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ABSTRACT The method for detection of complex sinusoids in additive white Gaussian noise and estimation
of their frequencies is proposed. It contains two stages: 1) sinusoid detection (model order estimation)
and coarse frequency estimation, and 2) fine frequency estimation. The proposed method operates in the
frequency domain, i.e., it uses the discrete Fourier transform (DFT) as the main tool. Sinusoid detection is
performed so that a fixed probability of false alarm is provided (Neymann–Pearson criterion). For both coarse
and fine frequency estimations, the three-point periodogram maximization approach is used. Simulations
are carried out for variable signal-to-noise ratio, variable frequency displacement between the sinusoids
and variable offset from the frequency grid. The proposed method meets the Cramér–Rao lower bound
in frequency estimation and practically does not depend on the frequency displacement except for very
small displacement values. In terms of model order estimation accuracy, it outperforms the state-of-the-art
approaches. The most expensive operation in the method is the calculation of the DFT. Therefore, in terms
of calculation complexity, the proposed method is on par with the most efficient algorithms for multiple
frequency estimations.

INDEX TERMS Cramér-Rao lower bound, discrete Fourier transform, model order estimation, multiple
frequency estimation, Neymann-Pearson criterion.

I. INTRODUCTION
Frequency estimation of multiple sinusoids, also known
as line spectral estimation, represents a fundamental prob-
lem that arises in numerous applications, including power
systems [1], signal processing [2], [3], telecommunica-
tions [4]–[7], global position systems [8], biomedical
engineering [9], mechanical engineering [10]. In telecom-
munications, for example, frequency estimation of multiple
sinusoids is encountered in channel estimation of mm-wave
MIMO systems [4], [5], carrier frequency offset estimation
in OFDM systems [6], frequency estimation for burst mode
communications [7] etc. Maximum likelihood (ML) estima-
tor of the frequencies of multiple sinusoids is asymptoti-
cally efficient for additive white Gaussian noise (AWGN)
and exhibits good performance for non-Gaussian noise [2].
However, its numerical implementation through standard
techniques is very complex [11] and therefore other sub-
optimal estimators, based on the discrete Fourier transform
(DFT) [12] or subspace techniques such as multiple signal
classification (MUSIC) [13] and estimation of signal param-
eters via rotational invariance techniques (ESPRIT) [14], are
commonly used. The main advantage of the MUSIC and
ESPRIT methods over DFT is superresolution, i.e. the ability

to estimate the frequencies with resolution higher than one
DFT bin. On the other side, their disadvantage is that they
require the number of sinusoids to be known in advance,
restricting their use in more general cases. One recent contri-
bution that uses theMUSIC-based approach on the undersam-
pled data is proposed in [15]. A numerical implementation of
theML estimator has been proposed in [16]. Initial frequency
estimations in [16] are computed using the DFT and refined
via the modified variable projection.

The DFT-based approach is particularly popular since,
in the case of single complex sinusoid embedded in AWGN,
the ML frequency estimation is obtained by maximizing
its periodogram [17], which can be efficiently computed
using the DFT. Therefore, the most popular single fre-
quency estimators are based on the periodogram maximiza-
tion through some form of interpolation in the frequency
domain [18]–[24]. When dealing with multiple sinusoids,
the DFT is not an optimal solution due to the spectral leakage
effect, which can be alleviated by applying windowing in
the time domain [1], [12]. However, a non-negligible fre-
quency bias still remains after windowing [22]. The case of
single real-valued sinusoid is equivalent to the case of two
complex sinusoids with the same amplitudes and opposite
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sign frequencies [22]. However, due to the spectrum sym-
metry of real-valued signals, the periodogram-based fre-
quency estimation of a real-valued sinusoid is performed by
maximizing only one spectral peak (at positive or negative
frequencies) [11].

This paper presents a joint solution for detection of com-
plex sinusoids (cisoids) embedded in AWGN and estimation
of their frequencies. Detection (model order estimation) and
frequency estimation are performed in the frequency domain.
The strongest peaks are detected and removed from the spec-
trum, one at a time, until we conclude that the remaining
spectrum does not contain peaks that can be associated with
cisoids. That conclusion is made so that a fixed probability of
false alarm (PFA) is provided, i.e. according to the Neymann-
Pearson criterion. Along with model order estimation, coarse
frequency estimations are obtained, which are improved in
the estimation refinement stage. Simulations show that the
frequency estimation accuracy meets the Cramér-Rao lower
bound (CRLB). Both model order and frequency estimation
are based on the standard DFT, which enables efficient imple-
mentation of the proposed method. In terms of calculation
complexity, it is on par with the most efficient state-of-the-art
algorithms [24]. As opposed to [24]: i) we do not assume that
the model order is known a priori and ii) our approach does
not suffer from the error saturation effect at higher signal-
to-noise ratio (SNR). In terms of model order estimation,
it outperforms the state-of-the-art approaches [25], [26] in
both accuracy and efficiency.

In Section II, the signal model and the problem statement
are given. The proposed method for detection and frequency
estimation of multiple cisoids is described in Section III,
whereas its performance is evaluated in Section IV.
Conclusions are drawn in Section V.

II. PROBLEM DESCRIPTION
Let us consider the following received signal:

x(n) =
K∑
k=1

Akej(2π fkn+φk ) + ε(n), n = 0, 1, · · · ,N − 1,

(1)

where Ak , fk and φk represent the amplitude, frequency
and initial phase of the k-th complex sinusoid, respectively,
K the unknown number of complex sinusoids (model order),
ε(n) zero-mean AWGN with variance σ 2

ε and N the signal
length. In addition, Ak > 0 and |fk | < 1/2 for k =
1, 2, . . . ,K , whereas φk are independent random vari-
ables uniformly distributed within (−π, π]. Since the
periodogram-based methods cannot resolve peaks sepa-
rated by less than 1/N in cycles per sampling interval
[11, Sec. 2.4.1], we will assume that sinusoids are at least
one DFT bin apart. Our aim is to estimate the model order K
and sinusoid frequencies fk .

Relation (1) can be written in matrix form as [11], [16]

x = 8a+ ε, (2)

where

8

=


1 1 · · · 1
ej2π f1 ej2π f2 · · · ej2π fk
...

...
. . .

...

ej2π (N−1)f1 ej2π (N−1)f2 · · · ej2π (N−1)fk


N×K
(3)

a

=
[
A1ejφ1 A2ejφ2 · · · AK ejφK

]T (4)

ε

=
[
ε(0) ε(1) · · · ε(N − 1)

]T
. (5)

The ML estimate of the frequency vector f= [f1 f2 · · · fK ]T

is given by [11], [16]

f̂ = argmax
f

L(f), (6)

with

L(f) = xH8(8H8)−18Hx, (7)

where ()H represents the Hermitian transpose operator.
Unfortunately, maximization of L(f) is difficult to achieve

due to its complicated multimodal shape with sharp global
maxima corresponding to vector f [2]. Finding f̂ requires
a stable and accurate initialization, which is currently not
available in the literature [11]. Therefore, the initialization is
usually performed using the DFT approach, which is further
refined by other iterative techniques [16].

The CRLBs for frequencies, amplitudes and initial phases
of multiple cisoids are derived in [12]. The exact analyti-
cal CRLB expression for fk in general case is not avail-
able. However, it can be shown that the asymptotic CRLB
(as N →∞) for frequency estimation f̂k satisfies [11]

var( f̂k ) ≥
6σ 2
ε

N 3A2k
. (8)

III. PROPOSED METHOD
In this section, we present a joint solution for the estimation
of the number of complex sinusoids embedded in AWGN and
their frequencies. The proposed method contains two stages:
i) detection and coarse frequency estimation and ii) fine
frequency estimation. The stages are described in the sequel.

A. DETECTION AND COARSE FREQUENCY ESTIMATION
Detection of sinusoids (spectral lines) starts with the strongest
one. After locating that component and obtaining its coarse
frequency estimation, say f ck (c stands for coarse), we remove
it from x(n) via the following three steps:
1) Demodulate x(n) by e−j2π f

c
k n: xd (n) = x(n)e−j2π f

c
k n

(d in xd (n) stands for demodulation).
2) Remove the DC component of xd (n).
3) Modulate xd (n) to obtain the signal x(n) without the

strongest component: x†(n) = xd (n)ej2π f
c
k n.
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If f ck is accurate enough, the strongest component will be
located at low-frequency band of xd (n) after the first step.
Ideally, it will occupy only the DC component of xd (n). After
the second step, the greatest portion of its energy will be
removed. Finally, the third step cancels the demodulation
effect of the first step. The estimation accuracy of f ck will be
discussed shortly.

Steps 1–3 are repeated until we conclude that the spec-
trum of x†(n) does not contain any spectral lines that can
be associated with cisoids. After each component removal,
maximum of the remaining spectrum is compared to a prede-
fined threshold T . If it exceeds the value of T , we conclude
that additional cisoids exist in the spectrum and repeat the
procedure. The value of T is determined so that a fixed
PFA is provided (Neymann-Pearson criterion). To that end,
assume that the spectrum does not contain sinusoids, i.e. that
it contains only the noise. Since ε(n) is AWGNwith i.i.d. real
and imaginary parts, the DFT of ε(n), denoted as E(m), where
m = 0, 1, · · · ,N − 1 is discrete frequency index, is also
complex AWGN with zero mean and variance Nσ 2

ε [11].
Modulus of E(m) is a Rayleigh variable with scale parameter

b|E| =

√
N
2
σε . (9)

The mean and variance of |E(m)| are defined as [27]

µ|E| =

√
π

2
b|E|

σ 2
|E| =

(
2−

π

2

)
b2
|E|. (10)

For example, the PFAs corresponding to T = µ|E| + 3σ|E|,
µ|E|+ 4σ|E| andµ|E|+5σ|E|, areP(|E| ≥ T ) = 5.628×10−3,
5.512× 10−4 and 3.515× 10−5, respectively.

Parameter b|E|, and hence µ|E| and σ|E|, can be estimated
from the DFT of x(n). Since the DFT of a white-noise process
is also a white-noise process and since the white noise is
distributed uniformly in frequency, as opposed to sinusoids
which occupy very narrow frequency bands, b|E| can be
estimated from the DFT bins not occupied by sinusoids.
Alternatively, we can use a time-frequency approach [28].

The sinusoid detection performance depends on the esti-
mation accuracy of f ck . If the estimation is not accurate
enough, the current strongest component will not be properly
removed, i.e. a significant part of its energy will remain [28],
which can degrade the performance of detection of other
sinusoids. Therefore, it is essential to use accurate frequency
estimator for this purpose. In this method, we will use a
low-complexity single-cisoid frequency estimator proposed
in [29], which achieves the CRLB. Section III-C gives a
brief description of this estimator. The frequency estimations
obtained in this stage represent coarse estimations and will be
refined using the procedure described in Section III-B.

Finally, the three step procedure for removing the current
strongest cisoid from the received signal can be performed
very efficiently, without calculating the DFT [22]. Since the
DC component of xd (n) equals the sum of its samples,

the signal x†(n) can be obtained simply as

x†(n) =
[
xd (n)− xd (n)

]
ej2π f

c
k n

= x(n)− xd (n)ej2π f
c
k n, (11)

where xd (n) represents the mean value of xd (n). In (11), term
xd (n) − xd (n) within brackets corresponds to Step 2 in the
procedure given at the beginning of this section.

B. FINE FREQUENCY ESTIMATION
Once themodel order estimation K̂ and coarse frequencies f ck ,
k = 1, 2, · · · , K̂ , are obtained, the fine frequency estimation
is performed as follows:

1) Set f rk = f ck for every k = 1, 2, · · · , K̂ (r stands for
refined).

2) For every k , k = 1, 2, · · · , K̂ , do
a) Remove all the sinusoids from the considered sig-

nal, except the k-th one, following the procedure
described in section III-A with estimations f rk ,
k = 1, 2, · · · , K̂ .

b) Refine the frequency estimation of the k-th sinu-
soid and update f rk with the obtained value.

In order to mitigate the influence of other sinusoids on the
one currently estimated [12], [22], we remove them from the
considered signal. Then we use the periodogram maximiza-
tion as theML approach for single frequency estimation. Sim-
ulations show that sinusoid removal is crucial in improving
the estimation accuracy to the CRLB limit.

C. THREE-POINT PERIODOGRAM MAXIMIZATION
In this section, we briefly overview the frequency estimation
method [29] used herein, incorporated in both coarse and fine
frequency estimations.

The ML frequency estimation of a single cisoid is obtained
as [17]

f̂ML = argmax
θ

P(θ ), (12)

where the periodogram P(θ ) is defined as

P(θ ) =

∣∣∣∣∣
N−1∑
n=0

x(n)e−j2πθn
∣∣∣∣∣ . (13)

θ represents continuous frequency. The periodogram is cal-
culated via DFT, so the true periodogram maximum and the
DFT maximum generally do not coincide. Method [29] com-
prises three steps for estimating the displacement δ between
these two maxima, given as follows:

1) Coarse estimation Calculate the DFT of x(n), denoted
as X (m), and locate the maximum position m0.

2) Candan’s estimation Calculate the Candan’s
displacement [20]

δ̂C=
arctan

(
tan( πN )Re

{
X (m0−1)−X (m0+1)

2X (m0)−X (m0−1)−X (m0+1)

})
π
N

.

(14)

3) Parabolic interpolation Calculate three periodogram
samples P1, P2 and P3 at θ1 = fC − fd , θ2 = fC and
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Algorithm 1Model Order and Frequency Estimation ofMul-
tiple Sinusoids
InputAlgorithm input is the sequence x(n), defined by (1),
and the estimated noise variance. The threshold T is
calculated using the noise variance.

Detection and coarse frequency estimation
Calculate X (m) = DFT [x(n)]. Set k = 0, x†(n) = x(n)
and X†(m) = X (m). Locate the maximum of |X†(m)| as
m0 = argmax

k
|X†(m)|.

While |X†(m0)| > T do
1) k = k + 1
2) Estimate the frequency of the k-th sinusoid

from x†(n), using the three-point periodogram
maximization, to obtain the coarse estimation f ck .

3) Remove the k-th sinusoid component from x†(n)
by x†(n) = x†(n)− xd (n)ej2π f

c
k n, where

xd (n) = x†(n)e−j2π f
c
k n.

4) Calculate theDFT of x†(n) and locate its maximum
as m0 = argmax

k
|X†(m)|.

Loop
K̂ = k represents the estimation of model order.
f ck , k ∈ {1, 2, · · · , K̂ }, are coarse frequency estimations.

Fine frequency estimation
Set f rk = f ck , k ∈ {1, 2, · · · , K̂ }.
For every k ∈ {1, 2, · · · , K̂ } do

1) Set x†(n) = x(n).
2) For every k1 ∈ {1, 2, · · · , K̂ } \ {k} do

Remove the k1-th sinusoid from x†(n) as x†(n) =
x†(n)−xd (n)ej2π f

r
k1
n, where xd (n)=x†(n)e−j2π f

r
k1
n.

Next k1
3) Refine the frequency estimation of the k-th

component using the three-point periodogram
maximization and update f rk with the obtained
value.

Next k
Output Algorithm outputs are K̂ and f rk , k ∈

{1, 2, · · · , K̂ }.

θ3 = fC+ fd , respectively. The central frequency is cal-
culated as fC = (m0+δ̂C )/N , where δ̂C is given by (14).
Side frequencies θ1 and θ3 are displaced by fd from fC ,
and fd can be chosen arbitrarily in interval (0, 1

2N ],
without affecting the method’s performance [29]. The
final frequency estimation is obtained as the vertex of
a parabola fitted through points (θ1,P1), (θ2,P2) and
(θ3,P3) [29], i.e.

θfin =
1
2

θ23 (P1 − P2)+ θ
2
2 (P3 − P1)+ θ

2
1 (P2 − P3)

θ3(P1 − P2)+ θ2(P3 − P1)+ θ1(P2 − P3)
.

(15)

D. OVERALL ALGORITHM
Algorithms presented in Sections III-A and III-B are
combined into an integral algorithm, Algorithm 1, which
also includes the DC removal approach (11) and other

implementation details. The algorithm is given at the begin-
ning of this page.

E. CALCULATION COMPLEXITY
In complexity analysis, we neglect all operations with
O(1) complexity, where O(·) represents big O notation,
i.e. we neglect all complexity terms not depending on N .
From the proposed algorithm, we may conclude that the sinu-
soid detection and coarse frequency estimation step requires
the calculation of K̂ + 1 DFTs, K̂ + 1 DFT maximum
detections, calculation of 3K̂ periodogram points (three-point
periodogram maximization) and K̂ sinusoid removals from
the considered signal (relation (11)). On the other hand,
the fine frequency estimation requires the calculation of 3K̂
periodogram points and K̂ (K̂−1) sinusoid removals. In total,
the proposed algorithm requires K̂+1DFTs, K̂+1DFTmax-
imum detections, 6K̂ periodogram points and K̂ 2 sinusoid
removals.

We assume that an N -samples DFT requires N log2 N
complex-valued (CV) multiplications and additions.
DFTmaximumdetection requires 2N real-valued (RV)multi-
plications, N RV additions and N − 1 comparisons. Cal-
culation of one periodogram point requires N CV and N
RV multiplications, N CV exponentials and N − 1 CV
additions. Finally, one sinusoid removal requires N CV and
N RV multiplications, 2N − 1 CV additions and N CV
exponentials. Since a CV addition requires two RV additions,
a CVmultiplication requires four RVmultiplications and two
RV additions, and a CV exponential requires two sine/cosine
calculations, the overall calculation complexity of the pro-
posed method is [4(K̂ + 1) log2 N + 5K̂ 2

+ 32K̂ + 2]N RV
multiplications, [4(K̂ + 1) log2 N + 6K̂ 2

+ 25K̂ + 1]N RV
additions, 2K̂ (K̂+6)N sine/cosine calculations and (K̂+1)N
comparisons.

Since K̂ � N , we may conclude that the algorithm com-
plexity is O(K̂N log2 N ) operations, i.e. the most expensive
operation is the DFT calculation.

IV. NUMERICAL RESULTS
In this section, the performance of model order estimation
is evaluated through percentage of correct order estima-
tion (PCOE), whereas the frequency estimation accuracy is
evaluated through the mean square error (MSE) of the fre-
quency estimation. The PCOE and MSE values are aver-
aged over 1000 Monte-Carlo simulations. In all simulations,
the threshold T is set to T = µ|E| + 6σ|E|, which yields the
PFA of P(|E| ≥ T ) = 1.459 × 10−6. The selection of PFA,
and therefore T , affects the method’s performance. Namely,
as the PFA increases, T decreases, and the number of false
alarms (falsely detected sinusoids) will increase. On the other
side, as the PFA decreases, T increases, and the number of
false alarms will decrease. However, decreasing the PFA too
much would lead to increased number of missed detections.

In model order estimation, the proposed method is com-
pared to the tensor-based [25] and subspace-based [26]
approaches. The setups used in [25] and [26] are adopted
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FIGURE 1. Frequency estimation MSE of a two-component signal
versus SNR. Top: MSE of f1. Bottom: MSE of f2. Same legend as in the
top plot.

in our simulations. In frequency estimation, the pro-
posed method is compared to the MUSIC [13] and
Ye-Aboutanios [24] estimators. The MUSIC spectrum is
calculated in 32768 points using a 65 × 65 autocorrela-
tion matrix constructed according to the modified covari-
ance method [11], [30]. Q = 2 iterations are used in the
Ye-Aboutanios method.

Let us first consider the case of two complex sinusoids with
frequencies f1 = 0.071 and f2 = 0.141, and amplitudes
A1 = 1 and A2 = 0.9. The signal length is N = 256.
In each simulation, the initial phase of each complex sinusoid
is chosen randomly within (−π, π], which is the case for all
examples in this section. Figure 1 depicts the MSE of both
frequencies calculated over variable SNR. The SNR of the
k-th sinusoid component, SNRk , is calculated according to

SNRk =
A2k
σ 2
ε

. (16)

In addition to the MSE corresponding to the overall algo-
rithm output (fine estimation), we also present the MSE
corresponding to the coarse frequency estimation. Top plot
in Fig. 1 indicates that the coarse estimation itself does not
suffice to achieve the CRLB. This is due to the fact that the
coarse frequency estimation of stronger sinusoids is affected
by the presence of weaker ones [12], [22]. This influence is

FIGURE 2. Percentage of correct order estimation of a two-component
signal.

FIGURE 3. Frequency estimation MSE of a two-component signal versus
frequency displacement 1f . Top: MSE of f1. Bottom: MSE of f2 = f1 +1f .

mitigated in the fine estimation stage by removing weaker
sinusoids from the considered signal. The performance of the
MUSIC-based estimation is very good. However, its main
restriction is that the model order has to be known in advance,
as in the Ye-Aboutanios method. Another disadvantage is
increased numerical complexity if proper estimation accu-
racy is to be achieved, which depends on the autocorrelation
matrix size [11]. The proposed and Ye-Aboutanios methods
achieve the CRLB above the SNR threshold. Zoom window
in the bottom plot of Fig. 1 shows that all considered meth-
ods, except the MUSIC-based one, perform practically the
same for the weaker component. The PCOE versus SNR
curves (Fig. 2) show that the proposed method outperforms
both [25] and [26] in terms of order estimation accuracy.

Let us now consider a two-component signal x(n) with
frequencies f1 and f2 = f1 + 1f , where 1f represents the
frequency displacement between the components. Figure 3
presents the MSE of f1 (top plot) and f2 (bottom plot)
estimation versus1f varied in interval [ 1N ,

1
4 ] with a step

1
N .
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In addition, A1 = 1, A2 = 0.8, N = 256 and SNR1 = 10 dB.
In each run, f1 is selected randomly within (− 1

2 ,
1
2 ). For

both components, the proposed and Ye-Aboutanios methods
achieve the CRLB, except when displacement is small. The
MUSIC estimator performs very well, few dBs above the
former two methods. Note also that the proposed coarse
estimation of f1 depends on 1f , with error hyperbolically
decreasing with 1f . The MSE curves’ trend for 1f > 1

4
remains the same and is therefore not presented in Fig. 3.

TABLE 1. Maximal MSE deviation from CRLB.

FIGURE 4. Absolute difference between MSE and CRLB in f1 estimation
versus frequency offsets δ1 and δ2.

Weproceedwith performance evaluation for variable offset
of the sinusoid frequency from a DFT bin. In that sense,
we consider a two-component signal with frequencies f1 =
ν1 + δ1 and f2 = ν2 + δ2, where ν1 and ν2 represent
frequencies corresponding to DFT bins and δ1 and δ2 offsets
from ν1 and ν2, respectively. We set ν1 = 7

N and ν2 = 18
N ,

whereas δ1 and δ2 take 41 uniformly sampled values within
[− 1

2N ,
1
2N ). As in the previous example, A1 = 1, A2 = 0.8,

N = 256 and SNR1 = 10 dB. Table 1 reports maximal MSE
deviations from the CRLB in f1 and f2 estimation. Absolute
difference between the proposed f1-estimation MSE and the
corresponding CRLB (Fig. 4) is uniformly distributed over
both δ1 and δ2. Its maximal value of 0.58 is very small
compared to |CRLB(f1)|, which is around 90 dB for this
setup. Similar holds for f2. The performance of the proposed
method, therefore, does not depend on the frequency offset
from DFT bins.

Now we consider x(n) containing five sinusoids with fre-
quencies fk = {−0.088,−0.073, 0.192, 0.241, 0.378} and
corresponding amplitudes Ak = {1, 0.87, 0.61, 0.72, 0.69}.
The signal length is N = 1024. One realization of the

FIGURE 5. Spectrum of a five-sinusoid signal embedded in AWGN with
SNR1 = 10 dB.

FIGURE 6. Frequency estimation MSE of a five-component signal.
Top: MSE of f1 (strongest component). Bottom: MSE of f3 (weakest
component). Same legend as in the top plot.

spectrum of x(n), embedded in AWGN with SNR1 = 10 dB,
is presented in Fig. 5. Note that the strongest two components
(negative frequencies) are very close to each other. Figure 6
represents the MSEs of two components versus the corre-
sponding SNRs; top plot represents the strongest (k = 1) and
bottom plot the weakest one (k = 3). For both components,
as well as for three others (not presented here), the proposed
method achieves the CRLB. Again, the coarse estimation
itself does not suffice in achieving the CRLB, which can
be seen from the top plot. Note that the Ye-Aboutanios
method goes into saturation above SNR = 2 dB for the
strongest component. This saturation appears also for other
components (not presented here), except for the weakest one.
For the weakest component, the proposed (both coarse and
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FIGURE 7. Percentage of correct order estimation of a five-component
signal.

fine estimation) and Ye-Aboutanios methods perform practi-
cally the same (zoom window in the bottom plot of Fig. 6).
Finally, the proposed method outperforms [25] and [26] in
both the model order estimation accuracy and robustness to
noise (Fig. 7).

From the above presented results, we can conclude that
the proposed method’s performance is on par with that of
the Ye-Aboutanios method [24]. In addition, the calculation
complexities of these two methods are of the same order
O(Order × N log2 N ), where Order is the model order.
As opposed to the proposed method, the Ye-Aboutanios
method assumes that Order is known a priori and it is char-
acterized by MSE saturation at higher SNR (see the top plot
in Fig. 6).

V. CONCLUSIONS
A frequency-based method for detection of complex sinu-
soids in AWGN and their frequency estimation is proposed.
Sinusoids are detected based on the Neymann-Pearson crite-
rion. Frequency estimation of detected sinusoids, performed
in the coarse and fine search stages, is based on the efficient
three-point periodogram maximization approach. Apart from
the DFT calculation, which represents the most expensive
operation in the method, the complexity of all other oper-
ations is O(K̂ 2N ), where the estimated model order K̂ is
usually much smaller than the signal length N . The proposed
detection is reliable and the estimation accuracy reaches the
CRLB. The future work will consider analytical derivation of
the proposed frequency estimation accuracy and extension to
the case of multiple 2D complex sinusoids.
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