
Received November 13, 2018, accepted December 4, 2018, date of publication December 12, 2018,
date of current version January 7, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2886381

Stability of Switched Time-Delay Systems
via Mode-Dependent Average Dwell
Time Switching
LINLIN HOU 1 AND GUANGDENG ZONG 2, (Senior Member, IEEE)
1School of Information Science and Engineering, Qufu Normal University, Rizhao 276826, China
2College of Engineering, Qufu Normal University, Rizhao 276826, China

Corresponding author: Linlin Hou (houtingting8706@126.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61873331, Grant 61803225,
Grant 61773236, and Grant 61773235, in part by the Taishan Scholar Project of Shandong Province under Grant TSQN20161033,
and in part by the Natural Science Foundation of Shandong province under Grant ZR2016FQ09.

ABSTRACT The stability problem is explored for a class of switched time-delay systems (STDSs) with
unstable subsystems in this paper. The delay-dependent stability criterion of the STDSswithmode-dependent
average dwell time (MDADT) switching is developed via the multiple Lyapunov–Krasovskii functional
approach. The proposed MDADT switching signal contains both fast switching and slow switching. Finally,
the validity of the developed result is certified via a simulation example.

INDEX TERMS Switched system, time delay, mode-dependent average dwell time method, unstable
subsystems.

I. INTRODUCTION
Switched systems, which can be used to describe real-
world systems, such as chemical procedure control systems,
power systems, and navigation systems, have been widely
researched in the last few decades [1]–[11]. Many meth-
ods and technologies, for example, the common Lyapunov
function approach [5], the single Lyapunov function tech-
nique [12], and the multiple Lyapunov function scheme [13],
have been successively deduced to investigate the stability of
switched systems.

Switched systems with unstable subsystems widely exist in
many practical system, such as the network control systems,
asynchronous switching systems, and so on. The existence of
the unstable systems brings some difficulties to analyze the
stability of the switched systems. Therefore, it is necessary to
discuss in depth the stability problem of the switched systems
with unstable subsystems. One of the problems is the design
of the switching signal. In [14], for a class of continuous-
time switched system which contains stable and unstable
subsystems, the stability is investigated. The switching signal
belongs to slow switching and is designed via the average
dwell time (ADT) method. For the discrete-time switched
system with unstable subsystems, some stability conditions
are established in [15], where the switched signal is pre-
sented by using ADT method. Recently, the mode-dependent
average dwell time (MDADT) technique is introduced in [16]

and applied to analyze the stability of switched systems.
It is presented that MDADT is more flexible than ADT
in which each mode has its own ADT in the underlying
system. In view of this superiority, the MDADT switching
method has been widely applied to investigate many types
of problems for the switched systems, see [17]–[20]. Then,
for the switched systems with unstable subsystems, in [21],
the problem of stability analysis is addressed by designing
the switching signal which belongs to slow switching and
satisfiesMDADTmethod. In [22], a class of quasi-alternative
switching signals is introduced to obtain some improved
stability conditions. The slow switching and fast switching
are used among stable subsystems and unstable subsystems,
respectively.

Note that the studied systems in the above mentioned
references do not contain time delay. In many physical pro-
cesses, the time delay phenomenon unavoidably occurs, and
the system performance may be degraded. In order to acquire
good performance for the time-delay systems, a number of
methods and technologies have been proposed, e.g., the free-
weighting-matrix technique [23], [24] and the Wirtinger-
based inequality [25]–[27]. Moreover, STDSs have attracted
special attention during the past decades. Considerable results
have been presented in the literature, see [28]–[31] and the
references therein. In the above references, the considered
systems assume that all the subsystems are stable. For the
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STDSs with unstable subsystems, many scholars have carried
out preliminary research, see [32], [33], etc..

As stated previously, MDADT switching method is more
applicable. Hence, it is necessary to research the stability
issue for STDSs with unstable subsystems via MDADT
switching. Under asynchronous switching, the input-to-state
stability is investigated for switched delay systems in [34],
where the MDADT method is adopted to design the switch-
ing signal. The asynchronous L1 control problem is studied
in [35] for a class of switched positive systems with MDADT
switching. It is worthwhile to point out that, in the above
mentioned references, all the designed ADT (MDADT)-
dependent switching signals belong to slow switching, where
the total running time of stable subsystems and the total
running time of unstable subsystems need to satisfy some
conditions. A natural idea is whether this condition can be
get rid of or not. If possible, how to remove this restriction?
Inspired by the design method of switching signal in [22],
we carry out this study.

In this paper, the stability problem is studied for a class
of STDSs with unstable subsystems. The MDADT method
is adopted to design the switching signal, which is com-
posed of fast MDADT (FMDADT) and slow MDADT
(SMDADT). With the help of the constructed multiple
Lyapunov-Krasovskii functional, some delay-dependent cri-
teria are presented to obtain the stability of the STDSs. The
validity of the developed results is demonstrated via a simu-
lation example finally.

II. PROBLEM FORMULATION
Consider the STDS (6)

ẋ(t) = Aσ (t)x(t)+ Bσ (t)x(t − d(t)), (1)

x(t) = ψ(t), t ∈ [t0 − h, t0], (2)

where x(t) ∈ Rn, ψ(t) and t0 denote the system states,
the initial condition and the initial time step, respectively;
σ (t) is a piecewise constant function and takes its value
in a finite set M = {1, 2, · · · ,M}, in which M presents
the number of the subsystems. The time-varying delay d(t)
satisfies

0 ≤ d(t) ≤ h, ḋ(t) ≤ τ, (3)

where h > 0 and τ > 0. Define

χ (t) = {x(t0); (i0, t0), (i1, t1), · · · , (iq, tq), · · · ,

| iq ∈M, q ∈ Z+} (4)

as the switching sequence corresponding to σ (t), where
tq represents the switching instant. When t ∈ [tq, tq+1), the
iq-th subsystem works. For any iq ∈M, the iq-th subsystem
(6iq ) is described as

ẋ(t) = Aiqx(t)+ Biqx(t − d(t)), (5)

x(t) = ψ(t), t ∈ [t0 − h, t0], (6)

which maybe stable or unstable. Let S denote the set of stable
subsystems and U the set of unstable subsystems. Aiq and

Biq , iq ∈ M denote the constant matrices with appropriate
dimensions.

In this study, the main concern is to design a MDADT
switching signal which is composed of SMDADT switching
and FMDADT switching such that the considered system (6)
is exponentially stable.

III. MAIN RESULTS
For the later development, we first state the following result.
Proposition 1: For given scalars h > 0, 0 < τ < 1,{

αi` > 0, βi` = 1, µi` > 1, i` ∈ S,
αi` < 0, βi` = 0, 0 < µi` < 1, i` ∈ U ,

(7)

if there exist matrices Pi` > 0, Qi` > 0 and Ri` > 0, i` ∈M,

` = 0, 1, 2, · · · such that

9i`

=



9i` (1, 1) 9i` (1, 2)
6
h
e−αi`βi`hRi` hATi`Ri`

∗ 9i` (2, 2)
6
h
e−αi`βi`hRi` hBTi`Ri`

∗ ∗ −
12
h
e−αi`βi`hRi` 0

∗ ∗ ∗ − hRi`


<0,

(8)

where

9i` (1, 1) = ATi`Pi` + Pi`Ai` + αi`Pi` + Qi`

−
4
h
e−αi`βi`hRi` ,

9i` (1, 2) = BTi`Pi` −
2
h
e−αi`βi`hRi` ,

9i` (2, 2) = −
4
h
e−αi`βi`hRi` − (1− τ )eαi`βi`hQi` ,

then

Vi` (t) ≤ e
−αi` (t−t`)Vi` (t`), (9)

where

Vi` (t) = xT (t)Pi`x(t)+
∫ t

t−d(t)
xT (ϑ)eαi` (ϑ−t)Qi`x(ϑ)dϑ

+

∫ 0

−h

∫ t

t+θ
ẋT (ϑ)eαi` (ϑ−t)Ri` ẋ(ϑ)dϑdθ. (10)

Proof: Calculating the derivative of Vi` (t) along the
system (6iq ), we have

V̇i` (t) = 2xT (t)Pi` ẋ(t)+ x
T (t)Qi`x(t)

− (1− ḋ(t))xT (t − d(t))e−αi`d(t)Qi`x(t − d(t))

−αi`

∫ t

t−d(t)
xT (s)eαi` (s−t)Qi`x(s)ds

+ hẋT (t)Ri` ẋ(t)−
∫ t

t−h
ẋT (s)eαi` (s−t)Ri` ẋ(s)ds

−αi`

∫ 0

−h

∫ t

t+θ
ẋT (s)eαi` (s−t)Ri` ẋ(s)dsdθ
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≤ 2xT (t)Pi` ẋ(t)+ x
T (t)Qi`x(t)+ hẋ

T (t)Ri` ẋ(t)

− (1− τ )xT (t − d(t))eαi`βi`hQi`x(t − d(t))

−αi`

∫ t

t−d(t)
xT (s)eαi` (s−t)Qi`x(s)ds

−

∫ t

t−h
ẋT (s)e−αi`βi`hRi` ẋ(s)ds

−αi`

∫ 0

−h

∫ t

t+θ
ẋT (s)eαi` (s−t)Ri` ẋ(s)dsdθ,

≤ 2xT (t)Pi` ẋ(t)+ x
T (t)Qi`x(t)+ hẋ

T (t)Ri` ẋ(t)

− (1− τ )xT (t − d(t))e−αi`βi`hQi`x(t − d(t))

−

∫ t

t−d(t)
ẋT (s)e−αi`βi`hRi` ẋ(s)ds

+αi`x
T (t)Pi`x(t)− αi`Vi` (t). (11)

Using Wirtinger-based inequality yields

−

∫ t

t−d(t)
e−αi`βi`hẋT (s)Ri` ẋ(s)ds

≤ −
1
h
η(t)

[
e−αi`βi`hRi` 0

0 3e−αi`βi`hRi`

]
ηT (t)

= ξT (t)

×
e−αi`βi`h

h

−4Ri` −2Ri` 6Ri`
∗ −4Ri` 6Ri`
∗ ∗ −12Ri`

 ξ (t), (12)

where

η(t) = col
{
x(t)− x(t − d(t)),

x(t)+ x(t − d(t))−
2
d(t)

∫ t

t−d(t)
x(s)ds

}
,

ξ (t) = col
{
x(t), x(t − d(t)),

1
d(t)

∫ t

t−d(t)
x(s)ds

}
.

From (11) and (12), one gets

V̇i` (t)
≤ 2xT (t)Pi` (Ai`x(t)+ Bi`x(t − d(t)))+ x

T (t)Qi`x(t)
− (1− τ )xT (t − d(t))eαi`βi`hQi`x(t − d(t))
+ h(Ai`x(t)+ Bi`x(t − d(t)))

TRi`
× (Ai`x(t)+ Bi`x(t − d(t)))

+ ξT (t)
e−αi`βi`h

h

−4Ri` −2Ri` 6Ri`
∗ −4Ri` 6Ri`
∗ ∗ −12Ri`


× ξ (t)+ αi`x

T (t)Pi`x(t)− αi`Vi` (t)

= ξT (t)


9i` (1, 1) 9i` (1, 2)

6
h
e−αi`βi`hRi`

∗ 9i` (2, 2)
6
h
e−αi`βi`hRi`

∗ ∗ −
12
h
e−αi`βi`hRi`

 ξ (t)

+ hξT (t)

ATi`BTi`
0

Ri` [Ai` Bi` 0
]
ξ (t)− αi`Vi` (t).

(13)

Combining the Schur complement lemma with (8) gives
rise to
9i` (1, 1) 9i` (1, 2)

6
h
e−αi`βi`hRi`

∗ 9i` (2, 2)
6
h
e−αi`βi`hRi`

∗ ∗ −
12
h
e−αi`βi`hRi`


+ h

ATi`BTi`
0

Ri` [Ai` Bi` 0
]
< 0, (14)

which together with (13) leads to (9). �
Remark 1: In this study, the Lyapunov-Krasovskii func-

tional (10) is given, in which the parameter αi` is provided
to distinguish the differences between stable and unstable
subsystems (5). In addition, in order to obtain a unitary
expression of (8) and the derivative ofVi` (t), the parameterβi`
in (7) is introduced.
Remark 2: The inequality (9) reveals the relationship

between Vi` (t) and Vi` (t`) for subsystem i`, from which we
obtain that when i` ∈ S, the energy of subsystem i` is
descendant; while when i` ∈ U , the energy of subsystem
i` is incremental. In the following, the system (6) com-
posed of stable subsystems and unstable subsystems shall be
considered, and the result of the exponential stability of the
system (6) is given via the MDADT switching
signal.
Theorem 1: For given scalars h > 0, 0 < τ < 1, and αi` ,

βi` , µi` satisfying (7), if there exist matrices Pi` > 0,Qi` > 0
and Ri` > 0, i`, ip ∈M, `, p = 0, 1, 2, · · · such that (8) and
the following inequalities

Pi` ≤ µi`Pip , Qi` ≤ µi`Qip ,Ri` ≤ µi`Rip , i`∈S, ip∈M,

(15)

Pi` ≤ µi`Pip , Qi` ≤ µi`Qip ,Ri` ≤ µi`Rip , i`∈U , ip∈S
(16)

hold, then the system (6) is exponentially stable under the
MDADT switching signal satisfying

τ ai` ≥ τ
a∗
i` =

lnµi`
αi`

, i` ∈ S,

τ ai` ≤ τ
a∗
i` =

lnµi`
αi`

, i` ∈ U .
(17)

Proof: From switching sequence (4), when t ∈

[tq, tq+1), σ (t) = iq. For the iq subsystem, choose the
Lyapunov-Krasovskii functional as

Viq (t) = xT (t)Piqx(t)

+

∫ t

t−d(t)
xT (ϑ)eαiq (ϑ−t)Qiqx(ϑ)dϑ

+

∫ 0

−h

∫ t

t+θ
ẋT (ϑ)eαiq (ϑ−t)Riq ẋ(ϑ)dϑdθ. (18)
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Combining (9) with (18), we have

Viq (t) ≤ e−αiq (t−tq)Viq (tq)

= e−αiq (t−tq)
(
xT (tq)Piqx(tq)

+

∫ tq

tq−d(tq)
xT (ϑ)eαiq (ϑ−tq)Qiqx(ϑ)dϑ

+

∫ 0

−h

∫ tq

tq+θ
ẋT (ϑ)eαiq (ϑ−tq)Riq ẋ(ϑ)dϑdθ

)
= e−αiq (t−tq)

(
xT (tq)Piqx(tq)

+

∫ tq

tq−d(tq)
xT (ϑ)eαiq−1 (ϑ−tq)

× e(αiq−αiq−1 )(ϑ−tq)Qiqx(ϑ)dϑ

+

∫ 0

−h

∫ tq

tq+θ
ẋT (ϑ)eαiq−1 (ϑ−tq)

× e(αiq−αiq−1 )(ϑ−tq)Riq ẋ(ϑ)dϑdθ
)
. (19)

At the switching instant tq, the following cases are dis-
cussed.
Case I: iq−1 ∈ U and iq ∈ S
In this case, αiq − αiq−1 > 0. By (7), we can obtain

e(αiq−αiq−1 )(s−tq) < 1, where s−tq ∈ [−h, 0]. Combining (15)
with (19) implies

Viq (t) ≤ e
−αiq (t−tq)µiqViq−1 (tq). (20)

Case II: iq−1 ∈ S and iq ∈ U
In this case, αiq − αiq−1 < 0. From (19), we have

Viq (t)

≤ e−αiq (t−tq)
(
xT (tq)Piqx(tq)

+

∫ tq

tq−d(tq)
xT (ϑ)eαiq−1 (ϑ−tq)e(αiq−1−αiq )hQiqx(ϑ)dϑ

+

∫ 0

−h

∫ tq

tq+θ
ẋT (ϑ)eαiq−1 (ϑ−tq)ẽRiq ẋ(ϑ)dϑdθ

)
= e−αiq (t−tq)e(αiq−1−αiq )h

(
xT (tq)e

(αiq−αiq−1 )hPiqx(tq)

+

∫ tq

tq−d(tq)
xT (ϑ)eαiq−1 (ϑ−tq)Qiqx(ϑ)dϑ

+

∫ 0

−h

∫ tq

tq+θ
ẋT (ϑ)eαiq−1 (ϑ−tq)Riq ẋ(ϑ)dϑdθ

)
≤ e−αiq (t−tq)e(αiq−1−αiq )h

(
xT (tq)Piqx(tq)

+

∫ tq

tq−d(tq)
xT (ϑ)eαiq−1 (ϑ−tq)Qiqx(ϑ)dϑ

+

∫ 0

−h

∫ tq

tq+θ
ẋT (ϑ)eαiq−1 (ϑ−tq)Riq ẋ(ϑ)dϑdθ

)
≤ e−αiq (t−tq)e(αiq−1−αiq )hµiqViq−1 (tq), (21)

where ẽ = e(αiq−1−αiq )h.

Case III: iq−1 ∈ S and iq ∈ S
Under this circumstance, αiq − αiq−1 ≥ 0 and αiq −

αiq−1 < 0 are considered, respectively.

When αiq − αiq−1 ≥ 0, e(αiq−αiq−1 )(s−tq) ≤ 1. The above
inequality implies that

Viq (t) ≤ e−αiq (t−tq)
(
xT (tq)Piqx(tq)

+

∫ tq

tq−d(tq)
xT (ϑ)eαiq−1 (ϑ−tq)Qiqx(ϑ)dϑ

+

∫ 0

−h

∫ tq

tq+θ
ẋT (ϑ)eαiq−1 (ϑ−tq)Riq ẋ(ϑ)dϑdθ

)
≤ e−αiq (t−tq)µiqViq−1 (tq). (22)

When αiq − αiq−1 < 0, the following inequality is true

Viq (t) ≤ e−αiq (t−tq) × e(αiq−1−αiq )hµiqViq−1 (tq). (23)

Define

νiq =

{
µiq , αiq − αiq−1 ≥ 0,
µ̄iq , αiq − αiq−1 < 0,

(24)

where µ̄iq = e(αiq−1−αiq )hµiq . From (19)-(23), one gets

Viq (t) ≤ e
−αiq (t−tq)νiqViq−1 (tq), (25)

which further implies that

Viq (t) ≤ e−αiq (t−tq)νiqViq−1 (tq)

≤ e−αiq (t−tq)νiqe
−αiq−1 (tq−tq−1) × Viq−1 (tq−1)

≤ e−αiq (t−tq)νiqe
−αiq−1 (tq−tq−1) × νiq−1Viq−2 (tq−1)

≤ · · ·

≤ e−αiq (t−tq)νiqe
−αiq−1 (tq−tq−1)

× νiq−1 · · · νi1e
−αi0 (t1−t0)Vi0 (t0)

= e−αiq (t−tq)
q−1∏
s=0

νis+1e
−αis (ts+1−ts) × Vi0 (t0). (26)

Let H1 , αis+1 − αis ≥ 0, H2 , αis+1 − αis < 0, and
Ñ = N σis+1 (t0, t). Note that

q−1∏
s=0

νis+1

= exp
( q−1∑
s=0

ln νis+1

)
= exp

(∑
H1

ln νj +
∑
H2

ln νj

)

= exp
(∑

H1

( ∑
is+1 ∈ S
is ∈ U

ln νis+1 +
∑

is, is+1 ∈ S
is+1 6= is

ln νis+1
)
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+

∑
H2

( ∑
is+1 ∈ U
is ∈ S

ln νis+1 +
∑

is, is+1 ∈ S
is 6= is+1

ln νis+1
))

= exp
(∑

H1

( ∑
is+1 ∈ S
is ∈ U

lnµis+1 +
∑

is, is+1 ∈ S
is 6= is+1

lnµis+1
)

+

∑
H2

( ∑
is+1∈U ,is∈S

ln(e(αis−αis+1 )hµis+1 )

+

∑
is, is+1 ∈ S
is 6= is+1

ln(e(αis−αis+1 )hµis+1 )
))

≤ exp
( ∑

is+1 ∈ S
is ∈ U
H1

Ñ lnµis+1 +
∑

is, is+1 ∈ S
is 6= is+1

H1

Ñ lnµis+1

+

∑
is+1 ∈ U
is ∈ S
H2

Ñ ln(e(αis−αis+1 )hµis+1 )

+

∑
is, is+1 ∈ S
is 6= is+1

H2

Ñ ln(e(αis−αis+1 )hµis+1 )
)

= exp
( ∑

is+1 ∈ S
is ∈ U
H1

Ñ lnµis+1 +
∑

is, is+1 ∈ S
is 6= is+1

H1

Ñ lnµis+1

+

∑
is+1 ∈ U
is ∈ S
H2

Ñ (αis − αis+1 )h+
∑

is+1 ∈ U
is ∈ S
H2

Ñ lnµis+1

+

∑
is ∈ S
is+1 ∈ S
is 6= is+1

H2

Ñ (αis − αis+1 )h+
∑
is ∈ S
is+1 ∈ S
is 6= is+1

H2

Ñ lnµis+1

)

= exp
( ∑

is+1 ∈ U
is ∈ S
H2

Ñ (αis − αis+1 )h

+

∑
is, is+1 ∈ S
is 6= is+1

H2

Ñ (αis − αis+1 )h
)

× exp
( ∑

is+1 ∈ S
is ∈ U
H1

Ñ lnµis+1 +
∑

is, is+1 ∈ S
is 6= is+1

H1

Ñ lnµis+1

+

∑
is+1 ∈ U
is ∈ S
H2

Ñ lnµis+1 +
∑

is, is+1 ∈ S
is 6= is+1

H2

Ñ lnµis+1

)

= exp
( ∑

is+1 ∈ U
is ∈ S

Ñ (αis − αis+1 )h

+

∑
is, is+1 ∈ S
is 6= is+1

H2

Ñ (αis − αis+1 )h
)

× exp
( ∑

is+1 ∈ S
is ∈ U

Ñ lnµis+1 +
∑

is, is+1 ∈ S
is 6= is+1

Ñ lnµis+1

+

∑
is+1 ∈ U
is ∈ S

Ñ lnµis+1

)

= exp
( ∑

is+1 ∈ U
is ∈ S

Ñ (αis − αis+1 )h

+

∑
is, is+1 ∈ S
is 6= is+1

H2

Ñ (αis − αis+1 )h
)

× exp
( ∑
is+1∈S

Ñ lnµis+1 +
∑

is+1∈U
Ñ lnµis+1

)

≤ exp
( ∑
is+1∈U ,is∈S

Ñ (αis − αis+1 )h

+

∑
is, is+1 ∈ S
is 6= is+1

H2

Ñ (αis − αis+1 )h
)

× exp
( ∑
is+1∈S

(N 0
is+1 +

Tis+1 (t0, t)

τ ais+1

) lnµis+1

+

∑
is+1∈U

(N 0
is+1 +

Tis+1 (t0, t)

τ ais+1

) lnµis+1

)

= exp
( ∑

is+1 ∈ U
is ∈ S

Ñ (αis − αis+1 )h

+

∑
is, is+1 ∈ S
is 6= is+1

H2

Ñ (αis − αis+1 )h
)

× exp
( ∑
is+1∈S

N 0
is+1 lnµis+1 +

∑
is+1∈U

N 0
is+1 lnµis+1

)
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× exp
( ∑
is+1∈S

Tis+1 (t0, t)

τ ais+1

lnµis+1

+

∑
is+1∈U

Tis+1 (t0, t)

τ ais+1

lnµis+1

)
, (27)

and

e−αiq (t−tq)
q−1∏
s=0

e−αis (ts+1−ts)

= exp
( ∑
is ∈ S

−αisTis (t0, t)+
∑
is ∈ U

−αisTis (t0, t)
)
.

(28)

Consequently, because of the inequalities (26)-(28) and
Vσ (t)(t) = Viq (t) when t ∈ [tq, tq+1), we obtain

Vσ (t)(t)

≤ exp
( ∑
i`∈U ,ip∈S

N σi` (t0, t)(αip − αi` )h

+

∑
ip, i` ∈ S
ip 6= i`

αi` − αip < 0

N σi` (t0, t)(αip − αi` )h
)

× exp
(∑
i`∈S

N 0
i` lnµi` +

∑
i`∈U

N 0
i` lnµi`

)

× exp
(∑
i`∈S

Ti` (t0, t)
τ ai`

lnµi`+
∑
i`∈U

Ti` (t0, t)
τ ai`

lnµi`

)
× exp

(∑
i`∈S
−αi`Ti` (t0, t)+

∑
i`∈U
−αi`Ti` (t0, t)

)
×Vσ (t0)(t0)

= exp
( ∑
i`∈U ,i∈S

N σi` (t0, t)(αi − αi` )h

+

∑
ip, i` ∈ S
ip 6= i`

αi` − αip < 0

N σi` (t0, t)(αi − αi` )h
)

× exp
(∑
i`∈S

N 0
i` lnµi` +

∑
i`∈U

N 0
i` lnµi`

)

× exp
(∑
i`∈S

( lnµi`
τ ai`

− αi`

)
Ti` (t0, t)

+

∑
i`∈U

( lnµi`
τ ai`

− αi`

)
Ti` (t0, t)

)
Vσ (t0)(t0). (29)

According to (17), we have Vσ (t)(t) → 0 as t → ∞.
By the definition in [36], we conclude that the system (6)
is exponentially stable. �
Remark 3: From Theorem 1, where the MDADT switch-

ing signal (17) is designed, we observe that the SMDADT

FIGURE 1. The state trajectories of subsystems.

switching is applied to a stable subsystem whereas the
FMDADT switching is applied to an unstable subsystem.
However, this does not mean that the FMDADT is certainly
smaller than the SMDADT. This argument will be explained
via a numerical example.

The following result is obtained when all the subsystems
are stable.
Corollary 1: For given scalars h > 0, 0 < τ < 1, and

αi` > 0, µi` > 1, i` ∈ M, if there exist matrices Pi` > 0,
Qi` > 0 and Ri` > 0, i` ∈ M, `, p = 0, 1, 2, · · · such that
the inequality (8) and the following inequalities

Pi` ≤ µi`Pip , Qi` ≤ µi`Qip , Ri` ≤ µi`Rip , (30)

hold, then the switched delay system (6) is exponentially
stable under the MDADT switching signal satisfying

τ ai` ≥ τ
a∗
i` =

lnµi`
αi`

. (31)

IV. A NUMERICAL EXAMPLE
In order to present the effectiveness of the developed result,
a simulation example is shown in this section.

The system parameters are listed as follows:

A1 =
[
−2.5 −0.5
0.2 −1.5

]
, B1 =

[
−0.1 0.1
−0.1 0.2

]
,

A2 =
[
−1.8 0.1
0.1 −1.5

]
, B2 =

[
−0.2 −0.1
−0.4 −0.1

]
,

A3 =
[

0.5 0.1
−0.3 0.5

]
, B3 =

[
0.1 −0.3
−0.2 0.1

]
.

The state trajectories of the subsystems are presented
in FIGURE 1. From FIGURE 1, the subsystems 1 and 2 are
stable, and the subsystem 3 is unstable. The state trajectories
of subsystems. Subsequently, by Theorem 1, the parameters
µi` , αi` , βi` , i` = 1, 2, 3, ` = 0, 1, 2, · · · and the correspond-
ing MDADTs are shown in TABLE 1.

TABLE 1 shows that the dwell time of the 2nd subsystem is
shorter than the one of the 3rd subsystem, which signifies that
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TABLE 1. Parameters µi` , αi` , βi` and MDADTs τa∗

i`
.

TABLE 2. Parameters τa∗

2 and h.

TABLE 3. Parameters τa∗

3 and h.

FIGURE 2. Response curves of x(t) and σ (t).

the resident time of the unstable subsystem is not necessarily
smaller than that of the stable subsystem.

In the sequel, the relations between the dwell time τ a∗i` and
the maximum upper boundedness h of the time delay d(t) are
analyzed by virtue of TABLE 2 and TABLE 3. TABLE 2
presents relations between the parameter h and the dwell
time τ a∗2 of the stable subsystem 2, which shows that the
longer the dwell time of the stable subsystems, the bigger
the maximum upper boundedness h. In the same way, from
TABLE 3, we can obtain that a shorter dwell time of the
unstable subsystem results in a bigger upper boundedness of
time delay.

For h = 2, d(t) = 0.2 sin(t), and τ a1 = 0.67 > τ a∗1 ,

τ a2 = 0.21 > τ a∗2 , τ
a
3 = 0.25 < τ a∗3 , on the basis of

Theorem 1, the state response curves of system (6) under
the switching sequence 1 → 3 → 2 → 1 → 3 →
2 · · · and the initial value x(0) =

[
2 −4

]T are depicted in
FIGURE 2. Furthermore, the response of the switching signal
is illustrated in FIGURE 2 , from which we can see that the

state of the system (6) converges to zero with the developed
switching signal. Response curves of x(t) and σ (t).

V. CONCLUSION
The stability problem has been studied for a class of STDSs
with unstable subsystems. The switching signal has been
designed via MDADT method, which contains fast switch-
ing with unstable subsystems and slow switching with sta-
ble subsystems. Some delay-dependent stability results have
been developed. A simulation example has been presented to
demonstrate the validity of the obtained results. Considering
the influence of the constructed Lyapunov-Krasovskii func-
tional and the methods adopted to deal with time-delay on
the stable conditions, in the future research, we will provide
some new methods and techniques to deal with the delay to
obtain better results.
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