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ABSTRACT An approach to design protograph-based low-density parity-check (LDPC) codes utilizing
mixed integer linear programming (MILP) optimization is presented in this paper. The protograph (base
graph) cyclic lifting for a class of quasi-cyclic LDPC codes is considered. In general, the short cycles
elimination is the primary optimization goal, possibly weighted by a metric of cycles connectivity. A notion
of closed walks in the base graph is shown to be a convenient way for representing sources of cycles in the
lifted graph. We express the condition for non-existence of a cycle in the lifted graph corresponding to a
closed walk in the base graph in the form of a set of linear inequalities. Such inequalities, collected for all
closed walks shorter than a desired limit corresponding to girth, form a set of linear constraints. Meanwhile,
the longer closed walks can be reflected in a linear objective function of the optimization. The proposed
combination of constraints and objective function forms an input to a MILP solver. As a result, a globally
optimized code graph can be obtained. The method can be utilized for binary as well as nonbinary LDPC
codes. The numerical results show that the constructed codes can outperform similar codes deigned with
reference heuristic search methods.

INDEX TERMS Low density parity check codes, nonbinary codes, protograph, quasi-cyclic codes.

I. INTRODUCTION
Methodical construction of low-density parity check (LDPC)
codes [1], [2], binary and nonbinary [3], is one of the major
topics for many channel coding researchers, at least for
the last decade. While the main objective of the research
in this area is to provide possibly the best error correc-
tion performance for the specific use-case, the implementa-
tion issues typically constraint the design to some class of
implementation-oriented LDPC codes.

Currently, most of the LDPC code designs that are con-
sidered noteworthy in terms of implementation complexity
can be interpreted as long codes derived from short codes
by lifting procedure, that is applying copy-and-permutation
operations on the protograph [4] (base graph, seed graph).
Intense research activities concerning the protograph-based
LDPC codes include particularly design of protographs, anal-
ysis of the lifting process and development of methods for
effective lifting procedure.

Density evolution (DE) and protograph EXIT (PEXIT)
techniques are known to facilitate protograph design, typi-
cally resulting in the Multi Edge Type (MET) protographs,

in which parallel edges are allowed [5]–[10]. MET pro-
tograph ensembles have been shown to achieve capacity-
approaching thresholds [5], with DE-based optimization
enabling to design small-sized protographs, for which the
derived LDPC codes are asymptotically close to the capacity
for BEC and BIAWGN channels [6]. Numerous other work
focus on applications for other channels and specific process-
ing models. In [7], a study on the performance of protograph
LDPC codes over Nakagami block-fading channels is pre-
sented and a simple design scheme is proposed to construct
root-protograph (RP) LDPC codes, designed to cope with
block-fading. This research is extended to develop a family
of distributed rate-compatible RP codes [8], [9]. In [10],
a bandwidth efficient protograph-LDPC based bit-interleaved
coded modulation (BICM) is investigated and an approach
is proposed that jointly optimizes the protograph node
degrees and the mapping of the coded bits to the BICM bit-
channels. Also the structured spatially coupled (SC-LDPC)
codes [11], [12] are constructed from protographs. In [13] an
approach that uses a two-step protograph lifting procedure is
proposed, which results in improved minimum distance and
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girth properties over a typical one-step lifting. An in-depth
survey of the research achievements in the protograph codes
design and analysis over a variety of communication systems
and channel models can be found in [14].

Extension of protograph codes to the nonbinary domain
(over GF(q > 2)) is also an actively investigated topic,
because nonbinary codes can outperform their binary coun-
terparts in the case of short-moderate codeword length and
can be seamlessly combined with higher order modulations.
Flexible computer search constructionmethods for nonbinary
protograph-based LDPC codes have been presented in sev-
eral papers [15]–[18]. Nonbinary (2, ν)-regular LDPC codes
defined on cages, a special graph structures, which perform
very well over high order GF fields, have been shown to be
often equivalent to a structured protograph-based codes [19].

When the code design is constrained to cyclic lifting of
protographs without parallel edges, the resulting codes, a well
known subclass of Quasi-Cyclic LDPC (QC-LDPC) codes
[20], [21], are particularly appealing to systems implemented
in hardware. The quasi-cyclic feature allows for linear time
encoding, while the block-circulant parity checkmatrix struc-
ture enables efficientmessage routing in a decoder implemen-
tation [20], [22]. Parity check matrix of a QC-LDPC code is
a grid of submatrices, which are either circulant permutation
matrices or all-zero matrices.

Although some special algebraic and geometric structures
have been recognized to effectively support QC-LDPC code
design [20], [23]–[26], the possible code block lengths and
submatrix sizes are typically not flexible in such construc-
tions and the inherent regular degree distribution limits the
waterfall performance gain in comparison with irregular dis-
tributions. Then a second category of design via the computer
search for circulants provide much more flexibility for prac-
tical code design.

Commonly the design focus is on finding an optimized
permutation of edges in protograph lifting, which for QC-
LDPC codes is equivalent to finding cyclic shifts of circulant
permutation submatrices in a QC-LDPC parity check matrix.
In principle, for a given base matrix and circulant size, it is
possible to enumerate all the possible design choices. Then
the optimal code can be selected as the one with the great-
est coding gain. Such an approach, however, would require
an enormous computation efforts, for at least two reasons:
1) the number of enumerated code choices grows exponen-
tially with the number of optimized circulants; 2) LDPC code
performance under iterative decoding is typically obtained
by Monte Carlo simulations engaging large number of test
vectors. To reduce the computational complexity to accept-
able level, the first issue can be mitigated by non-exhaustive
search utilizing some heuristic algorithm, pseudo-randomly
driven design or local optimization, while the second issue
is mitigated by an indirect design goal, which is typically
elimination of small undesired structures in the code graph,
which influence especially the error floor performance. In the
case of Belief Propagation (BP) decoding over AWGN chan-
nel, these structures are trapping sets [27]–[29], which could

be perceived as a set of bits that are likely to reinforce each
other in incorrect beliefs. From the Tanner graph perspective,
Trapping Sets are nodes arranged in clusters of short cycles.
Therefore, an indirect way to remove small trapping sets is
to design code graph without short cycles, particularly cycles
with low external connectivity [28]–[31].

Due to the computational complexity, an exhaustive com-
puter search of all possible cyclic liftings is possible only
for very small graphs, however it has been recently applied
for some special cases of short block length codes. In [32]
and [33] an exhaustive search methods provided a subclasses
of optimized codes, but with relatively small block lengths
and fully-connected base graphs only. Other existing research
works are based on a non-exhaustive heuristic search, often
with pseudo-random component, or optimization leading to
a locally optimal outcome. In [34], a hierarchical QC-LDPC
code design is proposed, but the cycle elimination is based on
a randomly initialized hill climbing technique, which allows
for finding a locally optimum solution. In [35], a search loop
is proposed that lists all labelings with desired girth among
randomly generated choices, then numerical results of per-
formance simulations are used as a code selection criterion.
A concept of difference D and double difference DDmatrices
introduced in [36] facilitates computation of conditions for
cycles elimination in cyclic liftings by reducing the number of
inequalities that have to be tested. Using difference matrices,
some numerical and analytical results have been provided,
particularly concerning bounds on the lifting degrees, how-
ever these results involve mainly the fully-connected base
graphs.

Other research on heuristic search for circulants of
QC-LDPC codes, binary and nonbinary, include [37]–[41].
While the existing methods for non-exhaustive exploration
of the QC-LDPC code ensembles are miscellaneous, they
are mainly based on a kind of loop that either generates
random labeling or iteratively adjusts permutation shift values
to locally eliminate consecutive cycles. Often, the design goal
is only the maximization of the girth. Several works present a
design procedures that search for a minimum lifting degree
(or minimum code block length) achievable for a desired
girth [42], [43]. While this approach can provide a valuable
theoretical background, in practice the code design procedure
is constrained by the application requirements, which usually
includes not only the block length, but also submatrix size,
which is equal to the lifting degree. Therefore, in the approach
proposed here, the lifting degree is a fixed input parameter
and the design algorithm seeks for the best performing code.

Instead of a usual heuristic or pseudo-random search,
in this paper a novel approach for cyclic protograph lifting
with fixed degree is proposed, which is based on a problem
formulation in the form of linear constraints and a global
linear objective function. We show how to construct the set
of linear conditions that constraint the explored space to
solutions ensuring the assumed girth. Moreover, besides the
girth conditioning, it is beneficial to additionally eliminate
as many girth-length (or even longer) cycles as possible.
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For this reason, we show how to formulate the linear objective
function that enables maximization of the number of elimi-
nated cycles that has been selected as an optimization goal.
In our problem formulation, the set of cycles reflected in the
objective function as well as the set of cycles imposing the
constraints is freely configurable and left to a specific design
choice. Moreover, with every considered cycle, a separate
weighting factor is set in the objective function. This factor
can reflect a metric of cycle ‘‘harmfulness’’, which can be
related for example to external connectivity measures like
EMD (Extrinsic Message Degree) or ACE (Approximate
Cycle EMD).

The linear character of the constraints and objective func-
tion makes it possible to search for the globally optimal solu-
tion making use of the Mixed Integer Linear Programming
(MILP) optimization. We show how to fill the coefficients
matrix to express the problem in a vectorized form, by means
of a product of coefficient matrix by a vector of optimized
variables. This form is ready to use in a numerical solver,
because the matrices of coefficients can be sent directly to
a typical commercial software implementing MILP.

The proposed code construction method can be used for
binary as well as nonbinary designs. In order to obtain a non-
binary code, after graph construction, a nonzero field ele-
ments need to be assigned to the edges of the graph. We have
employed a method inspired by the binary images selection
on a matrix row basis [44]. For the nonbinary construction,
the developed algorithm determines GF(q) coefficients asso-
ciated to the base graph edges, which means a common
coefficient is used for every whole submatrix.

In summary, the main contribution of this paper is a new
QC-LDPC codes construction algorithm that is based on
a novel formulation of the protograph cyclic lifting problem
in the form of linear inequality constraints and a linear
objective function that reflects the cycles existing in the base
graph. It is shown, how this formulation can be vectorized
for a MILP solver. The proposed optimization algorithm
is rather universal: it can be applied to different classes of
QC-LDPC codes, binary and nonbinary, with any regular or
irregular single-edge base graphs. Then, in the provided over-
all QC-LDPC construction algorithm, the waterfall region
is optimized by utilizing irregular base graphs with good
asymptotic thresholds [15], [45], while the error floor region
is optimized by not only the usual girth conditioning, but
also global minimization of the short cycles in the lifted
graph, possibly weighted by ACE or EMD. To preserve low
encoding complexity, the codes with bidiagonal structure
can also be constructed. The presented numerical results
show performance gains over other recent QC-LDPC and
protograph designs for several binary and nonbinary cases.

Although the proposed method is intended mainly for
a MILP solver, the separation of the problem formulation
by linear equations and the problem solution by numer-
ical solver, enables searching for the solution also with
a non-exhaustive, heuristic search. We concentrate on for-
mulation of the code design problem in the aforementioned

form, but refrain from investigating the solving algorithm as
such. In the numerical study an existing MILP software is
utilized.

In section II, we introduce notations, definitions of
QC-LDPC code class and MILP optimization as well as
discuss some basic code graph properties. The main ideas
are provided in section III, where we formulate the code
design problem, express it in the form convenient for MILP,
propose a simple practical code design strategies, including
the nonbinary codes construction case and finally summarize
the overall QC-LDPC construction algorithm. In section IV
we study several code design cases and provide numerical
results, then in section V we summarize the research.

II. PRELIMINARIES
A. MIXED INTEGER LINEAR PROGRAMMING
The constrained linear optimization problem, with integer
restrictions on some of the variables, is known as Mixed
Integer Linear Programming and can be expressed as follows:
find integer values of y1, y2, . . . , yn and nonnegative real
values of x1, x2, . . . , xp that minimize the objective function:

z =
n∑
j=1

cjyj +
p∑

k=n+1

ckxk (1)

subject to:
n∑
j=1

aijyj +
p∑

k=n+1

aikxk ≤ bi (i = 1, 2, . . . ,m)

(2)

yj = 0, 1, 2, . . . (j = 1, 2, . . . , n) (3)

xk ≥ 0 (k = n+ 1, . . . , p) (4)

where cj, ck are coefficients defining the objective function
in (1), while aij, aik and bi are coefficients defining the
m problem constraints in (2).
For this research, the optimization variables are shift values

in cyclic protograph lifting, which are nonnegative integers.
Therefore the pure Integer Programming (IP) is applied,
which means the problem formulation includes only compo-
nents with integer variables y1, y2, . . . , yn in (1)-(4) and the
MILP problem is defined by coefficients cj, aij and bj for
i = 1, 2, . . . ,m, and j = 1, 2, . . . , n.

B. QC-LDPC CODE PARITY CHECK MATRIX
A binary QC-LDPC code [20] is characterized by parity
check matrix that is an array of circulants. Commonly used
circulants are square submatrices, which are either all-zero
matrices or circulant permutations of an identity matrix.

Let Ps be a circulant of size P × P obtained by cyclic
shifting the identity matrix IP×P by s positions to the right.
In this research, the class of codeswith the following structure
of the parity check matrix is considered:

H =


Ps1,1 Ps1,2 · · · Ps1,J
Ps2,1 Ps2,2 · · · Ps2,J
...

...
. . .

...

PsI ,1 PsI ,2 · · · PsI ,J

 (5)
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where si,j ∈ {0, 1, . . . ,P−1,∞}, where P∞ is used to denote
all-zero matrix [21].

Codes associated with parity check matrix (5) are (N ,K )
QC-LDPC codes with N = JP, K = (J − I )P and rate
R = 1− I/J , when H has full rank.

C. BASE GRAPH CYCLIC LIFTING
The protograph of a subclass of QC-LDPC codes defined
in (5) belongs to a narrowed group of protographs with no
parallel edges, for which we use the term of base graph
throughout this paper. The base graph corresponds to the base
matrix, which we denoteWI×J . Base matrix can be extracted
from parity check matrix (5) by replacing zero matrices and
circulant matrices in H with 0 and 1, respectively.
Let us denote the base graph byG = (Vv∪Vc, E), which is a

bipartite graph composed of Vv = {v1, v2, . . . , vJ } – the set of
variable nodes,Vc = {c1, c2, . . . , cI } – the set of check nodes,
and E ⊆ Vv × Vc – the set of edges, E = {e1, e2, . . . , eT }.
An edge et = (vj, ci) belongs to E if and only if wij 6= 0
in the base matrix W. Conversely, the base matrix W is
a biadjacency matrix of the base graph G. The total number of
edges in G, denoted by T , is equal to the number of nonzero
elements in the base matrix W.

Let P = {1, 2, . . . , p, . . . ,P} be a finite set, where P is
a graph lifting degree. The lifted graph, which is a QC-LDPC
code graph, has vertex sets Vc × P and Vv × P . For each
et ∈ E , a circulant permutation is assigned, characterized by
a permutation shift st , that is: θet (p) ≡ p+ st mod P. Then,
the edge set is E × P , where an edge (et , p) = (vj, ci, p) ∈
E × P is incident with vertices (vj, p) and (ci, θet (p)). The
cyclic lifting process is thus characterized by the set of per-
mutation shift values S = {s1, s2, . . . sT }, 0 ≤ st < P. The
lifted graph G(P,S)

= ((Vv × P) ∪ (Vc × P), E × P ) is
a bipartite graph of a QC-LDPC code, withPJ variable nodes,
PI check nodes and PT edges.

Here and in the following sections, for simple notation,
a single-indexed st is used to denote a permutation shift value
in H. The elements of S = {s1, s2, . . . sT } correspond to T
nonzero submatrices Psi,j in (5). It means that every si,j 6= ∞
in (5) is denoted with one of the single-indexed st ∈ S,
assigned to the edge et ∈ E .
Any code from the considered QC-LDPC subclass is fully

described by its base matrix W, lifting degree P and the set
of permutation shift values S.

D. CYCLES IN THE CODE GRAPH
It has been well recognized that short cycles in the code
graph significantly degrade performance of the correspond-
ing LDPC code. A cycle of length 2l can be perceived as
a sequence of adjacent edges, which starts and ends at the
same vertex, and satisfies the condition that no edge appears
more than once in the sequence. Let this closed sequence
of edges be denoted as et1 ∼ et2 ∼ · · · ∼ et2l ∼, where
t1, t2, . . . , t2l indicate edges in the cycle.

Two subsequent edges in any cycle correspond to distinct
circulant permutation matrices, which are either in the same

row block, or in the same column block [20]. Hence, any cycle
of length 2l in a QC-LDPC code graph can be represented by
the ordered series of nonzero circulant submatrices:

Pst1 → Pst2 → · · · → Pst2l → Pst1 (6)

where ti 6= ti+1 for 1 ≤ i < 2l and any subsequent Psti , Psti+1
are located in either the same column block or the same row
block of H, while any Psti and Psti+2 are located in distinct
column blocks and row blocks [21]. However, in general the
chain (6) can contain submatrices that reappear in positions
i + 4 or greater. Therefore, the corresponding sequence of
edges in the base graph et1 ∼ et2 ∼ · · · ∼ et2l ∼ need not be
strictly a cycle. It is a closed sequence of adjacent edges in
the graph, without restriction of their single appearance. For
such a sequence we use a term of closed walk [46].

Every closed walk existing in the base graph corresponds
to a chain of circulants (6). However, not every closed chain
is necessarily a source of cycles in the lifted graph.

The ordered series of permutation shift values:

st1; st2; st3; · · · st2l (7)

can be used to specify the condition for existence of corre-
sponding cycles in the cyclically lifted graph. It has been
shown [20], [21] that a lifted graph contains cycles corre-
sponding to a closedwalk et1 ∼ et2 ∼ · · · ∼ et2l ∼ if and only
if
∑l

k=11t2k ≡ 0 mod P, where1t2k = st2k−1 − st2k . Below
we reformulate this condition with a following theorem char-
acterizing the relationship between cycles in the lifted graph
and corresponding closed walks in the base graph.
Theorem 1: The cyclically lifted graph G(P,S) contains P

length-2l cycles (et1 , p) ∼ (et2 , p) ∼ · · · ∼ (et2l , p) ∼ corre-
sponding to a length-2l closed walk et1 ∼ et2 ∼ · · · ∼ et2l ∼
in the base graph G, if and only if the following condition
is satisfied for the permutation shift values st1 , st2 , . . . , st2l
assigned to the edges of the closed walk:

2l∑
k=1

(−1)k−1stk ≡ 0 mod P (8)

E. EXTERNAL CONNECTIVITY OF CYCLES
Cycles do not contribute to the error rate uniformly and
construction methods taking into consideration external con-
nectivity of cycles have demonstrated to improve results.
Two common measures used to calculate the connectivity of
cycles are Extrinsic Message Degree (EMD) and Approxi-
mate Cycle EMD (ACE). The EMD of a cycle is the number
of check nodes that are singly connected to the variable node
subset forming this cycle [28]. The ACE of a length 2l cycle
is
∑

i(di − 2), where di is the degree of the ith variable node
in this cycle [28]. If there are no variable nodes in a cycle
that share common check nodes outside of the cycle, then the
EMD of this cycle is equal to the ACE. Similar definitions of
EMD and ACE can be stated for closed walks.

Performance of an LDPC code with iterative BP
decoding is strictly connected to its graph structure.
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Particularly, in [27] Richardson showed that error floors in
BP decoders are generally caused by trapping sets. A trapping
set is a set of a small number of bits that reinforce each other
in their incorrect beliefs. Trapping sets of bits are arranged
by clusters of short cycles in a corresponding Tanner graph.
Therefore, one way to try to remove trapping sets is to design
the Tanner graph carefully so that the dangerous clusters of
short cycles do not exist [29].

This can be achieved by avoiding short cycles with low
external connectivity, that is cycles with low EMD (or ACE)
parameters. Cycles having small EMD are more prone to
induce small trapping sets [28]. Minimization of short cycles
with low EMD is the basis of many published code construc-
tion methods, e.g. [28], [30], [31].

III. THE PROPOSED OPTIMIZATION METHOD
In a common practical LDPC system design strategy, the base
matrix W and lifting degree P are imposed by the desired
variable node degree distribution on one hand, and the imple-
mentation details on the other hand, such as the decoder
architecture and required throughput. Then, the crucial stage
for optimization of a graph properties in a QC-LDPC code is
an effective search for permutation shift values. The goal is
to find values st ∈ S, such that congruencies of type (8) are
avoided for short closed walks in the base graph.

Therefore, the first step in the proposed graph optimization
method is the base graph analysis in order to find all closed
walks of length up to an assumed limit 2lmax. To achieve
this, for every variable node, a tree is expanded up to the
depth lmax, according to the base graph structure. For every
node that appears in the tree more than once, a closed walk is
identified by backtracking the tree.

Let denote the total number of closed walks detected
in the base graph by D and let assign an index d to
every closed walk, where d = 1, 2, . . . ,D. Let d th closed
walk be of length L(d) and include edges of indexes
t1,d , t2,d , . . . , tL(d),d , that is et1,d , et2,d , . . . , etL(d),d . According
to (8), condition for non-existence of cycles in the covering
graph, resulting from d th closed walk in the base graph, is:

L(d)∑
k=1

(−1)k−1stk,d 6≡ 0 mod P (9)

In order to express a series of such conditions in a matrix
notation, the sum in (9) need to be formulated over all
optimized variables in {s1, s2, . . . sT }, that is in the form∑T

t=1 atst . Here, every coefficient at (t = 1, . . . ,T ) can be
perceived as an indication of how many times and in which
direction an edge et is passed in the considered closed walk.
To illustrate this, we use the convention with a directed base
graph, where edge directions are from variable nodes to check
nodes. Example is shown in Fig. 1(a), where a small graph is
shown that contains edges e1, . . . , e9, hence every designated
closed walk is defined by coefficients a1, . . . , a9.
When tracking a closed walk in such a directed graph, for

every edge et passed in a forward direction (consistent with an

FIGURE 1. An example graph (a) and its closed walks of length-6 (b),
length-8 (c) and length-10 (d). Variable nodes are illustrated by circles
and check nodes are illustrated by squares.

edge direction), the corresponding coefficient at is increased
by 1. Likewise, for every edge et passed in a backward direc-
tion, the corresponding coefficient is decreased by 1. This is
illustrated in Figs. 1(b)-(d). For example, the length-8 closed
walk e8 ∼ e9 ∼ e5 ∼ e3 ∼ e8 ∼ e9 ∼ e5 ∼ e3 ∼ shown
in Fig. 1(c) corresponds to coefficients: a8 = 2, a9 = −2,
a5 = 2, a3 = −2, and a1 = a2 = a4 = a6 = a7 = 0.
Let the coefficients at , t = 1, . . . ,T for the d th closed

walk be denoted as at (d), d = 1, . . . ,D. Arranging coef-
ficients at (d) in a vector a(d) = [a1(d), a2(d), . . . , aT (d)]
and variables st in a vector s = [s1, s2, . . . , sT ] allows to
reformulate the condition (9) with a compact vector by vector
multiplication form, which for d th closed walk in the base
graph is as follows:

T∑
t=1

at (d)st = a(d) · sT 6≡ 0 mod P (10)

where at (d) is the difference between the number of passes
through the edge et in forward and backward directions in d th
closed walk. If the edge et is not passed at all in d th closed
walk, then at (d) = 0. Similar vectorized formulation like
in (10) was previously proposed in [35].

For every closed walk that should be eliminated in a lifting
process, a condition like in (10) could possibly entail a con-
straint in an IP optimization problem. However, this requires
reformulating the modP incongruence in the form of linear
inequalities as in (2). At first we will demonstrate how to do
this for the simplest case of a length-4 cycle.
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A. LINEAR CONSTRAINTS FOR THE LENGTH-4
CLOSED WALK CASE
For a length-4 closed walk, the product a(d) · sT includes
4 nonzero components atst , where at = +1 for two of them
and at = −1 for another two. Then, since 0 ≤ st < P,
the upper and lower bound on the value of a(d) · sT is easily
determined to be: −2(P − 1) ≤ a(d) · sT ≤ 2(P − 1).
Such a bounded value is mod P incongruent to 0, if it is
different from−P, 0 and P. It is equivalent to fulfilling one of
the following conditions, corresponding to 4 possible disjoint
ranges:

−P < a(d) · sT < 0

∨0 < a(d) · sT < P

∨a(d) · sT < −P

∨a(d) · sT > P (11)

Since the sum in a(d)·sT contains only integer components,
we can rewrite (11) in a form utilizing less-or-equal operators:(

a(d) · sT ≤ −1 ∧−a(d) · sT ≤ P− 1
)

∨

(
−a(d) · sT ≤ −1 ∧ a(d) · sT ≤ P− 1

)
∨

(
a(d) · sT ≤ −P− 1

)
∨

(
−a(d) · sT ≤ −P− 1

)
(12)

Among the four alternative conditions in (12), only one
could hold at a time, thus further reformulation is necessary
to obtain a series of inequalities that should be fulfilled
jointly, as in the IP problem formulation (2). Let y1, . . . , y4 be
additional binary (0-1) variables. In every of the 4 conditions,
marked by i = 1, . . . , 4, we subtract a component Zyi from
the left-hand side of inequality, where Z is a positive constant
factor, large enough to assure the inequality always holds for
yi = 1, regardless of the remaining variables. If as a result
of optimization process yi is 0, the ith alternative condition is
satisfied for IP optimization results in s. On the other hand,
yi = 1 means the ith condition is actually not constrain-
ing the values in s, so it can be perceived redundant (as a
result of optimization). Then, the whole set of inequalities
that should jointly hold to obtain the mod P incongruence
in (10) is:

a(d) · sT − Zy1 ≤ −1

−a(d) · sT − Zy1 ≤ P− 1

−a(d) · sT − Zy2 ≤ −1

a(d) · sT − Zy2 ≤ P− 1

a(d) · sT − Zy3 ≤ −P− 1

−a(d) · sT − Zy4 ≤ −P− 1

y1 + y2 + y3 + y4 ≤ 3 (13)

where the last inequality ensures that one of the binary vari-
ables y1, . . . , y4 takes the value of 0, therefore one of the
alternative conditions holds.

With constraints defined as in (13), any proper solution
found by numerical solver guarantees to eliminate corre-
sponding cycles from the code graph. However, too many
constraints can make the optimization problem unsolvable,
and it is usually not known in advance: how many cycles
can be eliminated. Then, a desirable possibility is to convert
some of the conditions to contribute to the optimization goal
function instead of strictly constraining the design. To accom-
plish this, the last inequality in (13) is dropped from problem
constraints, while the optimization goal function includes a
component:

z = . . .+ α(d)(y1 + y2 + y3 + y4)+ . . . (14)

where α(d) is a weighting factor for d th closed walk. Then,
the optimization solution can include both eliminated cycles
(for which

∑
yi = 3) and not eliminated cycles (for which∑

yi = 4), with maximized number of eliminated cycles,
if α(d) is constant over d .

In a general case, theweightα(d) enables assigning level of
harmfulness to every closedwalks separately. It can be related
to the closed walk length or other characteristics like an EMD
(Extrinsic Message Degree) [28] of corresponding cycles, if a
more complex optimization strategy is desired.

In order to prepare data for the numerical solver, it is
convenient to express the set of constraints (13) in a matrix
form:

A ·
[
sT

yT

]
≤ bT (15)

where y is a vector with variables y1, y2, . . ., while A and b
contain coefficients of the set of inequalities. For example,
the rows ofA and b corresponding to the first (d = 1) cycle of
length-4, collected in submatrices denoted as A(1) and b(1),
according to (13) are:

A(1) =



a(1) −Z 0 0 0 0
−a(1) −Z 0 0 0 0
−a(1) 0 −Z 0 0 0
a(1) 0 −Z 0 0 0 · · ·

a(1) 0 0 −Z 0 0
−a(1) 0 0 0 −Z 0
0 1 1 1 1 0


(16)

b(1)T =



−1
P− 1
−1
P− 1
−P− 1
−P− 1

3


(17)

Similarly the subsequent components A(1),A(2), . . . ,A(D)
and b(1),b(2), . . . ,b(D) are created. They are assem-
bled column-wise to form the whole constraint coefficient
matrices A and b.
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B. GENERAL IP FORMULATION
The QC-LDPC code graph optimization problem can be
expressed in a vectorized form as follows: compute the ele-
ments of integer vectors s = [s1, s2, . . . , sT ], 0 ≤ st < P and
y = [y1, y2, . . . , yU ], 0 ≤ yu ≤ 1 that minimize:

z =
[
01×T , c

]
·

[
sT

yT

]
(18)

subject to:

A ·
[
sT

yT

]
≤ bT (19)

where the coefficient matrix A is composed of submatrices
A(d) arranged column-wise:

A =


A(1)
A(2)
...

A(D)

 = col[A(1),A(2), · · · ,A(D)] (20)

corresponding to the list of D closed walks, and simi-
larly vectors b and c are composed of subvectors b =
col[b(1),b(2), · · · ,b(D)] and c = [c(1), c(2), · · · , c(D)]
corresponding to D closed walks.
Contents of the component coefficient submatrices can be

defined by generalizing results from the previous subsection
to the length-L(d) cycle. The value of a(d) · sT is bounded
in general by: −L(d)

2 (P − 1) ≤ a(d) · sT ≤ L(d)
2 (P − 1),

so every additional 2 edges in the considered closed walk
entails 2 more disjoint ranges, defined by 4 inequalities
expressing the incongruence condition and employing 2more
variables yu. Coefficient submatricesA(d), b(d) and c(d) can
be expressed as follows.
• In the case of strict constraint, that is if the optimiza-
tion solution should guarantee to eliminate cycles cor-
responding to the d th closed walk, A(d) and b(d)T

contains 2L(d)− 1 rows as shown in (23), while c(d) =
[0, . . . , 0]1×L(d) (all-zero vector of length L(d)).

• If the optimization solution need not guarantee to elim-
inate cycles, but the optimization goal should be greater
by α(d) for optimization results with not eliminated
cycles corresponding to the d th closed walk, A(d) and
b(d)T contains the first 2L(d) − 2 rows of matrices
shown in (23) (all rows except for the last row imposing
the strict constraint), while c(d) is composed of α(d):

c(d) = [α(d), α(d), . . . , α(d)]1×L(d) (21)

Optimization variable vectors s and y have T and U =∑D
d=1 L(d) elements respectively, hence the number of

columns in A is T +U . Meanwhile, the number of rows in A
and b depends on the number of considered closed walks.
Setting the problem in the presented matrix form facilitate

utilization of any optimization software supporting Integer
Programming. For example, the coefficient matrices A, b,
c, as they are defined in this article, can be used directly in
intlinprog function of Matlab environment.

C. EXAMPLE
As an example let us consider a cyclic lifting of a small graph
shown in Fig. 1(a). The lifted graph corresponds to a matrix
with 9 nonzero circulants:

H =


Ps1 Ps2 0 0
0 Ps3 Ps4 Ps5
Ps6 0 Ps7 0
0 Ps8 0 Ps9

 (22)

therefore the vector of cyclic shift values is s =

[s1, s2, . . . , s9]. The proposed procedure can be used to
achieve a lifted graph with an assumed girth g. For example,
if g = 8 is required, a strict constraints for all length-4 and
length-6 closed walks should be formulated. The base graph
contains one length-4 closed walk e3 ∼ e5 ∼ e9 ∼ e8 ∼, for
which the condition for non-existence of cycles in the lifted
graph is s3 − s5 + s9 − s8 6≡ 0 mod P. This condition,
formulated as in (13) requires additional binary variables
y = [y1, y2, y3, y4]. Corresponding matrices of coefficients
A(1) and b(1) for lifting degree P = 9, constructed according
to (16)-(17) or (23), are presented in Fig. 2. The constant Z is
set to Z = 3P = 27, which is a sufficiently large value for a
length-4 cycle case.

FIGURE 2. Matrices of coefficients defining linear constraints for
elimination of the length-4 cycle (A(1) and b(1)) and the length-6 cycle
(A(2) and b(2)) by lifting graph presented in Fig. 1 with P = 9.

The base graph also contains one length-6 closed walk
e1 ∼ e2 ∼ e3 ∼ e4 ∼ e7 ∼ e6 ∼, for which the
condition is s1 − s2 + s3 − s4 + s7 − s6 6≡ 0 mod P and the
linear formulation requires additional binary variables y =
[y5, y6, . . . , y10]. Vectorized formulation, according to (23),
involvesmatricesA(2) and b(2) shown in the bottom of Fig. 2.
In this case, Z = 5P = 45, which is a sufficiently large value
for a length-6 cycle case.

To obtain a girth-8 graph, the MILP procedure should
seek for any solution satisfying constraints (19), with A =
col[A(1),A(2)], b = [b(1),b(2)], P = 9 and the goal
function coefficient vector in (18) set to zero, that is c = 0.
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A(d)=



a(d) 0 0 −Z 0 0 0 0 0
−a(d) 0 0 −Z 0 0 0 0 0

...
. . .

...

−a(d) 0 0 0 −Z 0 0 0 0
a(d) 0 · · · 0 0 −Z 0 0 0 · · · 0
...

. . .
...

a(d) 0 0 0 0 −Z 0 0 0
−a(d) 0 0 0 0 0 −Z 0 0

0 0 0 1 · · · 1 · · · 1 1 0 0


, b(d)T =



−1
P− 1
−P− 1
2P− 1
...

(L(d)2 − 1)P− 1
−1
P− 1
−P− 1
2P− 1
...

(L(d)2 − 1)P− 1
−(L(d)2 − 1)P− 1
−(L(d)2 − 1)P− 1

L(d)− 1


(23)

As a result of MILP optimization procedure, a following
vectors are obtained: s = [0, 8, 0, 8, 0, 8, 0, 1, 0] and y =
[0, 1, 1, 1, 1, 1, 1, 1, 0, 1]. In this result, the value of y1 = 0
ensures fulfillment of inequality y1 + y2 + y3 + y4 ≤ 3
defined by the last row of A(1) and last element of b(1).
Constraints corresponding to the first two rows of A(1), for
the s, y listed above (where y1 = 0) can be verified as
0 − 0 − 1 + 0 ≤ −1 and −0 + 0 + 1 − 0 ≤ 8 respec-
tively. Meanwhile, constraints defined by rows 3 . . . 6 ofA(1)
hold because of the dominating components with coefficient
Z = −27 multiplying variables y2 = y3 = y4 = 1. It means
the original constraint s3 − s5 + s9 − s8 6≡ 0 mod P holds,
particularly −P < s3 − s5 + s9 − s8 < 0.
Similarly, for the length-6 closed walk, since y9 = 0 and

y5 = y6 = y7 = y8 = y10 = 1, the constraint involving
y9 can be verified as 0 − 8 + 0 − 8 − 8 + 0 ≤ −19 (where
−19 = −2P − 1), while the remaining constraints hold due
to the dominating components with coefficient Z = −45.
It means the original constraint s1−s2+s3−s4+s7−s6 6≡ 0
mod P holds, particularly s1− s2+ s3− s4+ s7− s6 < −2P.

As a results, the matrix as in (22), with lifting degree P = 9
and the obtained s = [0, 8, 0, 8, 0, 8, 0, 1, 0] is associated
with a girth-8 bipartite graph. Further studies reveal that
the example small graph contains 2 length-8 closed walks,
1 length-10 closed walks, 3 length-12, 3 length-14 closed
walks and 5 length-16 closed walks. MatricesA(3) . . .A(16),
b(3) . . . b(16) for these closed walks of length-8 and longer
can be formulated similarly to the presented in Fig. 2.
Then, if the last rows from A(3) . . .A(16), b(3) . . . b(16)
are excluded, while the corresponding elements in c are set
to one, the graph lifting can be optimized to eliminate the
maximum number of these longer cycles. It turns out that for
P = 9, the MILP optimization procedure gives as a result
s = [8, 0, 2, 0, 8, 0, 5, 8, 0], for which all those cycles are
avoided. Therefore, the associated graph is a girth-18 graph.

D. SEARCH SPACE REDUCTION
The known possibility to reduce the search space of cyclic
liftings is normalization of the shift values si,j in (5) [35].
This concept is based on observation that circulating rows
of any macro-row Psi,1 ,Psi,2 , · · · ,Psi,J in (5), which affects
only the order of parity checks, can give the first si,j 6= ∞ (or
last, or any other) in every macro-row normalized to si,j = 0.
Similarly, circulating columns of any macro-column, which
affects only the order of symbols in a codeword, can give the
first si,j 6= ∞ in every macro-column normalized to si,j = 0.
Such a row and column reordering within macro-row and
macro-column of H results in a code termed as an equivalent
code [35].

Every QC-LDPC code has an equivalent code with nor-
malized parity check matrix, which is defined as a block
circulant matrix H with the first nonzero submatrix in each
macro-column and each macro-row equal to P0. Therefore,
the QC-LDPC code search can be restricted to such nor-
malized instances, without the risk of overlooking any well
performing code.

Constraining search to only one of the equivalent codes
gives a significant reduction of the search space. The gen-
eral problem formulation remains as in (18)-(19), but since
the elements of s corresponding to submatrices normal-
ized to P0 are fixed to 0, they are simply removed from s
in (18)-(19), reducing the number of optimized variables.
Likewise, the corresponding columns in A are removed. All
numerical results presented in this paper have been obtained
for such a normalized matrix search.

Another complexity reduction can be based on an obser-
vation that the coefficient vector a(d) contains equal number
of positive and negative elements. Therefore, the majority of
closed walks should have the corresponding sum a(d) · sT

in the range between −P and P, with the mean value being
zero, if there is no a priori knowledge about values in s.
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Specifically, we empirically observed that for coefficients
0 ≤ si,j < P generated from a uniform random distribution,
typically 10-25% of sums a(d) · sT corresponding to cycles
of length up to 8, are in the range between −P and P.
If the optimization outcome for eliminated cycles is

restricted to this range, the search complexity is reduced,
at the cost that some of the non-equivalent solutions cannot
be found by an optimization procedure. In such constrained
search, only the first and the second alternatives in (12) are
considered, thus a simplified search is defined by 5 inequal-
ities (like the first four and the last inequality in (13)),
regardless of the cycle length. The component coefficient
matrices formulating the simplified optimization problem are
presented in (24)-(25). Only 2 additional variables yu are
required for every considered closed walk. We will refer to
this method as a reduced search.

A(d) =


a(d) 0 0 −Z 0 0 0
−a(d) 0 0 −Z 0 0 0
−a(d) 0 · · · 0 0 −Z 0 · · · 0
a(d) 0 0 0 −Z 0 0
0 0 0 1 1 0 0

 (24)

b(d)T =


−1
P− 1
−1
P− 1
1

 (25)

E. PROPOSED CODE DESIGN STRATEGIES
The presented optimization framework can be utilized in
a variety of ways, which differ by the length limit 2lmax of the
examined closed walks, the way of distributing closed walks
between strict constraints and optimization goal, as well as an
utilization of optional α(d) weights.
Based on the knowledge on structural graph properties,

we have investigated a few design strategies, among which
the girth conditioning is the basic classical method, while
more advanced methods aim at minimizing the number of
short cycles with low external connectivity.

1) GIRTH CONDITIONING
One of the commonly applied LDPC code design methods is
a search for girth-g graphs. With the presented framework,
formulation of a girth-g graph search is straightforward: in
the base graph, all closed walks of length up to (g− 2) need
to be found, for which the strict constraints are formulated by
matrices like in (23), while the objective function coefficients
c = 0. Then the IP search could succeed giving a girth-g code
or fail, which means the girth-g code cannot be obtained for
a given base graph G and lifting degree P.

2) SHORT CYCLES REDUCTION
In a more advanced search than a simple girth condition-
ing, additionally the existence of girth-length cycles can be
reduced by utilizing the objective function. In this method,
all closed walks of length up to 2lmax = g are found in

the base graph, among which the closed walks of length up
to (g − 2) are reflected as a strict constraints, while length
g closed walks are reflected in the objective function with
weights α(d) = 1. With this formulation, a graph is found
characterized by girth-g and minimized number of length g
cycles, resulting in a potentially improved code.

3) LOW EXTERNAL CONNECTIVITY CYCLES REDUCTION
The proposed objective function enables incorporating any
measure of cycles connectivity into the optimization process,
by utilizing the α(d) factor in (21), which can be specified
independently for every considered closed walk in the base
graph.

We propose a following formulation. All closed walks of
length up to 2lmax = g should be found in the base graph,
among which the closed walks of length up to (g − 2) are
reflected as a strict constraints. Length-g closed walks are
reflected in the objective function with weight α(d) depen-
dent on EMD or ACE (Approximate Cycle EMD)metric [28]
of the closed walk. Although it is hard to precisely quantify,
how the EMD or ACE is related with the expected harmful-
ness of the cycle, probably an expression for α(d) relation
to ACE can be proposed empirically. For example, we have
attempted a design, in which every additional extrinsic mes-
sage (approximated by ACE) diminish α(d) by a factor of 2,
that is α(d) = 2−ACE(d), where ACE(d) is the ACE metric of
d th closed walk.

4) REDUCED COMPLEXITY SEARCH
A reduced complexity search, as proposed in the previous
section, can be utilized with any of the above strategies.

Tab. 1 summarizes the methods we have used for experi-
mental designs, for which numerical results will be presented
in section IV.

TABLE 1. Proposed optimization strategies.

F. NONBINARY CODES DESIGN
The proposed optimization procedure can be employed as
an initial step for a nonbinary code construction. Given
a binary parity check matrix H as in (5), a nonbinary struc-
tured block-circulant matrix over GF(q) can be obtained
by substituting nonzero entries in H with elements from
GF(q). While some research papers apply randomly gener-
ated entries, an optimized selection can give better results.

We have employed a design that is inspired by a thorough
discussion found in [44], where the binary images method
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for selection on a row of H basis was proposed. Since in a
cyclically lifted graph of structured codes, the topological
structures in the graph are P times duplicated, fixing the
nonzero entries for every circulant of H allows application
of the ideas from [44], while reducing the number of coeffi-
cients that need to be memorized. Therefore in our nonbinary
construction, every nonzero circulant Psd,l in (5) is wholly
multiplied by an element gd,l ∈ GF(q). Hence, the nonzero
entries inH (coefficients) are selected on a base matrix level.

For every row of the base matrixW, an initial independent
choice of a set of coefficients is made, subject to the row
degree. The coefficient set can be chosen from a precomputed
collection of sets presented in [44], but results provided in
that research cover only rows of degree dc = 4. Therefore,
with the implementation of a similar search method, we have
computed the collections of optimized coefficients sets for
rows of the base matrix. Collections of two candidate sets for
GF(8), GF(16) and GF(64) nonzero entries in rows of degree
up to 6 are presented in Tab. 2. The Galois Field elements are
presented in the power notation αi of the primitive element α.

TABLE 2. Precomputed row coefficients for GF(8), GF(16), GF(64) and
different row degrees dc [47]; the numbers represent the exponent i in
the power representation αi for elements of GF(q).

Every row of the base matrix initially comprises one of
the precomputed sets of coefficients arranged in an arbitrary
order. Then additional conditioning method is incorporated:
a greedy search loop iterates over all cycles that exist after
lifting process, and tries to modify: 1) the coefficient set
choices, 2) the orders of the coefficients in respective rows
and 3) the multiplicative factor, in order to make as many
cycles as possible irresolvable [44], [48].

G. OVERALL QC-LDPC CONSTRUCTION ALGORITHM
In order to summarize the discussion, we provide a con-
cise description of the whole proposed QC-LDPC code
construction method, presented below as an Algorithm 1.
The algorithm can be used to design (N ,K ) QC-LDPC codes
with N = JP, K = (J − I )P and H structure as in (5).
Regular or irregular codes can be designed, with column
degree distribution defined by λ = [λ2, λ3, . . . , λmax(dv)],
where λi specifies a share of degree-i columns in the base
matrix W (and consequently in H). In the case of irregular
codes, the distribution should be pre-optimized for capacity
approaching with existing methods, such as Density Evolu-
tion or EXIT charts.

Construction of the base graph is supported by the clas-
sic Progressive Edge Growth (PEG) algorithm [49], [50],

Algorithm 1 QC-LDPC Code Over GF(q) Construction
Input: Base matrix size (I × J ), submatrix size P,

column degree distribution λ, closed walks
length detection limit g, GF order q.

Output: QC-LDPC parity check matrix HIP×JP

1 Construct binary base matrix WI×J subject to the
column degree distribution λ, utilizing the PEG
method [49] with concentrated row distribution [50].

2 Analyze the base graph associated with W: identify all
closed walks of length 2l < g (method 1) or 2l ≤ g
(methods 2–4).

3 For d = 1, . . . ,D, where D is the number of identified
closed walks, create IP constraint coefficient submatrices
A(d) and b(d)T according to (23) or (24)-(25).

4 For d = 1, . . . ,D, create goal function coefficients c(d)
according to (21), where:
– for method 1, α(d) = 0;

– for methods 2 and 3, α(d) =
{
1, L(d) = g
0, L(d) < g

;

– for method 4, α(d) =
{
2−ACE(d), L(d) = g

0, L(d) < g
.

5 With A = col[A(1),A(2), · · · ,A(D)],
b = col[b(1),b(2), · · · ,b(D)] and
c = [c(1), c(2), · · · , c(D)], solve the IP problem defined
by expressions (18)-(19).

6 With solution s = [s1, s2, . . . , sT ] construct H as in (5).
7 if q > 2 then
8 For every row in W, randomly select a set of

nonzero coefficients over GF(q) from a collection of
sets as in Tab. 2, for a given row degree.

9 Optionally: iteratively modify the coefficients as
outlined in section III-F.

10 Multiply every submatrix Psi in H by a selected
GF(q) coefficient.

which by greedy optimization minimizes existence of the
shortest cycles already on the base graph construction
level. Any other base graph construction can be easily uti-
lized too. If a dual-diagonal feature is required, the base
matrix should be constrained to possess the dual-diagonal
structure.

The next step, detecting all closedwalks of length 2l up to g
in the created base graph, is performedwith an algorithm sim-
ilar to the search method utilizing the support tree [28], also
known as cycle generating tree [35]. The search algorithm is
based on a remark that each closed walk of length 2l can be
considered as a concatenation of two paths of length l. For
every variable node vj in {v1, v2, . . . , vJ }, in order to find all
closed walks of length up to g passing vj, a support tree of all
paths from vj of length up to g/2 is created. A closed walk of
length-2l is marked if two positions at level-l of support tree
represent the same node in the base graph. In order to avoid
multiple detection of the same closedwalk, the tree expansion
for vj does not include nodes vj′ for j′ < j.
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In principle, the number of nodes in the support tree grows
exponentially with the number of levels expanded. However,
the tree storage complexity can be greatly reduced using
a compressed data structure, which corresponds to a trellis-
like representation of support tree [28]. In an implementation
oriented approach that we applied, at every expansion level l,
the algorithm memorizes: 1) the subset of nodes V(l) that
is reached at this level, which is V(l) ⊆ Vc at odd lev-
els or V(l) ⊆ Vv at even levels; 2) for every node in V(l): list
of all edges (vj, ci) that connects this node with level-(l − 1)
nodes. In such an approach, at each level at most I (for odd l)
or J (for even l) nodes and at most I × d̄c = J × d̄v edges
have to be memorized, where d̄c and d̄v are average row and
column degrees respectively. The total number of memorized
edges for levels up to g/2 is then I × d̄c × g/2, which means
it is linearly dependent on the search depth g.
After creating the trellis like structure, for every node at

level l with multiple connections to the previous level, the
trellis has to be backtracked, marking all the possible paths as
different closed walks existing in the base graph. The number
of closed walks is still exponentially dependent on g, however
complexity of such a search method can be easily limited by
introducing a numerical limit Dmax on the number of closed
walks that should be detected. The line 2 of Algorithm 1 can
be then reformulated for example as follows:

Analyze the base graph associated with W:
For every vj in {v1, v2, . . . , vJ } create a trellis reflecting the
support tree, excluding vj′ for j′ < j.
For subsequent levels l = 2, 3, . . ., backtrack the trellis and
list the closed walks. If for any l the number of detected
closed walks exceeds Dmax, break the loop and assign
g := 2l.
This way, the Algorithm 1 can proceed with Dmax as

an input parameter instead of girth g and complexity of the
base graph analysis is linearly dependent on Dmax. Mean-
while, we have observed empirically that typically (for small
to moderate sizes P) setting Dmax to be more than a few
thousands is aimless, because extending the list of closed
walks over this length does not further improve final results
of the optimization.

After closed walks detection, the IP problem is formulated
and solved, as indicated in Algorithm 1 and described in the
previous sections. Finally, if a nonbinary code is desired (over
GF(q) with q > 2), the coefficients over GF(q) should be
generated, for every nonzero element in the base matrix W,
corresponding to every submatrix Psi in H.

IV. NUMERICAL RESULTS
Experimental studies have been based on Monte Carlo
simulations, evaluating error correction performance of the
constructed structured LDPC codes, binary as well as nonbi-
nary cases. Numerical results provided in this section show
effectiveness of the proposed method. Codes of block length
up to a few thousands have been successfully created with
the IP optimization. The utilized simulation model involves

BPSKmodulation, AWGN channel and log-domain decoding
algorithms: LLR-BP for binary codes and FFT-QSPA [51]
belief propagation for nonbinary codes, with the maximum
number of iterations set to 100.

A. BINARY QC-LDPC CODES
Binary QC-LDPC codes with a broad range of lengths, rates
and submatrix sizes have been constructed. Here we present
a portion of the obtained results.

Block Error Rate (BLER) performances of the rate-1/2
codes of length N = 576 and N = 1004 are shown in Fig. 3.
The designed irregular (576,288) codes have the same degree
distribution as a code defined for WiMAX. However, since
the WiMAX codes are known to be easily outperformed in
the error floor region, performance of a recent (576,288)
QC-LDPC code [41], obtained by array dispersion with
masking, is also used as a reference. In our design, a base
graph corresponding to a matrix similar to M2 in [41] has
been utilized. The cyclic liftings have been optimized with
methods, which we refer to as method 2 and 4 in Tab. 1. Both
designed codes greatly outperform the WiMAX code and
they also perform better than the recent QC-LDPC code [41],
achieving an additional coding gain of about 0.2dB in the
error floor region.

FIGURE 3. Performance of designed rate-1/2 binary codes in comparison
with QC-LDPC codes [41], [25] and IPEG codes [50].

In the same Figure, a regular (1008,504) code obtained
with Method 2 is compared with a regular algebraically
constructed QC-LDPC code based on Sidon sequence [25]
as well as a non-structured modified PEG (Progressive
Edge Growth) code [50]. A slight performance gain can be
observed for the IP designed code. The performance gain
increases for larger SNRs and for the designed code no error
floor is observed down to the BLER of nearly 10−7.
Performances of higher rate binary codes are shown

in Fig. 4. An IP designed (576,432) code is compared with
WiMAX code and a recent QC-LDPC code [41], both codes
with the same degree distribution. Again, a performance gain
over QC-LDPC code from [41] can be observed, which grows
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FIGURE 4. Performance of designed rate-2/3 and rate-3/4 binary codes in
comparison with QC-LDPC codes [41] and WiMAX codes.

in the error floor region. We have also designed irregular
(1296,864) codes, with degree distribution taken from aWiFi
802.11n code, preserving the dual-diagonal structure of WiFi
parity check matrix. Results for codes with two different
submatrix sizes: P = 54 and P = 27 are presented in Fig. 4.
The code with P = 54 is constructed with the same base
matrix as a WiFi code and the code with P = 27 is designed
from a dual-diagonal base matrix constructed utilizing the
PEG algorithm. We can see a significant performance gain in
the error floor region overWiFi code for both submatrix sizes.
In general, for all the designed binary codes, the demonstrated
performance gain is increasing in the error floor region.

In Fig. IV-Awe present a Bit Error Rate (BER) comparison
of the designed QC-LDPC codes with rate-1/4 codes based
on pre-lifted protographs [13]. Best performing codes C4 and
C7 of lengths N = 496, N = 896 and N = 1776 have
been taken for comparison from [13]. With the proposed IP
optimization, codes with the same lifting degree (P = 31,
P = 56 and P = 111 respectively) and the same regular
dv = 3 distribution have been constructed and simulated.
Additionally, a code with smaller base matrix and P = 41
have been also constructed with the same N = 496 length.
All the designed codes have less short cycles in their Tanner
graphs than the reference codes. For example:

• the length-496 code C4 has a girth-8 graph with 186 8-
cycles and 961 10-cycles,

• while the length-496 code designed in this work has
a girth-10 graph with no 8-cycles and 465 10-cycles.

Also the length-1776 code designed in this work has greater
girth – 12 than similar length-1776 code from [13], which
is characterized by girth 10. However, the BER performance
results for these two codes are very similar (Fig. IV-A), per-
haps because the performance curve in [13] ends before any
error floor is observed. Meanwhile, for the length-496 and
length-896 codes, performance improvement of the proposed
codes is clearly visible in the provided results. Moreover,
with IP method-4 we have designed codes with the same

FIGURE 5. Performance of designed rate-1/4 binary codes in comparison
with pre-lifted protograph based codes [13].

lengths, but characterized by the following irregular degree
distribution: λ = [λ2 = 0.4375, λ3 = 0.375, λ4 = 0.0626,
λ6 = 0.125]. The simulation results, also presented
in Fig. IV-A, show that the designed irregular codes outper-
form their regular counterparts by about 0.4 dB, while the
error floor is not detected down to BER of about 10−7.

B. CODES OVER GF(8)
The semi-regular 6×12 basematrixwithmean column degree
2.5 presented in [38, eq. (12)], has been used as a basis of a
thorough comparative studies. Huang et al. [38] report the
smallest sizes of submatrix P (denoted by L in [38]), for
which their designed computer search technique enables to
achieve the assumed girth.

Our study revealed that the base graph corresponding to
the 6 × 12 base matrix contains: 9 different length-4 closed
walks, 56 length-6 closed walks, 209 length-8 closed walks,
1028 length-10 closedwalks. The proposed optimizationwith
an IP numerical solver successfully achieved codes of the
same g and P parameters as in [38]. Moreover, some attempts
to construct code with the same girth, but smaller size P
were also successful. In Tab. 3 we report the smallest sizes
of submatrix P, for which girth up to 10 was achievable in
our study altogether with results from [38]. We provide some
of the obtained parity check matrices in Fig. 6.

TABLE 3. Minimum submatrix sizes achieved for girth up to 10 codes
from base matrix (12) in [38].
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FIGURE 6. Permutation shift values obtained by the IP optimization that
from the base matrix (12) in [38] give: (a) girth-8 code with P = 6,
(b) girth-10 code with P = 23. Empty squares correspond to all-zero
submatrices in H.

Then, utilizing the same base matrix, codes over GF(8)
have been constructed with symbol lengths 228 (P = 19),
492 (P = 41) and 756 (P = 63). Method 2 has been applied
with g = 6, g = 8 and g = 10 respectively, and the nonzero
coefficients over GF(8) have been obtained as outlined in
section III-F. Fig. 7 shows performance of the constructed
codes in comparison with codes originating from the same
base matrix designed in [38]. A slight performance gain
can be observed for proposed IP optimization over heuristic
search from [38].

FIGURE 7. Performance of designed codes over GF(8) with various
lengths constructed from base matrix (12) in [38].

C. CODES OVER GF(64)
Codes of length 1008b over GF(64) have been investigated
in relation to girth optimized regular cycle codes with opti-
mized nonzero entries referred to as ‘Opt-2’ in [39]. Classic
PEG (Progressive Edge Growth) algorithm has been used to
construct the base matrices of sizes: 12 × 24 that has been
lifted to obtain code (168,84) with submatrix size P = 7,
as well as 4 × 8 that after lifting gives also code (168,84),
but with submatrix size P = 21. Regular (dv = 2,dc = 4)
base matrices lead to cycle codes. However, we have also
designed semi-regular codes with mean variable node degree
d̄v > 2, among which the best performance was observed for
d̄v = 2.083, obtained from 12×24 base matrix with 2 degree-
3 columns.

We have employed methods 1-4 (Tab. 1) with g = 12 for
cycle codes and g = 10 for semi-regular codes, since due to
the densermatrix, girth-12was not achievable in this case. For
cycle codes, method 4 was not applied, because it gives the
same result as method 2, since ACE metrics are the same for
all cycles. Fig. 8 shows performance of the constructed codes
with different methods, while Fig. 9 shows comparison with
PEG cycle code, GF(64) cycle code from [39] (Fig. 4 therein)
as well as binary counterpart 1008b, rate-1/2 QC-LDPC code
based on Sidon sequence [25].

FIGURE 8. Performance of designed codes of length N = 168 over GF(64)
constructed by different proposed methods from a base matrix obtained
by PEG algorithm.

FIGURE 9. Performance of designed codes of length N = 168 over GF(64)
constructed from a base matrix obtained by PEG algorithm, and their
counterparts from [25] and [39].

It can be noticed that performance of girth conditioned
code (as in Method 1) can be significantly improved by
simultaneous elimination of girth-length cycles, like in
methods 2-4. Meanwhile, codes obtained with methods 2-4
perform quite similarly.

Fig. 9 shows that the constructed codes obviously outper-
form the binary counterpart, and also outperform PEG code
over GF(64) as well as the GF(64) counterpart from [39],
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particularly in the error floor region. It can be also observed
that among the designed codes with different node degree
distribution, semi-regular code with d̄v = 2.083 is the best
choice, slightly outperforming regular cycle code.

D. CODE OVER GF(256)
Constant degree dv = 2 leading to a cycle code is known
to be an optimal choice for degree distribution for codes
over high-order GF fields, particularly GF(256). The cycle
code that has been designed has block-length of 896b, that is
112 symbols over GF(256), and it is a direct counterpart to the
code with parity check matrix provided in (40)-(41) in [35].
The code has been designed with method 2 (Tab. 1) with
g = 12, utilizing the base matrix extracted from (40) in [35]
and coefficients over GF(256) extracted from (41) in [35].
Then, the only difference is in the permutation shift values
search, which is the proposed IP-based method in our design
and a greedy pre-search with final selection by simulation
of candidate codes in design [35]. We have also constructed
a similar code, but with optimized coefficients as presented
in section III-F, instead of semi-random choice of [35].

Numerical results are presented in Fig. 10. In order to
observe any difference in performance of the simulated codes,
it was necessary to extend the simulation beyond SNR 2 dB,
which is a limit of results provided in [35]. Therefore, the pre-
sented performances result from our simulations, also for the
code (40)-(41) in [35]. All 3 codes perform similarly in the
waterfall region. However, a performance improvement of
the designed codes can be observed in the error floor region,
which is in the order of 0.1 dB at the 10−7 BER level. The
error floor level for the designed codes is significantly lower
than for the reference code.

FIGURE 10. Performance of codes over GF(256) constructed from an
8× 16 base matrix taken from [35]; Block and Bit Error Rates are
illustrated with solid and dashed lines respectively.

V. CONCLUSIONS
It has been presented that the protograph lifting for flexible
QC-LDPC code construction can be formulated as an opti-
mization problem with linear constraints and linear objective

function for cycles elimination in the code graph. Then,
a Mixed Integer Linear Programming (MILP) application
can solve the QC-LDPC code optimization problem. The
proposed optimization goal function, which is global, that
is it reflects all short closed walks in the base graph up to
the length limit Dmax, is very flexible and enables weight-
ing by metrics characterizing cycles. Binary and nonbinary
QC-LDPC codes, regular and irregular, have been shown
to be effectively constructed with the proposed optimization
method.

Presented design case studies for binary and nonbinary
codes reveal effectiveness of the proposed design strate-
gies for base graph lifting. Since the IP solver could reach
a global optimum of the objective function, the constructed
codes often outperformed their counterparts from previous
research. For all the investigated design cases, a significant
performance gain is demonstrated mainly in the error floor
region. It is not surprising, because the graph optimization
is known to influence primarily the error floor performance.
Meanwhile, irregular designs with optimized degree distri-
bution achieved a significant waterfall region coding gains
without error floor at least down to the BLER of about 10−7.
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