex

regularizers, as long as the prox operator of the regularizer is
available. A growing list of proximal operators is reviewed
by [22]. Notable nonconvex prox operators in the literature
include (1) indicator of set of rank r matrices, (2) spectral
functions (with proximable outer functions) [26], [38], (3)
indicators of unions of convex sets (project onto each and
then choose the closest point), (4) MCP penalty [56], (5)
firm-thresholding penalty [29], and (6) indicator functions of
finite sets (e.g., x ∈ {−1, 0, 1}d ). Several nonconvex prox
operators specifically used in sparse regression are detailed
in the next section.

C. NONCONVEX REGULARIZERS AND CONSTRAINTS
1) NONCONVEX REGULARIZERS: `0
The 1-norm is often used as a convex alternative to `0, defined
by ‖x‖0 = |{i : xi 6= 0}|, see panel (a) of Figure 2. The non-
convex `0 has a simple prox — hard thresholding (HT) [9],

1408 VOLUME 7, 2019
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TABLE 1. Proximal operators of sparsity-promoting regularizers.

see Table 1. The SR3 formulation with the `0 regularizer uses
HT instead of the ST operator (16) in line 5 of Algorithm 1.

2) NONCONVEX REGULARIZERS: `P
P FOR P ∈ (0,1)

The `pp regularizer for p ∈ (0, 1) is often used for sparsity pro-
motion, see e.g. [36] and the references within. Twomembers
of this family are shown in panels (c) and (d) of Figure 2. The
`
p
p prox subproblem is given by

min
x

fα,p(x; z) :=
1
2α

(x − z)2 + |x|p (18)

This problem is studied in detail by [18]. Closed form solu-
tions are available for special cases p ∈

{
1
2 ,

2
3

}
; but a

provably convergent Newton method is available for all p.
Using a simple method for each coordinate, we can globally
solve the nonconvex problem (18) [18, Proposition 8]. Our
implementation is summarized in the Appendix. The `1/2
regularizer is particularly useful for CS, and is known to do
better than either `0 or `1.

3) NONCONVEX REGULARIZERS: (S)CAD
The (Smoothly) Clipped Absolute Deviation (SCAD) [28] is
a sparsity promoting regularizer used to reduce bias in the
computed solutions. A simple un-smoothed version (CAD)
appears in panel (b) of Figure 2, and the analytic prox is
given in Table 1. This regularizer, when combined with SR3,
obtains the best results in the CS experiments in Section III.

4) COMPOSITE REGULARIZATION: TOTAL VARIATION (TV)
TV regularization can be written as TV(x) = R(Cx) =
‖Cx‖1, with C a (sparse) difference matrix (see (23)). The
SR3 formulation is solved by Algorithm 1, a prox-gradient
(primal) method. In contrast, most TV algorithms use
primal-dual methods because of the composition ‖Cx‖1 [16].

5) CONSTRAINTS AS INFINITE-VALUED REGULARIZERS
The term R(·) does not need to be finite valued. In particular,
for any set C that has a projection, we can take R(·) to be the
indicator function of C , given by

RC (x) =

{
0 x ∈ C
∞ x 6∈ C .

,

so that proxR(x) = projC (x). Simple examples of such reg-
ularizers include convex non-negativity constraints (x ≥ 0)
and nonconvex spherical constraints (‖x‖2 = r).

D. OPTIMALITY OF SR3 SOLUTIONS
We now consider the relationship between the
optimal solution ŵ to problem (5), and the original
problem (1).
Theorem 4 (Optimal Ratio): Assume C = I, and let λ1

for (1) and λ2 for (5) be related by the ratio τ = λ2/λ1,
and let ŵk be the optimal solution for (5) with parameter λ2.
If λ2 is set to be τλ1 where

τ̂ = argmin
τ>0

‖τ I− κH−1κ ‖2 =
κ

2
(σmax(H−1κ )+σmin(H−1κ )),

then the distance to optimality of ŵ1 for (1) is no more
than

σmax(A)2 − σmin(A)2

σmax(A)2 + σmin(A)2 + 2κ
‖A>Aŵ− A>b‖.

Theorem 4 gives a way to choose λ2 given λ1 so that ŵ
is as close as possible to the stationary point of (1), and
characterizes the distance of ŵ to optimality of the original
problem. The proof is given in the Appendix.

Theorem 4 shows that as κ increases, the solution ŵ
moves closer to being optimal for the original problem (1).
On the other hand, Theorem 3 suggests that lower κ
values regularize the problem, making it easier to solve.
In practice, we find that ŵ is useful and informative in
a range of applications with moderate values of κ , see
Section III.

III. RESULTS
The formulation (1) covers many standard problems, includ-
ing variable selection (LASSO), compressed sensing, TV-
based image de-noising, and matrix completion, shown
in Fig. 3. In this section, we demonstrate the general flexi-
bility of the SR3 formulation and its advantages over other
state-of-the-art techniques. In particular, SR3 is faster than
competing algorithms, and w is far more useful in identifying
the support of sparse signals, particularly when data are noisy
and A is ill-conditioned.
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FIGURE 3. Common optimization applications where the SR3 method improves performance. For each method, the specific
implementation of our general architecture (2) is given.

A. SR3 VS. LASSO AND COMPRESSED SENSING
Using Eqs. (1) and (2), the LASSO and associated SR3 prob-
lems are

min
x

1
2
‖Ax− b‖2 + λ‖x‖1 (19)

min
x,w

1
2
‖Ax− b‖2 + λ‖w‖1 +

κ

2
‖x− w‖2 (20)

where A ∈ Rm×n with m ≥ n. LASSO is often used for
variable selection, i.e. finding a sparse set of coefficients x
that correspond to variables (columns of A) most useful for
predicting the observation b. We compare the quality and
numerical efficiency of Eqs. (19) and (20). The formulation
in (20) is related to an earlier sequentially thresholded least
squares algorithm that was used for variable selection to
identify nonlinear dynamical systems from data [11].

In all LASSO experiments, observations are generated by
b = Axt+σε, where xt is the true signal, and ε is independent
Gaussian noise.

1) LASSO PATH
The LASSO path refers to the set of solutions obtained by
sweeping over λ in (1) from a maximum λ, which gives
x = 0, down to λ = 0, which gives the least squares solution.

In [48], it was shown that (19) makes mistakes early along
this path.
Problem Setup: As in [48], the measurement matrix A is

1010 × 1000, with entries drawn from N (0, 1). The first
200 elements of the true solution xt are set to be 4 and the
rest to be 0; σ = 1 is used to generate b. Performing a λ
sweep, we track the fraction of incorrect nonzero elements
in the last 800 entries vs. the fraction of nonzero elements in
the first 200 entries of each solution, i.e. the false discovery
proportion (FDP) and true positive proportion (TPP).
Parameter Selection:We fix κ = 100 for SR3. Results are

presented across a λ-sweep for both SR3 and LASSO.
Results: The results are shown in the top-right panel of

Fig. 4. LASSO makes mistakes early along the path [48]. In
contrast, SR3 recovers the support without introducing any
false positives along the entire path until overfitting sets in
with the 201st nonzero entry.

2) ROBUSTNESS TO NOISE
Observation noise makes signal recovery more difficult. We
conduct a series of experiments to compare the robustness
with respect to noise of SR3 with LASSO.
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FIGURE 4. Top Left: SR3 approach (red) is orders of magnitude faster
than ADMM (green) or other first-order methods such as prox-gradient
(gray). While IRL (blue) requires a comparable number of iterations, its
cost per iteration is more expensive than SR3. Top Right: True Positives
vs. False Positives along the LASSO path (blue) and along the SR3 path
(red). Bottom: F1 score of SR3 (red) and LASSO formulation (blue) with
respect to different noise levels.

Problem Setup:We choose our sensing matrix with dimen-
sion 200 by 500 and elements drawn independently from
a standard Gaussian distribution. The true sparse signal has
20 non-zero entries, and we consider a range of noise levels
σ ∈ {0.2i : i = 0, 1, . . . , 20}. For each σ , we solve (19) and
(20) for 200 different random trials. We record the F1-score,
F1 = 2(precision · recall)/(precision + recall), to compare
reconstruction quality. In the experiments, any entry in x
which is greater than 0.01 is considered non-zero for the
purpose of defining the recovered support.
Parameter Selection: We fix κ = 100 and perform a

λ-sweep for both (19) and (20) to record the best F1-score
achievable by each method.
Results:We plot the average normalized F1-score for dif-

ferent noise levels in the bottom panel of Fig. 4. SR3 has a
uniformly higher F1-score across all noise levels.

3) COMPUTATIONAL EFFICIENCY
We compare the computational efficiency of the Alter-
nating Directions Method of Multipliers (ADMM) (see
e.g. [10], [32]), proximal gradient algorithms (see e.g. [22])
on (19) with Algorithm 1, and a state-of-the-art Itera-
tively Reweighted Least-Squares (IRL) method, specifically
IRucLq-v as in [36].
Problem Setup: We generate the observations with σ =

0.1. The dimension of A is 600 × 500, and we vary the
condition number of the matrix A from 1 to 100. For each
condition number, we solve the problem 10 times and record
the average number of iterations required to reach a specified
tolerance. We use the distance between the current and previ-
ous iteration to detect convergence for all algorithms. When

TABLE 2. Complexity Comparison for A ∈ Rm×n, m ≥ n.

the measure is less than a tolerance of 10−5 we terminate the
algorithms.
Parameter Selection: We choose κ = 1, λ in (19) to be
‖A>b‖∞/5, and λ in (20) to be ‖F>κ gκ‖∞/5.
Results: The results (by number of iterations) are shown in

the top left panel of Fig. 4. The complexity of each iteration
is given in Table 2. The generic iterations of PG, ADMM,
and SR3 have nearly identical complexity, with ADMM and
SR3 requiring a one-time formation and factorization of an
n× n matrix. IRucLq-v requires the formation and inversion
of such a matrix at each iteration. From Fig. 4, SR3 requires
far fewer iterations than ADMM and the proximal gradient
method, especially as cond(A) increases. SR3 and IRucLq-v
require a comparable number of iterations. A key difference is
that ADMM requires dual variables, while SR3 is fundamen-
tally a primal-only method. When cond(A) = 50, ADMM
needs almost 104 iterations to solve (19); proximal gradient
descent requires 102 iterations; and SR3 needs 10 iterations
to solve (20). Overall, the SR3 method takes by far the least
total compute time as the condition number increases. Further
experiments, particularly for larger systems where iterative
methods are needed, are left to future work.

4) SR3 FOR COMPRESSED SENSING
Whenm� n, the variable selection problem targeted by (19)
is often called compressed sensing (CS). Sparsity is required
to make the problem well-posed, as (19) has infinitely many
solutions with λ = 0. In CS, columns of A are basis func-
tions, e.g. the Fourier modes Aij = exp(iαjti), and b may
be corrupted by noise [13]. In this case, compression occurs
when m is smaller than the number of samples required by
the Shannon sampling theorem.

Finding the optimal sparse solution is inherently com-
binatorial, and brute force solutions are only feasible for
small-scale problems. In recent years, a series of powerful
theoretical tools have been developed in [13]–[15], [24],
and [25] to analyze and understand the behavior of (1) with
R(·) = ‖ · ‖1 as a sparsity-promoting penalty. The main
theme of these works is that if there is sufficient incoherence
between the measurements and the basis, then exact recovery
is possible. One weakness of the approach is that the incoher-
ence requirement — for instance, having a small restricted
isometry constant (RIC) [15] — may not be satisfied by the
given samples, leading to sub-optimal recovery.
Problem Setup: We consider two synthetic CS problems.

The sparse signal has dimension d = 500 and k = 20
nonzero coefficients with uniformly distributed positions and
values randomly chosen as −2 or 2. In the first experiment,
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FIGURE 5. Compressed sensing results: recovering a 20-sparse signal in R500 from a small number of measurements. We plot the recovery rate as the
number of measurements increases. Line color and style are determined by the regularizer while marker shapes are determined by the
algorithm/formulation used. For readability, only the best performing algorithm for each regularizer is plotted in bold, with the rest opaque. Left
panel: the sensing matrix A has Gaussian entries. Nonconvex regularizers are in general more effective than convex regularizers. SR3 is the most
effective formulation for each regularizer aside from `1/2 for which the standard formulation with the IRucLq-v algorithm is best. SR3 CAD achieves a
better final result compared to `1/2 with IRLucLq-v. Right panel: the sensing matrix A has uniform entries. The traditional convex approaches fail
dramatically as there is no longer a RIP-like condition. Even for the nonconvex regularizers, IRucLq-v shows significant performance degradation,
while proximal gradient descent never succeeds. However, SR3 approaches still succeed, with only a minor efficiency gap (with respect to m/k)
compared to the easier conditions in the left panel.

the entries ofA ∈ Rm×n are drawn independently from a nor-
mal distribution, which will generally have a small RIC [15]
for sufficiently large m. In the second experiment, entries of
A ∈ Rm×n are drawn from a uniform distribution on the
interval [0, 1], which are generally more coherent than using
Gaussian entries.

In the classic CS context, recovering the support of the sig-
nal (indices of non-zero coefficients) is the main goal, as the
optimal coefficients can be computed in a post-processing
step. In the experiments, any entry in x which is greater
than 0.01 is considered non-zero for the purpose of defining
the recovered support. To test the effect of the number of
samples m on recovery, we take measurements with additive
Gaussian noise of the form N (0, 0.1), and choose m ranging
from k to 20k . For each choice of m we solve (1) and (2)
200 times.We compare results from 10 different formulations
and algorithms: sparse regression with `0, `1/2, `1 and CAD
regularizers using PG; SR3 reformulations of these four prob-
lems using Algorithm 1, and sparse regression with `1/2 and
`1 regularizers using IRucLq-v.
Parameter Selection: For each instance, we perform a

grid search on λ to identify the correct non-zero support,
if possible. The fraction of runs for which there is a λ with
successful support recovery is recorded. For all experiments
we fix κ = 5, and we set ρ = 0.5 for the CAD regularizer.
Results: As shown in Figure 5, for relatively incoherent

random Gaussian measurements, both the standard formula-
tion (1) and SR3 succeed, particularly with the nonconvex
regularizers. CAD(·, ρ), which incorporates some knowledge
of the noise level in the parameter ρ, performs the best as a
regularizer, followed by `1/2, `0, and `1. The SR3 formulation
obtains a better recovery rate for eachm for most regularizers,
with the notable exception of `1/2. The IRucLq-v algorithm
(which incorporates some knowledge of the sparsity level as
an internal parameter) is the most effective method for `1/2
regularization for such matrices.

For more coherent uniform measurements, SR3 obtains a
recovery rate which is only slightly degraded from that of

FIGURE 6. Comparison of standard analysis with SR3-analysis. Top panel:
result using SR3-analysis, plotting the final w (red) against the true signal
(dark grey). Bottom panel: result using standard analysis and the IRL-D
algorithm, plotting final Cx (blue) against the true signal (dark grey).

the Gaussian problem, while the results using (1) degrade
drastically. In this case, SR3 is the most effective approach
for each regularizer and provides the only methods which
have perfect recovery at a sparsity level ofm/k ≤ 10, namely
SR3-CAD, SR3-`1/2, and SR3-`0.
Remark:Many algorithms focus on the noiseless setting in

compressive sensing, where the emphasis shifts to recovering
signals that may have very small amplitudes [36]. SR3 is not
well suited to this setting, since the underlying assumption is
that w is near to x in the least squares sense.

5) ANALYSIS VS. SYNTHESIS
Compressive sensing formulations fall into two broad cate-
gories, analysis (21) and synthesis (22) (see [19], [27]):

min
x

1
2
‖Ax− b‖2 + R(Cx), (21)

min
ξ

1
2
‖AC>ξ − b‖2 + R(ξ ), (22)

where C is the analyzing operator, x ∈ Rd and ξ ∈ Rn, and
we assume n � d . In this section, we consider C>C = I,
i.e. C> is a tight frame. Synthesis represents x using the
over-determined system C>, and recovers the coefficients
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ξ using sparse regression. Analysis directly works over the
domain of the underlying signal x with the prior that Cx is
sparse. The two methods are equivalent when n ≤ d , and
very different when n > d [19]. Both forms appear in a
variety of inverse problems including denoising, interpolation
and super-resolution. The work of [27] presents a thorough
comparison of (21) and (22) across a range of signals, and
finds that the effectiveness of each depends on problem type.

The SR3 formulation can easily solve both analysis and
synthesis formulations. We have focused on synthesis thus
far, so in this section we briefly consider analysis (21), under
the assumption that Cx is almost sparse. When l � d ,
the analysis problem is formulated over a lower dimensional
space. However, since Cx is always in the range of C,
it can never be truly sparse. If a sparse set of coefficients
is needed, analysis formulations use post-processing steps
such as thresholding. SR3, in contrast, can extract the sparse
transform coefficients directly from the w variable. We com-
pare SR3 with the Iteratively Reweighted Least-Squares-type
algorithm IRL-D proposed by [35] for solving (21).
Problem Setup:We choose our dimensions to be n = 1024,

d = 512 andm = 128.We generate the sensingmatrixAwith
independent Gaussian entries and the true sparse coefficient
ξ t with 15 non-zero elements randomly selected from the
set {−1, 1}. The true underlying signal is xt = C>ξ and
the measurements are generated by b = Axt + σε, where
σ = 0.1 and ε has independent Gaussian entries. We use `1
as the regularizer, R(·) = λ‖ · ‖1.
Parameter Selection:We set κ for SR3 to be 5, λ for SR3 to

be ‖F>κ gκ‖∞/2, and ‖A
>b‖∞/10 for IRL-D. The λs are

chosen to achieve the clearest separation between active and
inactive signal coefficients for each method.
Results: The results are shown in Figure 6. The w in the

SR3 analysis formulation is able to capture the support of the
true signal cleanly, while Cx from the (21) identifies the sup-
port but is not completely sparse, requiring post-processing
steps such as thresholding to get a support estimate.

B. SR3 FOR TOTAL VARIATION REGULARIZATION
Natural images are effectively modeled as large, smooth
features separated by a few sparse edges. It is common to
regularize ill-posed inverse problems in imaging by adding
the so-called total variation (TV) regularization [7], [16],
[17], [40], [45], [47], [54]. Let Xij denote the i, j pixel of
an m × n image. For convenience, we treat the indices as
doubly periodic, i.e. Xi+pm,j+qn = Xi,j for p, q ∈ Z. Discrete
x and y derivatives are defined by [DxX]ij = Xi+1,j − Xij
and [DyX]ij = Xi,j+1 − Xij, respectively. The (isotropic) total
variation of the image is then given by the sum of the length
of the discrete gradient at each pixel, i.e.

RTV

(
DxX
DyX

)
:=

m∑
i=1

n∑
j=1

√
[DxX]2ij + [DyX]2ij. (23)

Adding the TV regularizer (23) to a regression problem cor-
responds to imposing a sparsity prior on the discrete gradient.

FIGURE 7. The top plot compares the progress of the SR3 and
ADMM-type algorithms in reducing their losses, showing similar rates of
convergence; accelerating SR3 with FISTA using Algorithm 4 yields an
immediate significant improvement. Panels (a) and (b) show a detail of
the original cameraman image and the image corrupted as described
in the text, respectively. The incredibly noisy image resulting from
inverting the blur without regularization (λ = 0) is shown in panel (c) and
the crisper image resulting from the regularized SR3 problem (with
λ = .075) is shown in panel (d) (the image resulting from the ADMM type
algorithm of [16] is visually similar, with a similar SNR).

Consider image deblurring (Fig. 7). The two-dimensional
convolution Y = A ∗ X is given by the sum Yij =∑m

p=1
∑n

q=1 ApqXi−p,j−q. Such convolutions are often used
to model photographic effects, like distortion or motion blur.
Even when the kernel A is known, the problem of recovering
X given the blurred measurement is unstable because mea-
surement noise is sharpened by ‘inverting’ the blur. Suppose
thatB = A∗X+νG, whereG is amatrix with entries given by
independent entries from a standard normal distribution and
ν is the noise level. To regularize the problem of recovering
X from the corrupted signal B, we add the TV regularization:

X̂ = argmin
X

1
2
‖A ∗ X− B‖2F + λRTV

(
DxX
DyX

)
. (24)

The natural SR3 reformulation is given by

min
X,wx ,wy

1
2
‖A ∗ X− B‖2F

+ λRTV

(
wx
wy

)
+
κ

2

∥∥∥∥wx − DxX
wy − DyX

∥∥∥∥2
F
. (25)

Problem Setup: In this experiment, we use the standard
Gaussian blur kernel of size k and standard deviation σ , given
by Aij = exp

(
−(i2 + j2)/(2σ 2)

)
, when |i| < k and |j| < k ,
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with the rest of the entries of A determined by periodicity or
equal to zero. The signalX is the classic ‘‘cameraman’’ image
of size 512 × 512. As a measure of the progress of a given
method toward the solution, we evaluate the current loss at
each iteration (the value of either the right hand side of (24)
or (25)).
Parameter Selection: We set σ = 2, k = 4, ν =

2, and λ = 0.075. The value of λ was chosen by hand
to achieve reasonable image recovery. For SR3, we set
κ = 0.25.
Results: Figure 7 demonstrates the stabilizing effect of TV

regularization. Panels (a) and (b) show a detail of the image,
i.e. X, and the corrupted image, i.e. B, respectively. In panel
(c), we see that simply inverting the effect of the blur results in
a meaningless image. Adding TV regularization gives a more
reasonable result in panel (d).

Algorithm 4 FISTA for SR3 TV

1: Input: w0

2: Initialize: k = 0, a0 = 1, v0 = w0, η ≤ 1
κ

3: while not converged do
4: k← k + 1
5: vk ← proxηR(w

k−1
− η(F>κ (Fκw

k−1
− gκ )))

6: ak ← (1+
√
1+ 4a2k−1)/2

7: wk ← vk + (ak−1 − 1)/ak (vk − vk−1)
8: Output: wk

In the top plot of Fig. 7, we compare SR3 and a primal-dual
algorithm [16] on the objectives (25) and (24), respectively.
Algorithm 1 converges as fast as the state-of-the-art method
of [16]; it is not significantly faster because for TV regular-
ization, the equivalent of the mapC does not have orthogonal
columns (so that the stronger guarantees of Section II do not
apply) and the equivalent ofFκ , see (4), is still ill-conditioned.
Nonetheless, since SR3 gives a primal-only method, it is
straightforward to accelerate using FISTA [8]. In Fig. 7, we
see that this acceleratedmethod convergesmuchmore rapidly
to the minimum loss, giving a significantly better algorithm
for TV deblurring. The FISTA algorithm for SR3 TV is
detailed in Algorithm 4.
We do not compare the support recovery of the two for-

mulations, (24) and (25), because the original signal does not
have a truly sparse discrete gradient. The recovered signals
for either formulation have comparable signal-to-noise ratios
(SNR), approximately 26.10 for SR3 and 26.03 for standard
TV (these numbers vary quite a bit based on parameter choice
and maximum number of iterations).
Analysis: We can further analyze SR3 for the specific C

used in the TV denoising problem in order to understand the
mediocre performance of unaccelerated SR3. Setting x =
vec(X), we have

A ∗ X = F−1Diag(ĉ)Fx, DxX = F−1Diag(d̂x)Fx,
DyX = F−1Diag(d̂y)Fx

FIGURE 8. Singular values (ordered by magnitude) of Fκ (left panel) and
A (right panel) in the TV example.

where Fx corresponds to taking a 2D Fourier transform, i.e.
of Fx = vec(F (2d)X). Then, Fκ can be written as

κF−1Diag(ĉ)H−1κ
[
Diag(d̂x) Diag(d̂y)

]
F

√
κF−1

(
I−κ

[
Diag(d̂x)
Diag(d̂y)

]
H−1κ

[
Diag(d̂x) Diag(d̂y)

])
F

,
where

Hκ = F−1 Diag(ĉ� ĉ+ κ d̂x � d̂x + κ d̂y � d̂x)F,

and � is element-wise multiplication. The SR3 formula-
tion (25) reduces to

min
w

1
2
‖Fκw− gκ‖

2
+ λ‖w‖1,

with Fκ and gκ as above, and w = vec
(
◦

√
Wx +Wy

)
,

where ◦
√
A andA denote element-wise square root and squar-

ing operations, respectively.
Setting ĥ = ĉ� ĉ+ κ d̂x � d̂x + κ d̂y � d̂x , we have

F>κ Fκ = F−1AκF ,

with Aκ given by[
κI−κ2 Diag(d̂x�ĥ

−1
�d̂x) −κ2 Diag(d̂x�ĥ

−1
�d̂y)

−κ2Diag(d̂y�ĥ
−1
�d̂x) κI−κ2 Diag(d̂y�ĥ

−1
� d̂y)

]
.

F>κ Fκ is a 2 × 2 block system of diagonal matrices, so we
can efficiently compute its eigenvalues, thereby obtaining the
singular values of Fκ . In Figure 8, we plot the spectrum of
Fκ . Half of the singular values are exactly

√
κ , and the other

half drop rapidly to 0. This spectral property is responsible
for the slow sublinear convergence rate of SR3. Because of
the special structure of the C matrix, Fκ does not improve
conditioning as in the LASSO example, where C = I. The
SR3 formulation still makes it easy to apply the FISTA algo-
rithm to the reduced problem (5), improving the convergence
rates.
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C. SR3 FOR EXACT DERIVATIVES
TV regularizers are often used in physical settings, where the
position and the magnitude of the non-zero values for the
derivative are of interest. In this numerical example, we use
synthetic data to illustrate the efficacy of SR3 for such prob-
lems. In particular, we demonstrate that the use of nonconvex
regularizers can improve performance.
Problem Setup: Consider a piecewise constant step func-

tion with dimension xt ∈ R500 and values from −2 to 2,
see the first row of Figure 9 for a sample plot. We take 100
random measurements b = Axt + σε of the signal, where
the elements of A and ε are i.i.d. standard Gaussian, and we
choose a noise level of σ = 1.
To recover the signal, we solve the SR3 formulation

min
x,w

1
2
‖Ax− b‖2 + λR(w)+

1
2
‖w− Cx‖2,

where R is chosen to be ‖·‖0 or ‖·‖1, andC is the appropriate
forward difference matrix. We want to recover the signal xt
and obtain an estimate of the discrete derivative using w.
Parameter Selection:We set κ = 1 and choose λ by cross-

validation. We set λ = 0.07 when R = `1 and λ = 0.007
when R = `0.
Results: Results are shown in Figure 9, with the first row

showing the recovered signals (red dashed line and green
dot-dashed line) vs. true signal (blue solid line) and the sec-
ond row showing the estimated signal derivative w.

If we explicitly use the fact that our signal is a step function,
it is easy to recover an accurate approximation of the signal
using both x and w. We define groups of indices correspond-
ing to contiguous sequences for which wi = 0. For such
contiguous groups, we set the value of the recovered signal to
be the mean of the xi values. Ideally, there should be five such
groups. In order to recover the signal, we need good group
identification (positions of nonzeros in w) and an unbiased
estimation for signal x. From the red dash line in the first row
of Figure 9, we can see that both `0 and `1 reasonably achieve
this goal using the grouping procedure.

However, such an explicit assumption on the structure of
the signal may not be appropriate in more complicated appli-
cations. A more generic approach would ‘‘invert’’C (discrete
integration in this example) to reconstruct the signal given w.
From the second row of Figure 9 we see that `0-TV obtains a
better unbiased estimation of the magnitude of the derivative
compared to `1-TV; accordingly, the signal reconstructed by
integration is more faithful using the `0-style regularizatoin.

D. SR3 FOR MATRIX COMPLETION
Analogous to sparsity in compressed sensing, low-rank
structure has been used to solve a variety of matrix
completion problems, including the famous Netflix Prize
problem, as well as in control, system identification, signal
processing [55], combinatorial optimization [12], [43], and
seismic data interpolation/denoising [3], [39].

We compare classic rank penalty approaches using the
nuclear norm (see e.g. [43]) to the SR3 approach on a

FIGURE 9. SR3 TV regularization result on synthetic data. The first row
plots the averaging recovery signal (dashed red line), integrating recovery
signal (dot dashed green line) and the true signal (solid blue line). Second
row plots the discretized derivative (solid red line) and true magnitude
(dashed blue line). First column contain the results come from `0
regularization, second column is from `1.

FIGURE 10. Interpolating a frequency slice from the Gulf of Suez dataset.
Clockwise we see subsampled data in the source-receiver domain;
transformation of the data to the midpont-offset domain, interpolation,
and inverse transform back to the source/receiver domain.

seismic interpolation example. Seismic data interpolation is
crucial for accurate inversion and imaging procedures such
as full-waveform inversion [52], reverse-time migration [6]
and multiple removal methods [51]. Dense acquisition is
prohibitively expensive in these applications, motivating
reduction in seismic measurements. On the other hand, using
subsampled sources and receivers without interpolation gives
unwanted imaging artifacts. The main goal is to simultane-
ously sample and compress a signal using optimization to
replace dense acquisition, thus enabling a range of applica-
tions in seismic data processing at a fraction of the cost.
Problem Setup:We use a real seismic line from the Gulf of

Suez. The signal is stored in a 401 × 401 complex matrix,
indexed by source/receiver, see the left plot of Fig. 10.
Fully sampled seismic data has a fast decay of singular
values, while sub-sampling breaks this decay [3]. A convex
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FIGURE 11. Result comparison SR3 vs. classic low rank regression. In each subplot, we show the recovered signal matrix (left)
and the difference between recovered the true signal (right). The corresponding SNR is provided. (a), (b) plot the the results of
SR3 with `0 and `1 regularizers. (c), (d) plot the results of classic formulation with `0 and `1 regularizers.

formulation for matrix completion with nuclear norm is given
by [43]

min
X

1
2
‖A(X)− D‖2F + λR(σ (X)) (26)

where A maps X to data D, and R(·) = ‖ · ‖1 penalizes rank.
The SR3 model relaxes (28) to obtain the formulation

min
X,W

1
2
‖A(X)− D‖2F + λR(σ (W))+

κ

2
‖W− X‖2F . (27)

To find X(W), the minimizer of (29) with respect to X,
we solve a least squares problem. The W update requires
thresholding the singular values of X(W).
We compare the results from four formulations, SR3 `0,

SR3 `1, classic `0 and classic `1, i.e. the equations

min
X

1
2
‖A(X)− D‖2F + λR(σ (X)) (28)

and

min
X,W

1
2
‖A(X)− D‖2F + λR(σ (W))+

κ

2
‖W− X‖2F , (29)

where R can be either `1 or `0. To generate figures from
SR3 solutions, we look at the signal matrix X rather than
the auxiliary matrixW, since we want the interpolated result
rather than a support estimate, as in the compressive sensing
examples.

In Figure 10, 85% of the data is missing. We arrange the
frequency slice into a 401 × 401 matrix, and then transform
the data into the midpoint-offset domain following [3], with
m = 1

2 (s + r) and h = 1
2 (s − r), increasing the dimension

FIGURE 12. Pareto frontiers (best fit achievable for each rank) for (28)
with R = `1,R = `0, and for corresponding SR3 formulations (29),
describing the best fits of observed values achievable for a given rank
(obtained across regularizers for the four formulations). `0 formulations
are more efficient than those with `1, and SR3 formulations (29) are more
efficient classic formulations (28).

to 401 × 801. We then solve (29) to interpolate the slice,
and compare with the original to get a signal-to-noise ratio
(SNR) of 9.7 (last panel in Fig. (10)). The SNR obtained by
solving (28) is 9.2.
Parameter Selection: We choose κ = 0.5 for all the

experiments and do a cross validation for λ. When R = `1,
we range λ from 5 to 8; when R = `0, we range λ from 200 to
400.
Results: Results are shown in Figures 11 and 12. The

relative quality of the images is hard to compare with the
naked eye, so we compute the Signal to Noise Ratio (SNR)
with respect to the original (fully sampled) data to present
a comparison. SR3 fits original data better than the solution
of (28), obtaining a maximum SNR of 12.6, see Figure 11.
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FIGURE 13. Pairwise distance between all decision variables of different
tasks obtained by SR3.

We also generate Pareto curves for the four approaches,
plotting achievable misfit on the observed data against the
ranks of the solutions. Pareto curves for `0 formulations
lie below those of `1 formulations, i.e. using the 0-norm
allows better data fitting for a given rank, and equivalently
a lower rank at a particular error level, see Figure 12. The
Pareto curves obtained using the SR3 approach are lower still,
through the relaxation.

E. SR3 FOR GROUP SPARSITY
Group sparsity is a composite regularizer used in multi-
task learning with under-determined tasks. Consider a set of
under-determined linear systems,

bi = Aixi + σεi, i = 1, . . . , k,

where Ai ∈ Rmi×n and mi < n. If we assume a priori that
some of these systems might share the same solution vector,
we can formulate the problem of recovering the xi as

min
xi

1
2

k∑
i=1

‖Aixi − bi‖22 + λ
k−1∑
i=1

k∑
j=i+1

‖xi − xj‖2

where the `2 norm promotes sparsity of the differences xi−xj
(or, equivalently, encourages redundancy in the xi). To write
the objective in a compact way, set

x =

x1...
xk

 , b =

b1...
bk

 , A =

A1
. . .

Ak

.
We can then re-write the optimization problem as

min
x

1
2
‖Ax− b‖22 + λ

k−1∑
i=1

k∑
j=i+1

‖Dijx‖2,

where Dijx gives the pairwise differences between xi and xj.
There is no simple primal algorithm for this objective, as ‖·‖2
is not smooth and there is no efficient prox operation for the
composition of ‖ · ‖2 with the mapping D.

Applying the SR3 approach, we introduce the variables wij
to approximate Dijx and obtain

min
x,w

1
2
‖Ax− b‖22 + λ

k−1∑
i=1

k∑
j=i+1

‖wij‖2

+
κ

2

k−1∑
i=1

k∑
j=i+1

‖wij − Dijx‖22.

Problem Setup: We set up a synthetic problem with n =
200, mi = 150, and k = 7. The Ai are random Gaussian
matrices and we group the true underlying signal as follows:

x1 = x2, x3 = x4, x5 = x6 = x7

where the generators are sampled form a Gaussian distribu-
tion. We set the noise level to σ = 0.1.
Parameter Selection:We select optimization parameters to

be λ = 10 and κ = 1.
Results:The pairwise distance of the result is shown in Fig-

ure 13. The groups have been successfully recovered. If we
directly use the x from the SR3 solution, we obtain 47%
relative error. However, using the pattern discovered by w to
regroup the least square problems, namely combine A1,A2
and b1, b2 to solve for the first group of variables, x1 = x2,
and so on, we improve the result significantly to 1% relative
error (which is essentially optimal given the noise).

IV. DISCUSSION AND OUTLOOK
Sparsity promoting regularization of regression problems
continues to play a critical role in obtaining actionable
and interpretable models from data. Further, the robustness,
computational efficiency, and generalizability of such algo-
rithms is required for them to have the potential for broad
applicability across the data sciences. The SR3 algorithm
developed here satisfies all of these important criteria and
provides a broadly applicable, simple architecture that is
better than state-of-the-art methods for compressed sensing,
matrix completion, LASSO, TV regularization, and group
sparsity. Critical to its success is the relaxation that splits
sparsity and accuracy requirements.

The SR3 approach introduces an additional relaxation
parameter. In the empirical results presented here, we did not
vary κ significantly, showing that for many problems, choos-
ing κ ≈ 1 can improve over the state of the art. The presence
of κ affects the regularization parameter λ, which must be
tuned even if a good λ is known for the original formulation.
Significant improvements can be achieved by choices of the
pair (κ, λ); we recommend using cross-validation, and leave
automatic strategies for parameter tuning to future work.

The success of the relaxed formulation suggests broader
applicability of SR3. This paper focused on regularized
regression, but the method applies more generally to infer-
ence over any type of estimator with general statistical
assumptions. In particular, we can consider the general opti-
mization problem associated with nonlinear functions, such
as the training of neural networks, optimizing over a set of
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supervised input-output responses that are given by a non-
linear function f (·) with constraints. The relaxed formulation
of (2) generalizes to

min
x,w

f (A, x, b)+ λR(w)+
κ

2
‖Cx− w‖2. (30)

Accurate and sparse solutions for such neural network archi-
tectures can be more readily generalizable, analogous with
how SR3 helps to achieve robust variable selection in sparse
linear models. The application to neural networks is beyond
the scope of the current manuscript, but the architecture
proposed has great potential for broader applicability.

APPENDIX
We review necessary preliminaries from the optimization
literature, and then present a series of theoretical results that
explain some of the properties of SR3 solutions and charac-
terize convergence of the proposed algorithms.

MATHEMATICAL PRELIMINARIES
Before analyzing SR3, we give some basic results from the
non-smooth optimization literature.

SUBDIFFERENTIAL AND OPTIMALITY
In this paper, we work with nonsmooth functions, both con-
vex and nonconvex. Given a convex nonsmooth function
f : Rn

→ R and a point x̄ with f (x̄) finite, the subdiffer-
ential of f at x̄, denoted ∂f (x̄), is the set of all vectors v
satisfying

f (x) ≥ f (x̄)+ 〈v, x − x̄〉 ∀ x.

The classic necessary stationarity condition 0 ∈ ∂f (x̄)
implies f (x) ≥ f (x̄) for all x, i.e. global optimality. The
definition of subdifferential must be amended for the gen-
eral nonconvex case. Given an arbitrary function f : Rn

→

R and a point x̄ with f (x̄) finite, the Fréchet subdifferen-
tial of f at x̄, denoted ∂̂f (x̄), is the set of all vectors v
satisfying

f (x) ≥ f (x̄)+ 〈v, x − x̄〉 + o(‖x − x̄‖) as x → x̄.

Thus the inclusion v ∈ ∂̂f (x̄) holds precisely when the affine
function x 7→ f (x̄) + 〈v, x − x̄〉 underestimates f up to
first-order near x̄. In general, the limit of Fréchet subgradients
vi ∈ ∂̂f (xi), along a sequence xi → x̄, may not be a
Fréchet subgradient at the limiting point x̄. Therefore, one
formally enlarges the Fréchet subdifferential and defines the
limiting subdifferential of f at x̄, denoted ∂f (x̄), to consist
of all vectors v for which there exist sequences xi and vi,
satisfying vi ∈ ∂f (xi) and (xi, f (xi), vi) → (x̄, f (x̄), v). In
this general setting, the condition 0 ∈ ∂f (x̄) is necessary
but not sufficient. However, stationary points are the best
we can hope to find using iterative methods, and distance
to stationarity serves as a way to detect convergence and
analyze algorithms. In particular, we design and analyze
algorithms that find the stationary points of (1) and (5),

which are defined below, for both convex and nonconvex
regularizers R(·).
Definition 1 (Stationarity): We call x̂ the stationary point

of (1) if,

0 ∈ A>(Ax̂− b)+ λC>∂R(x̂).

And (x̂, ŵ) the stationary point of (5) if,

0 = A>(Ax̂− b)+ κC>(Cx̂− ŵ),

0 ∈ λ∂R(ŵ)+ κ(ŵ− Cx̂).

MOREAU ENVOLOPE AND PROX OPERATORS
For any function f and real η > 0, the Moreau envelope and
the proximal mapping are defined by

fη(x) := inf
z

{
f (z)+ 1

2η‖z− x‖
2
}
, (31)

proxηf (x) := argmin
z

{
ηf (z)+ 1

2‖z− x‖
2
}
, (32)

respectively.
The Moreau envelope has a smoothing effect on convex

functions, characterized by the following theorem. Note that
a proper function f satisfies that f > −∞ and it takes
on a value other than +∞ for some x. A closed function
satisfies that {x : f (x) ≤ α} is a closed set for each
α ∈ R.
Theorem 5 (Regularization Properties of the Envelope):

Let f : Rn
→ R be a proper closed convex function. Then fη

is convex and C1-smooth with

∇fη(x) = 1
η
(x − proxηf (x)) and Lip(∇fη) ≤ 1

η
.

If in addition f is L-Lipschitz, then the envelope fη(·) is
L-Lipschitz and satisfies

0 ≤ f (x)− fη(x) ≤
L2η
2

for all x ∈ Rn. (33)

Proof: See [44, Th. 2.26].
However, when f is not convex, fη may no longer be

smooth as we show in Figure 14 where we use `0 as an
example.

COMMON PROX OPERATORS
The prox operator is useful when designing algorithms that
handle non-smooth and non-convex functions. Its calcula-
tion is often straightforward when the function f decouples
element-wise. To illustrate the idea, we derive proximal map-
pings for `1, `0, `22, and `2. Many more operators can be
found e.g. in [22].

• f (·) = ‖ · ‖1. The `1 norm is a convex nonsmooth
penalty often used to promote sparse solutions in regres-
sion problems. We include a derivation of the proximity
operator for this problem and the remaining operators
have similar derivations.

1418 VOLUME 7, 2019



P. Zheng et al.: Unified Framework for Sparse Relaxed Regularized Regression: SR3

FIGURE 14. Envelope functions indexed by the parameter η, for f = ‖ · ‖0.
In contrast to the convex case, here all fη are nonsmooth and nonconvex.

Lemma 1 (`1): The prox operator of `1 is an element-
wise soft-thresholding action on the given vector.

x = proxηf (y) = argmin
x

1
2
‖x− y‖2 + η‖x‖1 ⇒

xi =


yi − η, yi > η

0, |yi| ≤ η
yi + η, yi < −η.

(34)

Proof: Note that the optimization problem may be
written as

argmin
x

1
2
‖x− y‖2 + η‖x‖1

= argmin
x

1
2

n∑
i=1

(xi − yi)2 + η|xi|, (35)

i.e. the problem decouples over the elements of y. For
each i, the optimization problem has the subdifferential

∂xi

(
1
2
(xi − yi)2 + η|xi|

)

=


xi − yi + η, xi > 0
xi − yi + {z : |z| ≤ η}, xi = 0
xi − yi − η, xi < 0.

(36)

After checking the possible stationary points given this
formula for the subdifferential, it is simple to derive (34).

• f (·) = ‖ · ‖0. The `0 penalty directly controls the
number of non-zeros in the vector instead of penalizing
the magnitude of elements as `1 does. However, it is
non-convex and in practice regression formulations with
`0 regularization can be trapped in local minima instead
of finding the true support.

Lemma 2 (`0): The prox operator of `0 is simple,
element-wise hard-thresholding:

x = proxηf (y) = argmin
x

1
2
‖x− y‖2 + η‖x‖0 ⇒

xi =

{
yi, |yi| >

√
2η

0, |yi| ≤
√
2η.

(37)

Proof: Analogous to the `1, the prox problem for
`0 can be decoupled across coordinates:

1
2
‖x−y‖2+η‖x‖0=argmin

x

1
2

n∑
i=1

(xi−yi)2+η1{xi=0}.

From this formula, it is clear that the only possible
solutions for each coordinate are xi = 0 or xi = yi. The
formula (37) follows from checking the conditions for
these cases.

• f (·) = 1
2‖ · ‖

2. The `22 penalty can be used as a smooth
and convex penalty which biases towards zero. When
combined with linear regression, it is commonly known
as ridge regression.
Lemma 3 (`22): The prox of `22 is scaling.

x = proxηf (y) = argmin
x

1
2
‖x−y‖2+

η

2
‖x‖2 =

1
1+η

y.

Proof: The proof follows directly from calculus.
• f (·) = ‖ · ‖. The `2 norm adds a group sparsity prior,
i.e. the vector x is biased toward being the zero vector.
Often, this penalty is applied to each column of a matrix
of variables. Unlike the prox operators above, ‖ · ‖ (by
design) does not decouple into scalar problems. Fortu-
nately, a closed form solution is easy to obtain.
Lemma 4:

x = proxηf (y) = argmin
x

1
2
‖x− y‖2 + η‖x‖ ⇒

x =

{
‖y‖−η
‖y‖ y, ‖y‖ > η

0, ‖y‖ ≤ η.

Proof: Observe that for any fixed value of ‖x‖ the
objective

1
2
‖x− y‖2 + η‖x‖ (38)

is minimized by taking x in the direction of y. This
reduces the problem to finding the optimal value
of ‖x‖, for which the same reasoning as the `1 penalty
applies.

PROXIMAL GRADIENT DESCENT
Consider an objective of the form p(x) = f (x)+ g(x). Given
a step size t , the proximal gradient descent algorithm is as
defined in Algorithm 3 [22]. This algorithm has been studied
extensively. Among other results, we have
Theorem 6 (Proximal Gradient Descent): Assume p =

f + g and both p and g are closed convex functions. Let p∗
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Algorithm 5 Proximal Gradient Descent
1: Input: x0, η
2: Initialize: k = 0
3: while not converged do
4: k← k + 1
5: xk ← proxηg(xk−1 − η∇f (xk−1))

6: Output: xk

denote the optimal function value and x∗ denote the optimal
solution.
• If ∇f is β Lipschitz continuous, then, setting the step
size as 1/β, the iterates generated by proximal gradient
descent satisfy

p(xk )− p∗ ≤
β‖x0 − x∗‖2

2(k + 1)
.

• Furthermore, if p is also α strongly convex, we have,

‖xk − x∗‖2 ≤
(
1−

α

β

)k
‖x0 − x∗‖2.

These results are well known; see e.g. [8], [22], [41] and
the tutorial [2, Sec. 4.4].

EQUIVALENCE OF ALGORITHMS 1 AND 2.
In this section we show that Algorithm 1 is equivalent with
Algorithm 2. The first lends itself to a straightforward analy-
sis, while the second is far easier to implement.

Variable projection is the key to compute the gradient of
the smooth part of v in (3). Here we denote,

fs(x,w) =
1
2
‖Ax− b‖2 +

κ

2
‖Cx− w‖2,

vs(w) = min
x
fs(x,w) = fs(x(w),w),

where x(w) = argmin x fs(x,w) We have the relation

v(w) = vs(w)+ λR(w).

Taking the derivative, we get

∇vs(w) = ∇wfs(x(w),w)+ ∇xfs ·
∂x
∂w

∣∣∣∣
x=x(w)

The second term vanishes because fs(x(w),w) is optimal with
respect to x, and we have

∇vs(w) = κ(w− Cx(w)).

From Theorem 1,∇vs is Lipchitz continuous with constant κ .
Then the proximal gradient step can be written as,

xk+1 = argmin
x

fs(x,wk )

wk+1 = proxηλR(w
k
− ηκ(wk − Cxk+1))

When we choose η = 1/κ , the second equation becomes,

wk+1 = proxλ/κR(Cx
k+1)

which precisely matches Algorithm 2.

THEORETICAL RESULTS
In the main text, it is demonstrated that SR3 (5) outper-
forms the standard regression problem (1), achieving faster
convergence and obtaining higher quality solutions. Here,
we develop some theory to explain the performance of SR3
from the perspective of the relaxed coordinates, w. We obtain
an explicit formula for the SR3 problem in w alone and then
analyze the spectral properties of that new problem, demon-
strating that the conditioning of the w problem is greatly
improved over that of the original problem. We also obtain
a quantitative measure of the distance between the solutions
of the original problem and the SR3 relaxation.

SPECTRAL PROPERTIES OF κ

1) PROOF OF THEOREM 1
The first property can be verified by direct calculation.
We have

F>κ Fκw− F>κ gκ = (κI− κ2CH−1κ C>)w− κCH−1κ A>b

= κH−1κ [(Hκ − κI)w− A>b]

= κH−1κ (A>Aw− A>b)

so that F>κ Fκw− F>κ gκ = 0 ⇐⇒ A>Aw+ A>b = 0. By
simple algebra, we have,

F>κ Fκ = κI− κ
2CH−1κ C>

σi(F>κ Fκ ) = κ − κ
2σn−i+1(CH−1κ C>). (39)

Since CH−1κ C> and F>κ Fκ are positive semi-definite matri-
ces, we have 0 � F>κ Fκ � κI. Denote the SVD for C by
C = Uc6cV>c .When n ≥ d and C is full rank, we know 6c
is invertible and Vc is orthogonal. Then

CH−1κ C> = Uc6cV>c (A
>A+ κVc6

2
cV
>
c )
−1Vc6cU>c

= Uc(6−1c V>c A
>AVc6

−1
c + κI)

−1U>c

This gives a lower bound of the spectrum of CH−1κ C>,

σmin(6−1c V>c A
>AVc6

−1
c ) ≥ σmin(A>A)/σmax(C>C)

⇒ σmax(CH−1κ C>) ≤ 1/(σmin(A>A)/σmax(C>C)+ κ)

Then we obtain the conclusion,

σmin(F>κ Fκ ) ≥ κ −
κ2

σmin(A>A)/σmax(C>C)+ κ

=
σmin(A>A)/σmax(C>C)

1+ σmin(A>A)/(κσmax(C>C))
.

When C = I, we have that

F>κ Fκ = κ[I− κ(A
>A+ κI)−1]

= A>(I+ AA>/κ)−1A

Assume A ∈ Rm×n has the singular value decomposition
(SVD) A = U6V>, where U ∈ Rm×m, 6 ∈ Rm×m, and
V ∈ Rm×m. We have

F>κ Fκ = V6>(I+66>/κ)−16V>.
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Let 6̂ ∈ Rl×l denote the reduced diagonal part of 6, i.e.
the top-left l × l submatrix of 6 with l = min(m, n). When
m ≥ n, we have

6 =

[
6̂

0

]
, F>κ Fκ = V6̂

>
(I+ 6̂

2
/κ)−16̂V> (40)

And when m < n,

6=
[
6̂ 0

]
, F>κ Fκ = V

[
6̂
>
(I+ 6̂

2
/κ)−16̂ 0

0 0

]
V>

(41)

(8) and (9) follow immediately.
Note that the function

x√
1+ x2/a

is an increasing function of x when x, a > 0. Therefore,
by (9), we have

σmax(Fκ ) =
σmax(A)√

1+ σmax(A)2/κ

and

σmin(Fκ ) =
σmin(A)√

1+ σmin(A)2/κ
.

(13) follows by the definition of the condition number.

2) PROOF OF THEOREM 2
For the iterates of the proximal gradient method, we have

xk+1 = argmin
x

1
2
‖x− (xk − η∇f (xk ))‖2 + ηg(x)

and from the first order optimality condition we have

0 ∈ xk+1 − xk + η∇f (xk )+ η∂g(xk+1)

⇒
1
η
(xk − xk+1)+∇f (xk+1)−∇f (xk )

∈ ∇f (xk+1)+ ∂g(xk+1)

⇒ (‖A‖22I− A>A)(xk − xk+1) ∈ ∂p(xk+1),

which establishes the first statement. Next, consider the fol-
lowing inequality

p(xk+1) =
1
2
‖Axk+1 − b‖2 + λR(xk+1)

=
1
2
‖Axk − b+ A(xk+1 − xk )‖2 + λR(xk+1)

=
1
2
‖Axk − b‖2 + λR(xk+1)

+

〈
A>(Axk − b), xk+1 − xk

〉
+
1
2
‖A(xk+1 − xk )‖2

≤
1
2
‖Axk − b‖2 + λR(xk )−

‖A‖22
2
‖xk+1 − xk‖2

+
1
2
‖A(xk+1 − xk )‖2,

which implies the inequality〈
xk − xk+1, (‖A‖22I− A>A)(xk − xk+1)

〉
≤ p(xk )− p(xk+1)

⇒ ‖A‖22‖xk+1 − xk‖
2
≤ p(xk )− p(xk+1).

Setting vk+1 = (‖A‖22I− A>A)(xk − xk+1), we have

‖vk+1‖2 ≤ ‖A‖42‖xk+1 − xk‖
2
≤ ‖A‖22(p(xk )− p(xk+1)).

After we add up and simplify, we obtain

1
N

N−1∑
k=0

‖vk+1‖2 ≤
‖A‖22
N

(p(x0)− p(xN ))

≤
‖A‖22
N

(p(x0)− p∗),

which is the desired convergence result.

3) PROOF OF THEOREM 3
The result is immediate from combining Theorem 2 and
Theorem 1.

4) PROOF OF COROLLARY 2
The result is immediate from combining Theorem 2 and
Corollary 1.

CHARACTERIZING OPTIMAL SOLUTIONS OF SR3
In this section, we quantify the relation between the solution
of (1) and (5) when C = I. In this analysis, we fix κ as a
constant and set C = I.
Lemma 5 (Optimality Conditions for (1) and (5)): Define

the sets

S1(x, λ1) = {A>Ax− A>b+ λ1v1 : v1 ∈ ∂R(x)}

S2(w, λ2) = {κH−1κ (A>Aw− A>b)+ λ2v2 : v2 ∈ ∂R(w)},

where Hκ = A>A + κI, as above. These sets contain the
subgradients of (1) and (5). If we assume x̂ and ŵ are the
(stationary) solutions of (1) and (5), namely

0 ∈ S1(x̂, λ1), 0 ∈ S2(ŵ, λ2),

then

[I− (λ1/λ2)κH−1κ ](A>Aŵ− A>b) ∈ S1(ŵ, λ1),

[κH−1κ − (λ2/λ1)I](A>Ax̂− A>b) ∈ S2(x̂, λ2).

Proof: As x̂ and ŵ are the (stationary) solutions of (1)
and (5), we have

∃v1 ∈ ∂R(x̂), λ1v1 = −(A>Ax̂− A>b),

∃v2 ∈ ∂R(ŵ), λ2v2 = −κH−1κ (A>Aŵ− A>b).

Then,

A>Aŵ− A>b+ λ1v2 ∈ S1(ŵ, λ1)

⇒ [I− (λ1/λ2)κH−1κ ](A>Aŵ− A>b) ∈ S1(ŵ, λ1),

κH−1κ (A>Ax̂− A>b)+ λ2v1 ∈ S2(x̂, λ2)

⇒ [κH−1κ − (λ2/λ1)I](A>Ax̂− A>b) ∈ S2(x̂, λ2).

VOLUME 7, 2019 1421



P. Zheng et al.: Unified Framework for Sparse Relaxed Regularized Regression: SR3

5) PROOF OF THEOREM 4
Using the definitions of Lemma 5, we have

dist(0,S1(ŵ, λ1))

≤
1
τ̂
‖(τ̂ I− κH−1κ )(A>Aŵ− A>b)‖

=
1
τ̂
‖τ̂ I− κH−1κ ‖2‖A

>Aŵ− A>b‖

=
1
τ̂
‖τ̂1− κσ (H−1κ )‖∞‖A>Aŵ− A>b‖

=
σmax(Hκ )− σmin(Hκ )
σmax(Hκ )+ σmin(Hκ )

‖A>Aŵ− A>b‖

=
σmax(A)2 − σmin(A)2

σmax(A)2 + σmin(A)2 + 2κ
‖A>Aŵ− A>b‖.

If x̂ = ŵ, then r = A>Aŵ−A>b = A>Ax̂−A>b is in the
null space of τ I− κH−1κ , where τ = λ2/λ1. This establishes
a connection between λ1 and λ2. For instance, we have the
following result. In the case that A has orthogonal rows or
columns, theorem 4 provides some explicit bounds on the
distance between these solutions.
Corollary 3 If A>A = I, then dist(0,S1(ŵ, λ1)) = 0,

i.e. ŵ is the stationary point of (1). If AA> = I, then
dist(0,S1(ŵ, λ1)) ≤ 1/(1+ 2κ).

Proof: The formula for Hκ simplifies under these
assumptions. When A>A = I, we have Hκ = (1 + κ)I and
σmax(Hκ ) = σmin(Hκ ) = 1 + κ . When AA> = I, we have
σmax(Hκ ) = 1+κ and σmin(Hκ ) = κ . Theorem 4 then implies
the result.

IMPLEMENTATION OF `Q PROXIMAL OPERATOR
Here we summarize our implementation. The first and second
derivatives are given by

f ′α,p(x; z) =
1
α
(x − |z|)+ pxp−1,

f ′′α,p(x; z) =
1
α
+ p(p− 1)xp−2. (42)

The point x̃ = p−2
√
−1/(αp(p− 1)) is the only inflection

point of fα,p, with f ′′α,p(x) < 0 for 0 ≤ x < x̃, and f ′′α,p(x; z) >
0 when x > x̃.
• If f ′α,p(x̃; z) ≥ 0, we have f ′α,p(x; z) ≥ 0, for all x ≥ 0.
Then argmin x≥0 fα,p(x; z) = 0.

• If f ′α,p(x̃; z) < 0, one local min x̄ ∈ (x̃, |z|) exists, and we
can use Newton’s method to find it. Then we compare
the values at 0 and x̄, obtaining

argmin
x≥0

fα,p(x; z) =

{
0, fα,p(0; z) ≤ fα,p(x̄; z)
x̄, fα,p(0; z) > fα,p(x̄; z).
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