
Received October 31, 2018, accepted December 6, 2018, date of publication December 12, 2018,
date of current version January 7, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2886473

Improving Spatial Locality in Virtual
Machine for Flash Storage
SUNGGON KIM 1, HYEONSANG EOM1, AND YONGSEOK SON 2
1Department of Computer Science and Engineering, Seoul National University, Seoul 08826, South Korea
2School of Computer Science and Engineering, Chung-Ang University, Seoul 06974, South Korea

Corresponding author: Yongseok Son (sysganda@cau.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT)
under Grant 2018R1C1B5085640, Grant 2017R1A2B4004513, and Grant 2016M3C4A7952587, in part by the Institute for the
Information and Communications Technology Promotion (IITP) grant funded by the Korea Government (MSIP) under Grant
R0190-16-2012, and in part by the BK21 Plus for Pioneers in Innovative Computing (Department of Computer Science and Engineering,
SNU) funded by NRF under Grant 21A20151113068.

ABSTRACT Flash-based solid-state drives (SSD) are being widely adopted in virtualized environments to
improve the I/O performance due to their low latency and high throughput compared with existing hard disk
drives. In the virtualized environment, the performance of SSDs fluctuates significantly according to the
I/O patterns from the virtual machine. For example, random writes have a significantly negative impact on
the performance of SSDs compared with sequential writes due to the characteristics of SSDs. In this paper,
we propose an address reshaping technique for SSDs in the virtualization layer to improve the spatial locality
and the performance of random writes. Our scheme transforms random write requests into sequential write
requests in the virtualization layer and thus enables the virtualization layer to issue the transformed sequential
requests to SSDs. The experimental results show that the optimized scheme improves the performance by
up to 97% compared with the existing scheme under random write workloads.

INDEX TERMS Cloud computing, operating system, solid-state drive, virtualization.

I. INTRODUCTION
Cloud computing is becoming widely adapted to the indus-
try as it significantly reduces IT costs and improves the
resource efficiency. Cloud service providers such as Amazon
EC2 [1] and private cloud platform such as Openstack [2]
use both full virtualization such as Kernel-based Virtual
Machine (KVM) [3] and Xen [4], and container-based virtu-
alization such as Docker [5] and Linux Containers (LXC) [6]
to fully exploit limited host hardware resources. These vir-
tualization techniques allow cloud service providers to effi-
ciently manage resources and provide dynamic scalability.
From the perspective of cloud users, virtualization provides
the illusion of an isolated environment even though multiple
VMs are running on the same hardware [7].

Although the efficient resource management and the illu-
sion of an isolated environment are provided by the existing
virtualization techniques, a significant amount of overhead
can occur due to the presence of an additional abstraction
layer. For example, in the perspective of I/O operations,
the I/O performance of a VM is theoretically bound to the
performance of the host and is far below the host performance

under real workloads [8], [9]. This is because virtualization
introduces duplicate layers of the file system, block layer,
and device driver to the host, as well as a new hypervi-
sor/container layer which performs virtualization using the
host resources. Additionally, to communicate between the
emulated device and the host, QEMU-KVM uses virtio [10]
device driver which uses an in-memory data structure for
request handling. QEMU-KVM receives the request contain-
ing a virtual block address (VBA) and translates the VBA into
an image block address (IBA) which is the file offset that can
be issued to the host OS via system calls such as pwrite.
However, this device virtualization can incur themanagement
of the data structure and increases communication overhead
between the VM and host [11].

To improve the I/O performance in virtualization, fast
storage devices such as flash-based solid-state drives (SSDs)
have attracted attention from both industry and academia
since they provide low latency and high bandwidth compared
with the existing hard disk drives (HDDs) [12]. The cost-
per-bit of flash memory has continued to fall owing to semi-
conductor technology scaling and 3-D vertical NAND flash

1668
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-2295-3385
https://orcid.org/0000-0003-4512-0121


S. Kim et al.: Improving Spatial Locality in VM for Flash Storage

technology [13]. Meanwhile, due to the characteristics of the
flash memory, performance imbalances can occur according
to the characteristic of I/O workloads. For example, in flash
memory, erase-before-write constraint does not permit in-
place updates of a page inside a flash block. When a page
must be updated, a flash translation layer (FTL) inside SSD
writes new data to a clean page and invalidates the old
page. When SSD has an insufficient number of clean pages,
garbage collection in the FTL reclaims invalid pages and
creates free blocks. During the garbage collection, all valid
pages in a victim block which need to be erased to create a
free block have to be copied to another block. This internal
copy operation generates large I/O amplification and the
performance of SSD is eventually limited by the garbage
collection performance of FTL [14].

Previous works [14]–[19] have reported that the perfor-
mance of random writes drops by more than an order of
magnitude compared with that of sequential writes. This is
because sequential write workloads are more likely to gener-
ate a small number of completely invalid blocks, while ran-
domwrite workloads generate a large number of blockswith a
small number of invalid pages. Thus, random writes increase
the garbage collection overhead which induces many internal
page copy operations compared with sequential writes.

To address these issues, previous studies [19], [20] opti-
mized the existing storage stack considering the character-
istics of SSDs [19], [20]. SHRD [20] transforms random
write requests into sequential write requests in the host block
device driver by assigning the address space of a reserved log
area in the SSD. F2FS [19] builds on append-only logging
to transform random writes to sequential writes. Our study
is in line with these previous studies [19], [20] in terms
of improving the random write performance of SSDs by
remapping them into sequential writes. In contrast, our study
focuses on optimizing the I/O performance in the virtualized
environment instead of a host system.

In this paper, we propose an address reshaping technique
for the virtualization to improve the I/O performance of
SSDs. Our main scheme reshapes random write requests
issued by the applications and the file system from the VM to
sequential write requests to the host. To do this, we propose a
metadata/data checker in the file system inside the VM and a
sequentializer in QEMU-KVM. The metadata/data checker
classifies the requests as metadata or data to manage the
metadata and data independently for more efficiency. The
sequentializer transforms random write requests from the
VM into sequential write requests by remapping the IBA of
themetadata and data requests. The sequentializer stores pairs
of the original and transformed IBA for the write request in
remapping tables. In addition, it also translates the original
IBA to the transformed IBA for read requests, ensuring the
correct read operation. The optimized virtualized system can
transform random write requests from the VM to sequential
write operations in the host.

We apply our optimizations to EXT4 [21] file system in
the VM and QEMU-KVM virtualization layer. We evaluate

FIGURE 1. Overall architecture of existing and proposed virtualization.
(a) Existing virtualization. (b) Proposed virtualization.

our optimized system using a widely used SATA-based SSD,
Samsung 850 pro and various file systems in the host, such as
EXT4 [21], XFS [22], and F2FS [19]. Our experimental result
shows that our system improves the performance of random
writes by up to 97% compared with the existing system,
which achieves similar performance of sequential writes. To
the best of our knowledge, this is the first study that proposes
a reshaping technique in virtualization for SSD to improve
the random write performance.

Our contributions are as follows:

• We analyze the I/O stack in the existing virtualization.
• We design and implement an address reshaping tech-
nique for SSD in the virtualized environment.

• We demonstrate that our optimized system can improve
the performance of random writes similar to that of
sequential writes.

The rest of this paper is organized as follows: Section II
describes the background andmotivation. Section III presents
the design and implementation of the proposed scheme.
Section IV shows the experimental results. Section V dis-
cusses the related work. Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION
A. IO OPERATIONS IN KVM/QEMU
Kernel-based Virtual Machine (KVM) [3] is a virtualization
solution for Linux included in the Linux mainline. KVM
operates at the user level of the host kernel and as a user
application from the perspective of the host. KVM is often
used with QEMU [23] which emulates a block device in
the user space and a combination of the two are commonly
deployed by the name QEMU-KVM.

Figure 1 (a) shows the overall architecture of
QEMU-KVM. When I/O requests are issued from applica-
tions inside the VM, the requests go through the guest OS.
When the requests arrive at the VM device driver in QEMU-
KVM, virtio [10] device driver is used to handle requests
for the emulated device. Virtio maintains an in-memory ring
buffer which resides in a shared memory region of the host
and the VM and transfers the requests from the VM to the
host. The requests get inserted into the ring buffer until
the ring buffer is full or for a certain period after the first

VOLUME 7, 2019 1669



S. Kim et al.: Improving Spatial Locality in VM for Flash Storage

request is inserted. Then, theVMends its execution (VMexit)
and yields the CPU to the host. At the host, QEMU-KVM
checks the memory region used by virtio for any requests
from the VM. If a request exists, QEMU-KVM pops the I/O
requests from the memory to issue them. Before issuing the
collected requests to the host, the requests are checked for
merge opportunities. If the requests are contiguous in terms
of their spatial location, QEMU-KVMmerges the contiguous
requests into a large request. After the merge operation,
the requests are issued using the configured I/O library such
as the default pwrite system call or io_submit system
call from libaio [24], to the host OS like requests from a
normal user process. Then, the request goes through a typical
write path in the host OS such as the file system, block layer,
device driver, and storage.

B. LIMITATIONS OF EXISTING IMAGE FORMATS
In QEMU-KVM, the QCOW2 [25] image format is widely
used to provide functionalities for the VM such as snapshots.
Since QEMU-KVM emulates the device, a block address
from the VM is translated multiple times before the request
is issued via system calls. When the request first arrives at
QEMU-KVM, it contains a virtual block address (VBA). This
is the logical block number for the emulated block device,
which is a VM image file in the host. The VBA is translated
into an image block address (IBA) which specifies the offset
in the image file [25]–[27]. Since a VM image is a simple
sequence of bytes stored in a file from the perspective of the
host, the image layout of the VM is unknown to the host and
can only be found inside the VM such as in the file system and
block layer of the VM. Thus, modifications or optimizations
regarding the image and I/O requests of VM have to consider
the internals of the image format and the virtualization layer.

C. SSD CHARACTERISTIC AND PERFORMANCE
IMBALANCE
Flash-based SSDs differ from existing HDDs in that in-place
overwrite is not possible due to the characteristics of flash. In
case of page update, the existing page gets invalidated and the
data is written into a free page, resulting in an out-of-place
update. This characteristic of flash storage creates a high
number of invalid pages during the update operations. These
invalid pages have to be erased and reclaimed by garbage
collection from FTL inside SSD for future use. However,
since flash can only be erased in a granularity of blocks, valid
pages in a target block must be copied into free pages before
erasing the block, creating many internal copy operations and
amplifying the number of writes.

Many previous studies [28]–[30] reduced the garbage
collection overhead and write amplification by considering
locality inside a block. These works are focused on detecting
sequential write requests from random write requests since
random write requests are more likely to generate many
blocks with a small number of invalid pages compared to
sequential write requests. This characteristic of random write
requests reduces the performance by more than one order

of magnitude compared with sequential writes due to the
increased garage collection overhead and internal fragmenta-
tion [14], [31]. Since random write requests comprise about
70% of server storage workloads [33], the I/O performance
of the server is greatly impacted by random write requests.

Even though internal FTL optimizations can mitigate the
overhead of random write requests, the performance of ran-
dom writes, especially across in large address space, can
be far less than that of sequential writes due to the limited
capacity of write buffer inside SSDs [17], [18], [32]. Thus,
along with optimizations in the FTL layer, optimizations in
the host are also necessary to fully exploit the performance
of SSDs.

To reduce the number of random write requests, there
have been many studies to design a copy-on-write (COW)
file system since the HDD era since random writes increase
the seek time and reduce batch opportunity compared to
sequential writes [34], [35]. With the introduction of SSDs,
COW schemes have become more popular due to the charac-
teristics of SSDs and the impact of random writes is worse
in SSDs [14]. By changing random writes into sequential
writes, the number of invalid blocks, and consequently the
garbage collection overhead is reduced. However, the remap-
ping techniques for both HDDs and SSDs in previous stud-
ies [19], [20] were designed and implemented at the file sys-
tem or even at the hardware level since detailed information
on the logical and physical block mapping is needed to remap
and manage the mapping information. Meanwhile, in the
virtualized environment, a new approach which can support
different system configurations regardless of the underlying
systems or hardware is necessary to support various needs
from multi-tenants.

III. DESIGN AND IMPLEMENTATION
In this section, we explain the design and implementation of
our proposed scheme for virtualization to improve the I/O
performance of SSDs.

A. OVERALL ARCHITECTURE
To improve the random write performance of SSDs, we
provide an efficient address reshaping technique for virtu-
alization. To do this, as shown in Figure 1(b), we devise
two components, namely a metadata/data checker in the file
system inside the VM and a sequentializer in QEMU-KVM.
These components transform random write requests to
sequential write requests with a minor overhead.

1) METADATA/DATA CHECKER
We devise a metadata/data checker which classifies the
requests into metadata and data requests. By classifying
metadata and data requests separately, the metadata and data
requests are not affected by each other, increasing the effi-
ciency of the reshaping technique [26]. For example, the pro-
posed reshaping technique maintains data structures (e.g.,
remapping table) to record pairs of the original IBA (oIBA)
and transformed IBA (tIBA). By isolating metadata and data

1670 VOLUME 7, 2019



S. Kim et al.: Improving Spatial Locality in VM for Flash Storage

requests through the checker, we can devise separate data
structure for each metadata and data. Thus, this strategy can
reduce the total number of entries in the data structure to
be searched or managed. Consequently, the checker enables
identification of the metadata and data requests transferred
from the VM at the host (e.g., QEMU-KVM), which reduces
the metadata and data management overhead.

2) SEQUENTIALIZER
To improve the spatial locality of SSDs, we devise a sequen-
tializer which transforms random requests (random IBAs)
to sequential requests (sequential IBAs) in QEMU-KVM.
Thus, this sequentializer enables the issuing of requests with
contiguous IBA to the host OS. To do this, we adopt a
remapping data structure such as a table and store pairs of an
original and transformed IBA. This remapping table allows
the seamless transformation of the IBAs, both original to
transformed and vice-versa. For example, when a request
arrives in QEMU-KVM, the sequentializer allocates a new
IBA in the free space of the VM image in a sequential manner
for the request. Then, the sequentializer changes the original
IBA of the request to a transformed IBA and stores the pair
in the remapping table. It then issues and completes the
request with the transformed IBA to the host. In addition,
with the help of the metadata/data checker, the sequentializer
manages the IBAs ofmetadata and data separately using sepa-
rate remapping table. Thus, the sequentializer sequentializes
metadata and data to each metadata and data region in the
VM image file, respectively.

B. DESIGN
1) RESHAPING OPERATIONS
Figure 2 shows the overall procedure of the proposed address
reshaping technique. As shown in the figure, when applica-
tions or the guest OS in the VM issue requests, the meta-
data/data checker in the guest OS file system classifies
and flags the metadata and data requests. After VM exit,
the requests and their flags are propagated into QEMU-KVM
through the file system, block layer, and device driver in the
VM.

In the case of write operations, the flag is checked at
QEMU-KVM to determine whether the request is for meta-
data or data. Then, the sequentializer finds an available
IBA in the free space in the metadata or data region. If
an IBA is available, the sequentializer transforms the origi-
nal IBA of the request to a sequentialized IBA. Otherwise,
a cleaning operation is performed, which will be discussed
later in Section III-B2. Thus, the sequentializer changes the
random write requests from the VM to sequential write
requests. After changing the IBA to a transformed IBA,
the original IBA and the transformed IBA are recorded as
a single entry in the metadata or data remapping table.
Then, the sequentializer checks whether the requests can be
merged.

In the existing QEMU-KVM, requests with sequential IBA
are merged into a large single request, reducing the request

FIGURE 2. Overall procedure of proposed scheme (oIBA: original image
block address, tIBA: transformed image block address).

issue overhead. With the existing merge scheme, our scheme
issues at most two number of requests which are merged
metadata and data request. This is because the sequentializer
always creates sequential requests and separates metadata
and data requests. This can also increase the performance of
sequential writes as well as random writes since the sequen-
tial writes issued by multiple threads may generate a pattern
of randomwrites to the host. Finally, all the write requests are
issued to the host OS using the pwrite system call.
In case of the read operations, when the read request arrives

at QEMU-KVM, the original IBA is searched in the remap-
ping table. If the original IBA is found in the table, the IBA
in the request is changed into a transformed IBA to read the
data correctly. Finally, the read request is issued to the host
OS using the pread system call from libaio [24].
Figure 3 describes an example of write requests from

the VM and how they are handled at QEMU-KVM. In this
example, there are four write requests (request 1-4) after
VM exit. First, we check whether the request is for meta-
data or data by checking the flag. Then, the requests are
transformed into either a metadata or data request. As shown
in the figure, request 1, 3, and 4 are transformed into data
request (Drequest) 1, 2, and 3, respectively, and request
2 is transformed into metadata request (Mrequest) 1. After
then, the sequentializer transforms the discontiguous IBAs of
the requests into a contiguous IBA. As shown in the figure,
the IBA of data request 1, 2, and 3 are changed into 31, 32,
and 33, respectively, and the IBA of metadata request 1 is
changed into 12. Then, these original and transformed IBAs
are recorded into metadata and data remapping table. And
then, data request 1, 2, and 3 are merged to a single request.
Meanwhile metadata request 1 cannot be merged since the

VOLUME 7, 2019 1671



S. Kim et al.: Improving Spatial Locality in VM for Flash Storage

FIGURE 3. Write reshaping of proposed scheme (Mrequest: metadata
request, Drequest: data request).

metadata request is the only one in this example. Finally,
metadata request 1 and data request 1 are issued to the host
OS.

2) CLEANING OPERATION
When overwrite or delete operations are performed, we inval-
idate the previous written data by updating or removing
entries in the remapping table. In case of overwrite operation,
we update the previous entry associated with the overwritten
data with a new tIBA. In case of delete operation, we remove
the entry in the remapping table. If there is insufficient free
space due to the invalidated data, a cleaning operation needs
to be performed to reclaim the free space.

To reclaim the space, we use a variant of the cleaning oper-
ation used in Log-structured File System(LFS) [19], [34],
[36]. When the cleaning operation starts, we first select a
segment to be cleaned.1 Then, we read the segment and
determine which image blocks are still valid by checking
the existence in the remapping table. And then, we start to
perform a compaction. During the compaction, we compact
the space by copying the data of valid image blocks to
invalid or free image blocks. Then, We reflect the changed
mapping information in the remapping table. Consequently,
this cleaning operation reclaims the invalidated space to
maintain contiguous free space.

3) CRASH CONSISTENCY AND RECOVERY
When a VM restarts (e.g., power off and VM migration),
the remapping table must be reconstructed in memory to
access the remapping information. To achieve this, we use
a persistent red/black tree [37] for the remapping table in
order to persist the remapping table. This red/black tree is
an in-memory data structure and can be written in a file
format to provide persistency. This allows the remapping
table to be written, read, and migrated. Thus, in the event
of VM restart, the remapping table can be reconstructed in
memory by reading the file.

1Segment is a cleaning unit selected based on the total VM image size.

FIGURE 4. Supporting crash consistency in the proposed scheme.

When sudden system failures occur while the remapping
table is being written to storage, the remapping table may
end up in an inconsistent state. To maintain the remapping
information in storage in a consistent manner, we support
crash consistency by using a variant of write-ahead logging
(WAL) which is widely used in file and database systems to
provide crash consistency [19], [21], [38]. To do this, after
the reshaping operation, a write operation is performed in
following steps:

• Both metadata and data are written from the VM to the
VM image file.

• The transaction is started and this event is recorded in a
log file.

• All the remapping information associated with the trans-
action is written to the log file.

• The transaction is committed by recording the commit
mark at the end of the log file.2

• The remapping information is updated to the original
remapping table.

Figure 4 describes an example of a write request after the
reshaping operations and how the remapping information is
written in a WAL fashion. From the reshaping operation, the
oIBAs of the metadata and data from the VM such as 24,
41, 56, and 43 are already remapped to 12, 31, 32, and 33,
respectively. In the first phase, the metadata and data are
written into their regions in the image file using the tIBAs
in the original area (¶). In the second phase, a transaction
is started and the mapping information between oIBAs and
tIBAs is written into the log area in a WAL fashion (TX
start)(·). After all the information associated with the
transaction is written, in the third phase, the transaction is
committed and this event is recorded in the log area (TX
commit) (¸). In the final phase, the mapping information
is written into the remapping table in the original area (¹).

In the event of a crash, the transaction can be either com-
mitted or not. Our scheme performs recovery operations to
recover VM in a consistent state. As the first case, if the
transaction is not committed, the remapping information can

2This commit mark is used to determine the status of the transaction in
case of crashes, guaranteeing atomicity for the transaction.

1672 VOLUME 7, 2019



S. Kim et al.: Improving Spatial Locality in VM for Flash Storage

be lost or partially written. Thus, we discard the transaction
by removing remapping entries associated with the transac-
tion. By doing so, the transformed addresses in the remapping
entries will be not accessible and so they will be considered
free. As the second case, if the transaction is committed while
the transaction is not yet applied to the original area, we apply
the transaction to the original area by reading the remapping
entries of the transaction from the log area and write them to
the original area. Consequently, our scheme can successfully
recover VM in a consistent state by discarding or applying
the transaction in the event of a crash.

C. IMPLEMENTATION
To detect the metadata/data and inform the virtualization
layer, we implemented the metadata/data checker inside
EXT4 file system [21] and added a flag inside bio structure
from the file system, request structure from the block
layer, and request structure from virtio driver. For remap-
ping tables used in the sequentializer, we used a red/black
tree for both the metadata and data remapping table since
the red/black tree has the search time of O(logN) which is
low compared to other trees [20]. Modifications for EXT4 in
VM and QEMU-KVM are less than about 500 lines in total
which demonstrate that our scheme leads to small modifica-
tions to the VM kernel and QEMU-KVM. Note the modifi-
cations are limited to EXT4 file system inside the VM and
QEMU-KVM, and so our scheme does not require the modi-
fication of file systems or kernel in the host.

IV. PERFORMANCE EVALUATION
A. EXPERIMENTAL SETUP
For evaluation, we used Intel i7-4790 (3.6 GHz) with four
physical cores and eight cores with hyper-threading, 8 GiB of
memory, SATA3 interface, and Linux 4.4.0. For the storage
device, we used 850 pro SATA SSD developed by Samsung.
It has a capacity of 256 GiB and is widely used for data cen-
ters and consumer PCs. To verify our scheme in enterprise-
class NVMe drive, we used P3700 NVMe SSD developed by
Intel.S For virtualization, we used QEMU-KVM 2.5.0 for the
baseline experiment and implemented our proposed scheme
as well. We deployed a single VM with 8 virtual cores,
8 GiB of memory and Linux 4.4.0, utilizing the full hardware
resources available in the host. We use EXT4 [21] for the
guest file system, and EXT4, XFS [22], and F2FS [19] for
the host file system.

We compared the performance of bare-metal which is
EXT4 without virtualization, existing QEMU-KVM with
modified EXT4 in the VM and various file systems in the host
(E-QEMU(EXT4), E-QEMU(XFS), and E-QEMU(F2FS)),
and optimized QEMU-KVM with various file systems
(O-QEMU(EXT4), O-QEMU(XFS), and O-QEMU(F2FS)).
We choose these file systems since EXT4 and XFS are
widely used in data centers and consumer PCs, and F2FS
is a log-structured file system for flash-based SSDs. For
the I/O engine of QEMU-KVM, we used libaio engine [24]
which is the fastest among other engines provided by

FIGURE 5. FIO bandwidth with 8 threads, 1 GiB file size, 4 KiB request
size, and I/O queue depth of 64. (a) Sequential Write. (b) Random Write.

QEMU-KVM. For the workloads, we used FIO bench-
mark [39] for a microbenchmark and fileserver workload
included in filebench benchmark [40] for a macrobenchmark.
All experimental results are the average value of five runs.

B. FIO BENCHMARK
1) BANDWIDTH
For microbenchmark, we ran FIO benchmark [39] perform-
ing sequential and random writes with identical configura-
tions. We configured FIO benchmark to issue 8 GiB random
write operations using 8 threads (1 Gib per thread), 4 KiB
request size, and direct write with 64 I/O queue depth.

In case of sequential writes, as shown in Figure 5(a),
the optimized QEMU improves the performance by
3.7%, 4.7%, and 2% compared with E-QEMU(EXT4),
E-QEMU(XFS), and E-QEMU(F2FS), respectively. Also,
the performance of O-QEMU is almost similar to the per-
formance of bare-metal. This is due to the increased merge
opportunity since the proposed scheme sequentializes dis-
jointed sequential requests from different files. However,
the performance gain is relatively small compared with the
gain from random writes because the maximum performance
of the host storage device was already reached in the sequen-
tial writes.

In case of random writes, as shown in Figure 5(b),
O-QEMU improves performance by up to 59% compared
with E-QEMU. As shown in the figure, O-QEMU(EXT4),
O-QEMU(XFS), and O-QEMU(F2FS) perform 59%, 54%,
and 59% better than E-QEMU(EXT4), E-QEMU(XFS), and
E-QEMU(F2FS), respectively. The performance gains of the
random writes are higher than those of sequential writes
since the optimized QEMU transforms randomwrite requests
into large sequential write requests. Compared with bare-
metal, O-QEMU(EXT4) improves the performance by up to
41%. This result demonstrates that our reshaping technique
can achieve higher performance compared with bare-metal
even though bare-metal does not include the virtualization
overhead.

2) LATENCY
To evaluate the latency of proposed scheme, we ran FIO
benchmark under identical settings and measured the average

VOLUME 7, 2019 1673



S. Kim et al.: Improving Spatial Locality in VM for Flash Storage

FIGURE 6. FIO average latency with 8 threads, 1 GiB file size, 4 KB request
size, and I/O queue depth of 64. (a) Sequential Write. (b) Random Write.

FIGURE 7. Filebench result with 100,000 files, 8 threads, and 4KiB
request size. (a) Read. (b) Write.

latency in both sequential and randomwrite workload. In case
of sequential writes, as shown in Figure 6(a), the latencies
of O-QEMUs are similar to those of E-QEMUs. This result
shows that the managing remapping table does not incur
significant overhead.

In case of random writes, as shown in Figure 6(b),
O-QEMUs have 16.7%, 32.4%, and 33.1% lower latency than
E-QEMU(EXT4), E-QEMU(XFS), and E-QEMU(F2FS),
respectively. Similar to the results of bandwidth, the average
latency of the random writes is similar to that of sequen-
tial writes since our scheme transforms random writes into
sequential writes.

C. FILEBENCH BENCHMARK
For a macrobenchmark, we ran fileserver workload included
in filebench benchmark [40]. Fileserver workload simulates a
file server by executing create, write, append, and read opera-
tions. We configured fileserver with 100,000 files, 8 threads,
and 4KiB request size.

In case of read operation, as shown in Figure 7(a),
O-QEMUs performs 8.5%, 6%, and 9.6% lower than
E-QEMU(EXT4), E-QEMU(XFS), and E-QEMU(F2FS),
respectively. The read bandwidth is decreased due to the
remapping overhead. This is because the transformed IBAs
of the requests have to be found from the remapping table and
the IBAs of the requests have to be changed to transformed
IBAs before issuing the request to the host.

FIGURE 8. FIO bandwidth with 8 threads, 1 GiB file size, 4 KiB request
size, and I/O queue depth of 64. (a) Sequential Write. (b) Random Write.

FIGURE 9. FIO bandwidth of NVMe SSD with 8 threads, 1 GiB file size,
4 KiB request size, and I/O queue depth of 64. (a) Sequential Write.
(b) Random Write.

In case of write operation, O-QEMUs perform 81.6%,
82.9% and 85% better than E-QEMU(EXT4),
E-QEMU(XFS), and E-QEMU(F2FS), respectively. Com-
pared with the bare-metal performance, O-QEMU(EXT4)
achieves higher performance by up to 54%. Similar to the
FIO benchmark, this is because our reshaping technique
transforms the randomwrite requests into the sequential write
requests. Consequently, this result shows that O-QEMU can
successfully sequentialize the random write requests even
if fileserver workload includes a mixture of read and write
requests unlike the FIO benchmark.

D. IMPACT OF I/O SCHEDULER
To evaluate the impact of I/O schedulers such as noop, CFQ,
and deadline on proposed scheme, we ran FIO benchmark
and measured the performance under identical configuration
with EXT4 file system. In case of both sequential and random
writes, as shown in Figure 8, the performance of optimized
QEMUwith all the I/O schedulers is similar. Since the perfor-
mance of our proposed scheme already reaches the maximum
performance of the host storage device, the effect of I/O
schedulers are almost not visible. This result demonstrates
that our scheme works well with underlying optimizations
such as I/O schedulers without any conflict.

E. FIO BENCHMARK USING NVME SSD
Figure 9 shows the performance of NVMe SSD when
we ran FIO benchmark under identical configurations.
In case of sequential writes, as shown in Figure 9(a),
the performance of O-QEMU(EXT4) is 45.2% lower

1674 VOLUME 7, 2019



S. Kim et al.: Improving Spatial Locality in VM for Flash Storage

compared with bare-metal. The overhead from duplicated
layers between VM and the host is more visible under
ultra-low latency provided by NVMe SSD compared with
SATA SSD. Meanwhile, the optimized QEMU improves the
performance by 14.4%, 15.2%, and 15.6% compared with
E-QEMU(EXT4), E-QEMU(XFS), and E-QEMU(F2FS),
respectively. Similar with the performance of SATASSD, this
is due to the increased merge opportunity. The performance
improvement from our scheme is larger compared with the
case of SATA SSD since E-QEMU(EXT4) cannot reach full
performance in NVMe SSD.

In case of random writes, as shown in Figure 9(b),
the performance of O-QEMU(EXT4) is 34.9% lower than
that of bare-metal due to the overhead from duplicated
layer. Compared with the existing scheme, O-QEMU(EXT4),
O-QEMU(XFS), and O-QEMU(F2FS) perform 95.1%,
96.9%, and 97.8% better than E-QEMU(EXT4),
E-QEMU(XFS), and E-QEMU(F2FS), respectively. Similar
with the performance of SATA SSD, random writes with
O-QEMU reach similar performance of sequential writes due
to the transformation of random writes to sequential writes
and the increased merge opportunity. This result shows that
our scheme can improve the performance of both sequential
and random writes in enterprise-class NVMe SSDs.

V. RELATED WORK
A. VIRTUALIZATION
There have been several studies on reducing overhead from
virtualization. ELVIS [11] proposes a host functionality dae-
mon pinned on a single core. By creating a single daemon
thread for handling requests at the host, ELVIS contiguously
handles the requests from the host without the need for
VM exits. Vpipe [41] also reduces the number of VM exits by
creating a pipe between the VM application and the underly-
ing storage devices. Our study is in line with these approaches
in terms of investigating virtualized devices and request han-
dling in QEMU-KVM. In contrast, we focus on fast storage
devices such as SSDs and considering the characteristics of
SSD in the virtualized environment. Fvd [42] proposes a new
file layout for virtualization that supports fast data allocation,
near-instant creation, and migration of the VM image by
designing a new file format and data lookup table for the
VM image.

Our study is in line with these studies [11], [41], [42] in
terms of optimizing the file layout of the VM image and
improving the write performance. In contrast, we focus on
sequentializing write requests for SSD by considering the
VM image.

B. FLASH AWARE MODIFICATIONS
There have been several studies on designing append-only
file systems for storage devices to reduce random writes.
The concept of sequentializing the random write request
was first introduced in Log-structured File System (LFS)
[34], [35]. By managing the storage device as a circular

log, write requests are always written in append-only fash-
ion, increasing spatial locality. Although these schemes are
designed for HDDs, the concept of append-only file sys-
tem have been adapted for SSDs. SFS [14] shows that the
performance of random writes in SSDs is far worse than
that of sequential writes and designs a file system which
transforms the random write requests into sequential write
requests. F2FS [19] is a Linux file system for SSDs that
introduces a flash friendly disk layout, hot/cold separation
in the log, and optimized fsync call for accelerating small
synchronous writes. Z-MAP [43] separates random accessed
data from sequential accessed data and store them in separate
region in NAND flash memory. Z-MAP uses a streaming
buffer zone to log data sequentially to reduce the number of
random writes and classify the workloads.

SHRD [20] transforms random write requests into sequen-
tial write requests in the device driver of the host layer. SHRD
restores sequentially written data to the original location by
utilizing the address mapping scheme of the FTL.

Our study is in line with these studies [14], [19], [20],
[34], [35], [43] in terms of sequentializing the random write
requests. In contrast, our study focuses on the virtualized
environment by utilizing VM features to support sequential-
izing operations in the VM layer. This allows our scheme
to support different system configurations (e.g., different
underlying file systems and hardware) in the virtualized
environment.

VI. CONCLUSIONS
In this paper, we propose an address reshaping technique for
the virtualization to improve the I/O performance of flash-
based SSDs. To do this, we design and implement an address
reshaping technique which transforms random write requests
issued from VM to sequential write requests to the host. In
experiment results, we demonstrate that our optimized system
improves the performance by up to 97% compared with
the existing system, which achieves similar performance of
sequential writes. In addition to the performance, our scheme
can improve the endurance of SSDs and reduce the garbage
collection overhead in a virtualization environment.

REFERENCES
[1] Amazon Elastic Compute Cloud. Accessed: Oct. 1, 2018. [Online].

Available: https://aws.amazon.com/ec2/
[2] O. Sefraoui, M. Aissaoui, and M. Eleuldj, ‘‘OpenStack: Toward an open-

source solution for cloud computing,’’ Int. J. Comput. Appl., vol. 55, no. 3,
pp. 38–42, 2012.

[3] A. K. Qumranet, Y. K. Qumranet, D. L. Qumranet, U. L. Qumranet, and
A. Liguori, ‘‘KVM: The Linux virtual machine monitor,’’ in Proc. Linux
Symp., vol. 1, 2007, pp. 225–230.

[4] P. Barham et al., ‘‘Xen and the art of virtualization,’’ ACM SIGOPS Oper.
Syst. Rev., vol. 37, no. 5, pp. 164–177, Dec. 2003.

[5] D. Merkel, ‘‘Docker: Lightweight linux containers for consistent develop-
ment and deployment,’’ Linux J., vol. 2014, no. 239, p. 2, 2014.

[6] M. Helsley, ‘‘LXCLinux container tools: Tour and set up the new container
tools called Linux containers,’’ IBM DeveloperWorks, pp. 1–10, 2009.

[7] J. Sahoo, S. Mohapatra, and R. Lath, ‘‘Virtualization: A survey on con-
cepts, taxonomy and associated security issues,’’ in Proc. 2nd Int. Conf.
Comput. Netw. Technol. (ICCNT), 2010, pp. 222–226.

VOLUME 7, 2019 1675



S. Kim et al.: Improving Spatial Locality in VM for Flash Storage

[8] F. Xu, F. Liu, H. Jin, and A. V. Vasilakos, ‘‘Managing performance over-
head of virtual machines in cloud computing: A survey, state of the art, and
future directions,’’ Proc. IEEE, vol. 102, no. 1, pp. 11–31, Jan. 2014.

[9] N. Huber, M. von Quast, M. Hauck, and S. Kounev, ‘‘Evaluating and
modeling virtualization performance overhead for cloud environments,’’
in Proc. CLOSER, 2011, pp. 563–573.

[10] R. Russell, ‘‘virtio: Towards a de-facto standard for virtual I/O devices,’’
ACM SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 95–103, 2008.

[11] N. Har’El, A. Gordon, A. Landau, M. Ben-Yehuda, A. Traeger, and
R. Ladelsky, ‘‘Efficient and scalable paravirtual I/O system,’’ in Proc.
USENIX Annu. Tech. Conf., vol. 26, 2013, pp. 231–242.

[12] D. G. Andersen and S. Swanson, ‘‘Rethinking flash in the data center,’’
IEEE Micro, vol. 30, no. 4, pp. 52–54, Jul./Aug. 2010.

[13] H.-T. Lue et al., ‘‘A highly scalable 8-layer 3D vertical-gate (VG) TFT
NAND Flash using junction-free buried channel BE-SONOS device,’’ in
Proc. Symp. VLSI Technol. (VLSIT), Jun. 2010, pp. 131–132.

[14] C. Min, K. Kim, H. Cho, S.-W. Lee, and Y. I. Eom, ‘‘SFS: Random write
considered harmful in solid state drives,’’ in Proc. FAST, 2012, p. 12.

[15] R. Stoica, M. Athanassoulis, R. Johnson, and A. Ailamaki, ‘‘Evaluating
and repairing write performance on flash devices,’’ in Proc. 5th Int. Work-
shop Data Manage. New Hardw., 2009, pp. 9–14.

[16] E. Seppanen, M. T. O’Keefe, and D. J. Lilja, ‘‘High performance solid
state storage under linux,’’ in Proc. IEEE 26th Symp. Mass Storage Syst.
Technol. (MSST), May 2010, pp. 1–12.

[17] F. Chen, D. A. Koufaty, and X. Zhang, ‘‘Understanding intrinsic character-
istics and system implications of flash memory based solid state drives,’’
ACM SIGMETRICS Perform. Eval. Rev., vol. 37, no. 1, pp. 181–192, 2009.

[18] L. Bouganim, B. Jónsson, and P. Bonnet. (2009). ‘‘uFLIP: Understanding
flash IO patterns.’’ [Online]. Available: https://arxiv.org/abs/0909.1780

[19] C. Lee, D. Sim, J.-Y. Hwang, and S. Cho, ‘‘F2FS: A new file system for
flash storage,’’ in Proc. FAST, 2015, pp. 273–286.

[20] H. Kim, D. Shin, Y. H. Jeong, and K. H. Kim, ‘‘SHRD: Improving spatial
locality in flash storage accesses by sequentializing in host and randomizng
in device,’’ in Proc. FAST, 2017, pp. 271–284.

[21] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and L. Vivier,
‘‘The new ext4 filesystem: Current status and future plans,’’ in Proc. Linux
Symp., vol. 2, 2007, pp. 21–33.

[22] A. Sweeney, D. Doucette,W.Hu, C. Anderson,M.Nishimoto, andG. Peck,
‘‘Scalability in the XFS file system,’’ in Proc. USENIX Annu. Tech. Conf.,
vol. 15, 1996, p. 1.

[23] F. Bellard, ‘‘QEMU, a fast and portable dynamic translator,’’ in Proc.
USENIX Annu. Tech. Conf., vol. 41, 2005, p. 41.

[24] H. C. Yoo, ‘‘Comparative analysis of asynchronous I/O in multithreaded
UNIX,’’ Softw., Pract. Exper., vol. 26, no. 9, pp. 987–997, 1996.

[25] M. McLoughlin. (2008). The Qcow2 Image Format. Gnome. [Online].
Available: http://people.gnome.org/~markmc/qcow-image-format.html

[26] C. Tang, ‘‘FVD: A high-performance virtual machine image format for
cloud,’’ in Proc. USENIX Annu. Tech. Conf., 2011, p. 2.

[27] X. Zhao, Y. Zhang, Y. Wu, K. Chen, J. Jiang, and K. Li, ‘‘Liquid: A scal-
able deduplication file system for virtual machine images,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 25, no. 5, pp. 1257–1266, May 2014.

[28] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka, ‘‘Write amplifi-
cation analysis in flash-based solid state drives,’’ in Proc. SYSTOR, Israeli
Exp. Syst. Conf., 2009, p. 10.

[29] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J. Song,
‘‘A log buffer-based flash translation layer using fully-associative sector
translation,’’ ACM Trans. Embedded Comput. Syst., vol. 6, no. 3, p. 18,
Jul. 2007

[30] S. Lee, D. Shin, Y.-J. Kim, and J. Kim, ‘‘LAST: Locality-aware sec-
tor translation for NAND flash memory-based storage systems,’’ ACM
SIGOPS Operat. Syst. Rev., vol. 42, no. 6, pp. 36–42, Oct. 2008.

[31] S. Mittal and J. S. Vetter, ‘‘A survey of software techniques for using non-
volatile memories for storage and main memory systems,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 27, no. 5, pp. 1537–1550, May 2016.

[32] Y. Zhou, F. Wu, P. Huang, X. He, C. Xie, and J. Zhou, ‘‘An efficient page-
level FTL to optimize address translation in flash memory,’’ in Proc. 10th
Eur. Conf. Comput. Syst., 2015, p. 12.

[33] Q. Li et al., ‘‘Access characteristic guided read and write cost regulation for
performance improvement on flash memory,’’ in Proc. 14th USENIX Conf.
File Storage Technol. (FAST), Santa Clara, CA, USA, 2016, pp. 125–132.
[Online]. Available: https://www.usenix.org/conference/fast16/technical-
sessions/presentation/li-qiao

[34] M. Rosenblum and J. K. Ousterhout, ‘‘The design and implementation of
a log-structured file system,’’ ACM Trans. Comput. Syst., vol. 10, no. 1,
pp. 26–52, 1992.

[35] Z. N. J. Peterson, ‘‘Data placement for copy-on-write using virtual conti-
guity,’’ Ph.D. dissertation, Univ. California, Santa Cruz, Santa Cruz, CA,
USA, 2002.

[36] M. Seltzer, K. Bostic,M.K.Mckusick, andC. Staelin, ‘‘An implementation
of a log-structured file system for UNIX,’’ in Proc. USENIX Winter, 1993,
pp. 307–326.

[37] N. Watkins. (2018). Persistent Red/Black Tree. [Online]. Available: https://
github.com/noahdesu/persistent-rbtree

[38] M. A. Olson, K. Bostic, and M. I. Seltzer, ‘‘Berkeley DB,’’ in Proc.
USENIX Annu. Tech. Conf., 1999, pp. 183–191.

[39] J. Axboe. (Apr. 1998). Fiobenchmark. [Online]. Available: http://freecode.
com/projects/fio

[40] V. Tarasov, E. Zadok, and S. Shepler, ‘‘Filebench: A flexible framework for
file system benchmarking,’’ Login, USENIX Mag., vol. 41, no. 1, pp. 6–12,
2016.

[41] S. Gamage, C. Xu, R. R. Kompella, and D. Xu, ‘‘vPipe: Piped I/O offload-
ing for efficient data movement in virtualized clouds,’’ inProc. ACM Symp.
Cloud Comput., 2014, pp. 1–13.

[42] Q. Chen, L. Liang, Y. Xia, H. Chen, and H. Kim, ‘‘Mitigating sync amplifi-
cation for copy-on-write virtual disk,’’ in Proc. FAST, 2016, pp. 241–247.

[43] Q. Wei, C. Chen, M. Xue, and J. Yang, ‘‘Z-MAP: A zone-based flash
translation layer with workload classification for solid-state drive,’’ ACM
Trans. Storage, vol. 11, no. 1, p. 4, 2015.

SUNGGON KIM received the B.S. degree in
computer science from the University of
Wisconsin–Madison, Madison,WI, USA, in 2015.
He is currently pursuing the Ph.D. degree in com-
puter science and engineering with Seoul National
University. He was an Intern with the Scientific
Data Management Research Group, Lawrence
Berkeley National Laboratory, CA, USA, in 2018.
His research interests are file systems, virtualiza-
tion, cloud computing, distributed systems, multi-

core systems, database systems, and operating systems.

HYEONSANG EOM received the B.S. degree
in computer science and statistics from Seoul
National University (SNU), Seoul, South Korea,
in 1992, and the M.S. and Ph.D. degrees in com-
puter science from the University of Maryland
at College Park, College Park, MD, USA,
in 1996 and 2003, respectively. He is currently
a Professor with the Department of Computer
Science and Engineering, SNU, where he has been
a Faculty Member, since 2005. He was an Intern

with the Data Engineering Group, Sun Microsystems, CA, USA, in 1997,
and a Senior Engineer with the Telecommunication R&D Center, Samsung
Electronics, South Korea, from 2003 to 2004. His research interests include
high performance storage systems, operating systems, distributed systems,
cloud computing, energy efficient systems, fault-tolerant systems, security,
and information dynamics.

YONGSEOK SON received the B.S. degree in
information and computer engineering from Ajou
University, in 2010, and the M.S. and Ph.D.
degrees from the Department of Intelligent Con-
vergence Systems and Electronic Engineering
and Computer Science, Seoul National Univer-
sity, in 2012 and 2018, respectively. He was a
Post-Doctoral Research Associate in electrical and
computer engineering with the University of Illi-
nois at Urbana-Champaign. He is currently an

Assistant Professor with the School of Computer Science and Engineering,
Chung-Ang University. His research interests are operating, distributed, and
database systems.

1676 VOLUME 7, 2019


	INTRODUCTION
	BACKGROUND AND MOTIVATION
	IO OPERATIONS IN KVM/QEMU
	LIMITATIONS OF EXISTING IMAGE FORMATS
	SSD CHARACTERISTIC AND PERFORMANCE IMBALANCE

	DESIGN AND IMPLEMENTATION
	OVERALL ARCHITECTURE
	METADATA/DATA CHECKER
	SEQUENTIALIZER

	DESIGN
	RESHAPING OPERATIONS
	CLEANING OPERATION
	CRASH CONSISTENCY AND RECOVERY

	IMPLEMENTATION

	PERFORMANCE EVALUATION
	EXPERIMENTAL SETUP
	FIO BENCHMARK
	BANDWIDTH
	LATENCY

	FILEBENCH BENCHMARK
	IMPACT OF I/O SCHEDULER
	FIO BENCHMARK USING NVME SSD

	RELATED WORK
	VIRTUALIZATION
	FLASH AWARE MODIFICATIONS

	CONCLUSIONS
	REFERENCES
	Biographies
	SUNGGON KIM
	HYEONSANG EOM
	YONGSEOK SON


