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ABSTRACT With the availability of low-cost and compact 2.5/3D visual sensing devices, computer vision
community is experiencing a growing interest in visual scene understanding of indoor environments. This
survey paper provides a comprehensive background to this research topic. We begin with a historical
perspective, followed by a popular 3D data representation and a comparative analysis of available datasets.
Before delving into the application specific details, this survey provides a succinct introduction to the
core technologies that are the underlying methods extensively used in this paper. Afterwards, we review
the developed techniques according to a taxonomy based on the scene understanding tasks. This covers
holistic indoor scene understanding as well as subtasks, such as scene classification, object detection, pose
estimation, semantic segmentation, 3D reconstruction, saliency detection, physics-based reasoning, and
affordance prediction. Later on, we summarize the performance metrics used for evaluation in different tasks
and a quantitative comparison among the recent state-of-the-art techniques. We conclude this review with
the current challenges and an outlook toward the open research problems requiring further investigation.

INDEX TERMS 3D scene understanding, semantic labeling, geometry estimation, deep networks, Markov
random fields.

I. INTRODUCTION

It’s not what you look at that matters, it’s what you see.
H.D. Thoreau (1817-62)

An image is simply a grid of numbers to a machine.
In order to develop a comprehensive understanding of visual
content, it is necessary to uncover the underlying geometric
and semantic clues. As an example, given an RGB-D (2.5D)
indoor scene, a vision-basedAI agent should be able to under-
stand the complete 3D spatial layout, functional attributes
and semantic labels of the scene and its constituent objects.
Furthermore, it is also required to comprehend both the appar-
ent and hidden relationships present between scene elements.
These capabilities are fundamental to the way humans per-
ceive and interpret images, thus imparting these astounding
abilities in machines has been a long-standing goal in com-
puter vision discipline. We can formally define visual scene
understanding problem in machine vision as follows:

Scene Understanding: ‘‘To analyze a scene by
considering the geometric and semantic context of
its contents and the intrinsic relationships between
them.’’

Visual scene understanding can be broadly divided into two
categories based on the input media: static (for an image) and
dynamic (for a video) understanding. This survey specifically
attends to static scene understanding of 2.5/3D visual data for
indoor scenes. We focus on the 3D media since the 3D scene
understanding capabilities are central to the development of
general-purpose AI agents that can be deployed for emerg-
ing application areas as diverse as autonomous vehicles [1],
domestic robotics [2], health-care systems [3], education [4],
environment preservation [5] and infotainment [6]. Accord-
ing to an estimate from WHO, there are 253 million people
suffering from vision impairment [7]. 3D scene understand-
ing can help them safely navigate by detecting obstacles
and analyzing the terrain [8]. Domestic robots with cognitive
abilities can be used to take care of elderly people, whose
number is expected to reach 1.5 billion by the year 2050.

As much as being highly significant, 3D scene under-
standing is also remarkably challenging due to the com-
plex interactions between objects, heavy occlusions, cluttered
indoor environments, major appearance, viewpoint and scale
changes across different scenes and the inherent ambigu-
ity in the limited information provided by a static scene.
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FIGURE 1. Given a RGB-D image, visual scene understanding can involve the image and pixel level semantic labeling (a-b), 3D object detection
and pose estimation (c-d), inferring physical relationships (e), identifying salient regions (f), predicting affordances (g), full 3D reconstruction
(h) and holistic reasoning about multiple such tasks (sample image from the NYU-Depth dataset [10]).

Recent developments in large-scale data-driven models,
fueled by the availability of big annotated datasets have
sparked a renewed interest in addressing these challenges.
This survey aims to provide an inclusive background to this
field, with a review of the competing methods developed
recently. Our intention is not only to explore the existing
wealth of knowledge but also to identify the key areas lacking
substantial interest from the community and the potential
future directions crucial for the development of practical
AI-based systems. To this end, we cover both the specific
problem domains under the umbrella of scene understanding
as well as the underlying computational tools that have been
used to develop state-of-the-art solutions to various scene
analysis problems (Fig. 1). To the best of our knowledge,
this is the first review that broadly summarizes the progress
and promising new directions in 2.5/3D indoor scene under-
standing. We believe this contribution will serve as a helpful
reference to the community.

II. A BRIEF HISTORY OF 3D SCENE ANALYSIS
There exists a fundamental difference in the way a machine
and a humanwould perceive the visual content. An image or a
video is, in essence, a tensor with numeric values representing
color (e.g., r, g and b channels) or location (e.g., x, y and
z coordinates) information. An obvious way of processing
such information is to compute local features representing
color and texture characteristics. To this end, a number of
local feature descriptors have been designed over the years to
faithfully encode visual information. Some of these include
e.g., SIFT [11], HOG [12], SURF [13], Region Covari-
ance [14] and LBP [15] to name a few. The human visual
system not only perceives the local visual details but also
cognitively reasons about semantics and geometry in a scene,

and can understand complex relationships between objects.
Efforts have been made to replicate these remarkable visual
capabilities in machine vision for advanced applications such
as context-aware personal digital assistants, health-care and
domestic robotic systems, content-driven retrieval and assis-
tive devices for visually impaired.

Initial work on scene understanding was motivated by
the human cognitive psychology and neuroscience. In this
regard, several notable ideas were put forward to explain the
working of the human visual system. In 1867, Helmholtz [16]
explained his concept of ‘unconscious conclusion’, which
attributes the involuntary visual perception to our longstand-
ing previous interactions with the 3D surroundings. In 1920s,
Gestalt theory argued that the holistic interpretation of a
scene developed by humans is due to eight main factors,
the prominent ones being proximity, closure, and common
motion [17]. Barrow and Tenenbaum [18] introduced the idea
of ‘intrinsic images’, which are layers of visual information
a human can easily extract from a given scene. These include
illumination, reflectance, depth, and orientation. Around half
a century ago, Marr proposed his three-level vision theory,
which transitions from a 2D primal sketch of a scene (con-
sisting of edges and regions), first to a 2.5D sketch (consisting
of texture and orientations) and finally to a 3D model which
encodes complete shape of a scene [19].

Representation is a key element of understanding the
3D world around us. In the early days of computer vision,
researchers favored parts-based representations for object
description and scene understanding. One of the initial efforts
in this regard was made by L.G. Roberts [20], who presented
an approach to denote objects using a set of 3D polyhe-
dral shapes. Afterwards, a set of object parts was identified
by Guzmán [21] as the primitives for representing generic
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FIGURE 2. Visualization of different types of 3D data representations for Stanford bunny. (a) CAD Model. (b) Point Cloud. (c) Mesh. (d) Voxelized.
(e) Octree. (f) TSDF.

2D shapes in line-drawings. Another seminal idea was put
forward by T. Binford, who demonstrated that several curved
objects could be represented using generalized cylinders [22].
Based on the generalized cylinders, a pioneering contribution
was made by I. Biederman, who introduced a set of basic
primitives (termed as ‘geons’ meaning geometrical ions) and
linked it with the object recognition in human cognitive
system [23]. Recently, data-driven feature representations
learned using deep neural networks have been shown to
perform superior for describing visual data [24]–[27].

While the initial systems developed for scene analysis bear
notable ideas and insights, they lack generalizability to new
scenes. This was mainly caused due to handcrafted rules and
brittle logic-based pipelines. Recent advances in automated
scene analysis seek to resolve these issues by devising more
flexible, learning based approaches that offer rich expressive-
ness, efficient training, and inference in the designed models.
We will systematically review the recent approaches and core
tools in Sec. V and VI. However, before that, we provide an
overview of the underlying data representations and datasets
for RGB-D and 3D data in the next two sections.

III. DATA REPRESENTATIONS
In the following, we highlight the popular 2.5D and
3D data representations used to represent and analyze
scenes. An illustration of different representations is provided
in Fig. 2, while a comparative analysis is reported in Table 1.

A. POINT CLOUD
A ‘point cloud’ is a collection of data points in 3D space. The
combination of these points can be used to describe the geom-
etry of the individual object or the complete scene. Every
point in the point cloud is defined by x, y and z coordinates,
which denote the physical location of the point in 3D. Range
scanners (typically based on laser, e.g., LiDAR) are also used
to capture 3D point clouds of objects or scenes.

B. VOXEL REPRESENTATION
A voxel (volumetric element) is the 3D counterpart of a pixel
(picture element) in a 2D image. Voxelization is a process
of converting a continuous geometric object into a set of
discrete voxels that best approximate the object. A voxel can
be considered as a cubic volume representing a unit sample
on a uniformly spaced 3D grid. Usually, a voxel value is

TABLE 1. Comparison between data representations. The symbols ?,
?? and ??? represent low, moderate and high respectively.

mapped to either 0 or 1, where 0 indicates an empty voxel
while 1 indicates the presence of range points inside the voxel.

C. 3D MESH
The mesh representation encodes a 3D object geometry in
terms of a combination of edges, vertices, and faces. A mesh
that represents the surface of a 3D object using polygon
(e.g., triangles or quadrilaterals) shaped faces is termed as
the ‘polygon mesh.’ Amesh might contain arbitrary polygons
but a ‘regular mesh’ is composed of only a single type of
polygons. A commonly used mesh is a triangular mesh that
is composed entirely of triangle shaped faces. In contrast to
polygonal meshes, ‘volumetric meshes’ represent both the
interior volume along with the object surface.

D. DEPTH CHANNEL AND ENCODINGS
A depth channel in a 2.5D representation shows the estimated
distance of each pixel from the viewer. This raw data has been
used to obtain more meaningful encodings such as HHA [28].
Specifically, this geocentric embedding encodes depth image
using height above the ground, horizontal disparity and angle
with gravity for each pixel.

E. OCTREE REPRESENTATIONS
An octree is a voxelized representation of a 3D shape that
provides high compactness. The underlying data structure is
a tree where each node has eight children. The idea is to
divide 3D occupancy of an object recursively into smaller
regions such that empty and similar voxels are represented
with bigger voxels. An octree of an object is obtained
by a hierarchical process as follows: start by considering
3D object occupancy as a single block, divide it into
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TABLE 2. Comparison between various publicly available 2.5/3D indoor datasets.

eight octants. Then, octants that partially contain an object
part are further divided. This process continues until a min-
imum allowed size is reached. The octants can be labeled
based on the object occupancy.

F. STIXELS
The idea of stixels is to reduce the gap between pixel and
object level information, thus reducing the number of pixels
in a scene to few hundreds [41]. In stixel representation,
a 3D scene is represented by vertically oriented rectangles
with a certain height. Such a representation is specifically
useful for traffic scenes, but limited in its capability to encode
generic 3D scenes.

G. TRUNCATED SIGNED DISTANCE FUNCTION
Truncated signed distance function (TSDF) is another vol-
umetric representation of a 3D scene. Instead of mapping a
voxel to 0 or 1, each voxel in the 3D grid is mapped to the
signed distance to the nearest surface. The signed distance
is negative if the voxel lies with in the shape and posi-
tive otherwise. RGB-D camera (e.g., Kinect) representations
are based on TSDF further fuse them to obtain a complete
3D model.

H. CONSTRUCTIVE SOLID GEOMETRY
Constructive solid geometry (CSG) is a building block tech-
nique in which simple objects such as cubes, spheres, cones,
and cylinders are combined with a set of operations such
as union, intersection, addition, and subtraction to model
complex objects. CSG is represented as a binary tree with
primitive shapes and the combination operations as its nodes.
This representation is often used for CAD models in com-
puter vision and graphics.

IV. DATASETS
High quality datasets play important role in development
of machine vision algorithms. Here, we review important

datasets, Table 2, for scene understanding available to
researchers.

A. NYU-DEPTH
Silberman and Fergus [42] introduced NYU Depth v1 and
v2 Silberman Silberman et al. [10] in 2011 and 2012, respec-
tively. NYU Depth v1 [42] consists of 64 different indoor
scenes with 7 scene types. There are 2347 RGBD images
available. The dataset is roughly divided into 60%/40%
for train/test respectively. NYU Depth v2 [10] consists
of 1449 RGBD images representing 464 different indoor
sceneswith 26 scene types. Pixel level labeling is provided for
each image. There are 795 images in train set and 654 images
in the test set. Both versions were collected using Microsoft
Kinect.

B. Sun3D
Sun3D [29] dataset provides videos of indoor scenes that are
registered into point clouds. The semantic class and instance
labels are automatically propagated through the video from
the seed frames. Dataset provides 8 annotated sequences, and
there are in total of 415 sequences available for 254 different
spaces in 41 different buildings.

C. SUN RGB-D
Sun RGB-D [30] contains 10335 indoor images with dense
annotations in 2D and 3D for both objects and indoor scenes.
It includes 146617 2D polygons and 64595 3D bounding
boxes for object orientation as well as scene category and
3D room layout for each image. There are 47 scene cate-
gories, 800 object categories, and each image contains on
average 14.2 objects. This data set is captured by four differ-
ent kinds of RGB-D sensors and designed to evaluate scene
classification, semantic segmentation, 3D object detection,
object orientation, room layout estimation and total scene
understanding. The data is divided into training and test sets
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such that each sensor data has half allocation for training and
the other half for testing.

D. BUILDING PARSER
Armeni et al. [31] provide a dataset with instance level
semantic and geometric annotations. The dataset was col-
lected from 6 different areas, and it contains 70496 RGB and
1412 equirectangular RGB with their corresponding depths,
semantic annotations, surface normal, global XYZ openEXR
format and camera metadata. These 6 different areas are
divided into training and test splits with a 3-fold cross-
validation scheme, i.e., training with 5 areas, training with
4 areas and training with 3 areas while testing with the rest of
scans in each case.

E. ScanNet
ScanNet [33] is the 3D reconstructed dataset with
2.5 million data frames obtained from 1513 RGB scans.
These 1513 annotated scans represent 707 different spaces
including small ones like closets, bathrooms, and utility
rooms, and large spaces like classrooms, apartments, and
libraries. These scans are annotated with instance level
semantic category labels. There are 1205 scans in the training
set and another 312 scans in the test set.

F. PiGraph
Savva et al. [38] proposed the PiGraph representation to
link human poses with object arrangements in indoor envi-
ronment. Their dataset contains 30 scenes and 63 video
recordings for five human subjects obtained by Kinect v2.
There are 298 actions available in approximately 2-hour of
recordings. Each recording is about 2 minute long with on
average 4.9 action annotations. They link 13 common human
actions like sitting, reading to 19 object categories such as
couch and computer monitor.

G. SUNCG
SUNCG [34] is a densely annotated, large scale dataset of
3D scenes. It contains 45622 different scenes that are seman-
tically annotated at object level. These scenes are manually
created using the Planner5D platform [43]. Planner5D is
an interior design tool that can be used to generate novel
scene layouts. This dataset contains around 49K floor maps,
404K rooms and 5697K object instances covering 84 object
categories. All the objects aremanually assigned to a category
label.

H. PASCAL3D+

Xiang et al. [40] introduced Pascal3D+ for 3D object detec-
tion and pose estimation tasks. They picked 12 categories
of objects including airplane, bicycle, boat, bottle, bus, car,
chair, motorbike, dining table, sofa, tv monitor, and train
(from Pascal VOC dataset [44]) and performed 3D labeling.
Further, they included additional images for each category
from ImageNet dataset [45]. The resulting dataset has around
3000 object instances per category.

I. RGBD OBJECT
This dataset [35] provides video recordings of 300 house-
hold objects assigned to 51 different categories. The objects
are categorized using WordNet hypernym-hyponym relation-
ships. There are 3 video sequences for each object cat-
egory recorded by mounting Kinect camera at different
heights. The videos are recorded at a frame rate of 30Hz
with 640×480 resolution for RGB and depth images. This
dataset also contains 8 annotated video sequences of indoor
scene environments.

J. TUM
Reference [39] provides a large-scale dataset for tasks like
visual odometry and SLAM (simultaneous localization and
mapping). The dataset contains RGB and depth images
obtained using Kinect sensor along with the groundtruth sen-
sor trajectory (poses and positions). The dataset is recorded
at a frame rate of 30Hz with 640×480 resolution for RGB
and depth images. The groundtruth trajectory was obtained
using high speed cameras working at 100Hz. There are in
total 39 sequences of indoor environments.

K. SceneNN
SceneNN [36] is a fine-grain annotated RGBD dataset
of indoor environments. It consists of 100 scenes where
each scene is represented as a triangular mesh having
per vertex and per pixel annotations. The dataset is fur-
ther enriched by providing information such as oriented
bounding boxes, axis-aligned bounding boxes and object
poses.

L. Matterport3D
Matterport3D [32] provides a diverse and large-scale RGBD
dataset for indoor environments. This dataset provides
10800 panoramic images covering 360◦ views captured by
Matterport camera.Matterport camera comes with three color
and three depth cameras. To get a panoramic view, they
rotated the Matterport camera by 360◦, stopping at six loca-
tions and capturing three RGB images at each location.
The depth cameras continuously acquired depth information
during rotation, which was then aligned with each color
image. Each panoramic image contains 18 RGB images.
In total, there are 194400 color and depth images representing
indoor scenes of 90 buildings. This dataset is annotated for
2D and 3D semantic segmentations, camera poses and surface
reconstructions.

M. SceneNet RGB-D
SceneNet is a synthetic video dataset which provides pixel
level annotations for nearly 5M frames. The dataset is
divided into training set with 5M images while valida-
tion and test set contains 300K images. This dataset can
be used for multiple scene understanding tasks including
semantic segmentation, instance segmentation and object
detection.
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FIGURE 3. Core-techniques comparison.

FIGURE 4. A basic CNN architecture with a convolution, pooling,
activation along with a fully connected layer.

V. CORE TECHNIQUES
We begin with an overview of the core techniques employed
in the literature for various scene understanding problems.
For each respective technique, we discuss its pros and cons in
comparison to other competing methods (Fig. 3). Later in this
survey, we provide a detailed description of recent methods
that built on the strengths of these core techniques or attempt
to resolve some of their weaknesses. In this regard, several
hybrid approaches have also been proposed in the literature
e.g., [46]–[48], which combine strengths of different core
techniques to achieve better performances.

A. CONVOLUTIONAL NEURAL NETWORKS
An artificial neural network (ANN) consists of a number of
computational units, which are arranged in multiple inter-
connected layers. Convolutional Neural Network (CNN) is
a special type of ANN whose main building blocks consist
of filters that are spatially convolved with the inputs to gen-
erate output feature maps. A building block is called as the
‘convolutional layer,’ which usually repeats several times in a
CNN architecture. A convolution layer drastically reduces
the network parameters through weight-sharing. Further,
it makes the network invariant to translations in the input
domain. The convolution layers are interleaved with other
layers such as pooling (to subsampling inputs), normalization
(to rescale activations) and fully connected layers (to reduce
the feature dimensions or to densely connect input and output
units). A simple CNN architecture is illustrated in Fig. 4,
which shows the above-mentioned layers.

CNNs have shown excellent performance on many scene
understanding tasks (e.g., [25]–[27], [49]–[52]). Some dis-
tinguishing features that permit CNNs to achieve supe-
rior results can be considered as end-to-end learning of

FIGURE 5. A basic RNN architecture in the rolled and unrolled form.

networkweights, scalability to large problem sets and compu-
tationally efficiency in their derivation of large-scale models.
However, it is nontrivial to incorporate prior knowledge and
rich relationships between variables in a traditional CNN.
Besides, conventional CNNs do not operate on arbitrarily
shaped inputs such as point clouds, meshes, and variable
length sequences.

B. RECURRENT NEURAL NETWORKS
While CNNs are feedforward networks (i.e., they do not have
cycles or loops), Recurrent Neural Network (RNN) has a
feedback architecture where information flow happens along
directed cycles. This capability allows them to work with
arbitrary sized inputs and outputs. RNNs exhibit memoriza-
tion ability and can store information and sequence rela-
tionships in their internal memory states. A prediction at a
specific time instance ‘t’ can then be made while considering
the current input as well as the previous hidden states (Fig. 5).
Similar to the case of convolution layer in CNNs where
weights are shared along the spatial dimensions of the inputs,
the RNN weights are shared along the temporal domain,
i.e., same weights are applied to inputs at each time instance.
Compared to CNNs, RNNs have considerably less number of
parameters due to such weight sharing mechanism.

As discussed above, the hidden state of the RNN provides
a memory mechanism, but it is not effective when the goal
is to remember long-term relationships in sequential data.
Therefore, RNN only accommodates short-term memory and
faces with difficulties in ‘remembering’ (a few time-steps
away) old information processed through it. To overcome
this limitation, improved versions of recurrent networks have
been introduced in the literature which include the Long
Short-Term Memory (LSTM) [53], Gated Recurrent Unit
(GRU) [54], Bidirectional RNN (B-RNN) [55] and Neural
Turing Machines (NTM) [56]. These architectures intro-
duce additional gates and recurrent connections to improve
the storage ability. Some representative works in 3D scene
understanding that leverage the strengths of RNNs
include [47], [57].

C. ENCODER-DECODER ARCHITECTURES
The encoder-decoder networks are a type of ANNs, which
can be used for both supervised and unsupervised learning
tasks. Given an input, an ‘encoder’ module learns a compact
representation of the data which is then used to reconstruct
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FIGURE 6. A basic autoencoder architecture.

either the original input or an output of another form
(e.g., pixel labels for an image) using a ‘decoder’ (Fig. 6).
This type of network is called an autoencoder when the
input to the encoder is reconstructed back using the decoder.
Autoencoders are typically used for unsupervised learning
tasks. A closely related variant of an autoencoder is a vari-
ational autoencoder (VAE) that introduces constraints on the
latent representation learned by the encoder.

Encoder-decoder style networks have been used in
combination with both convolutional [46] and recurrent
designs [58]. The applications of such designs for scene
understanding tasks include [46], [59]–[63]. The strength of
these approaches is to learn a highly compact latent repre-
sentation from the data, which is useful for dimensionality
reduction and can be directly employed as discriminative
features or transformed using a decoder to generate desired
outputs. In some cases, the encoding step leads to irreversible
loss of information which makes it challenging to reach the
desired output.

D. MARKOV RANDOM FIELD
Markov Random Field (MRF) is a class of undirected prob-
abilistic models that are defined over arbitrary graphs. The
graph structure is composed of nodes (e.g., individual pix-
els or super-pixels in an image) interconnected by a set
of edges (connections between pixels in an image). Each
node represents a random variable which satisfies Markovian
property, i.e., conditional independence from all variables if
the neighboring variables are known. The learning process
for a MRF involves estimating a generative model i.e., the
joint probability distribution over input (data; X) and output
(prediction; Y) variables i.e., P(X,Y). For several problems,
such as classification and regression, it is more convenient
to directly model the conditional distribution P(Y|X) using
the training data. The resulting discriminative Conditional
Random Field (CRF) models often provide more accurate
predictions.

Both MRF and CRF models are ideally suited for struc-
tured prediction tasks where the predicted outputs have inter-
dependent patterns instead of, e.g., a single category label
in the case of classification. Scene understanding tasks often
involve structured prediction e.g., [64]–[69]. These models
allow the incorporation of context while making local pre-
dictions. The context can be encoded in the model by pair-
wise potentials and clique potentials (defined over groups
of random variables). This results in more informed and

FIGURE 7. Dictionary learning for sparse coding.

coherent predictions which respect the mutual relationships
between labels in the output prediction space. However, train-
ing and inference in several of such model instantiations are
not tractable, which makes their application challenging.

E. SPARSE CODING
Sparse coding is an unsupervised method used to find a
set of basis vectors such that an input vector ‘x’ can be
represented by their linear sparse combination [70]. The set
of basis vectors is called as a ‘dictionary’ (D), which is
typically learned over the training data. Given the dictio-
nary, a sparse vector α is calculated such that the input x
can be accurately reconstructed back using D and α. Sparse
coding can be seen as decomposing a non-linear input into
sparse combination of linear vectors. If the basis vectors are
large in number or when the dimension of feature vectors
is high, optimization process required to calculate D and
α can be computationally expensive. Examples of sparse
coding based approaches in scene understanding literature
include [71]–[73].

F. DECISION FORESTS
A decision tree is a supervised algorithm that classifies data
based on a graph based hierarchy of rules learned over the
training set. Each internal node in a decision tree represents a
test or attribute (true or false question) while each leaf node
represents the decision on a class label. To build a decision
tree, we start with a root node that receives all the training
data and based on the test question we split the data into
subsets. These subsets then become the inputs for the next
two child nodes. This process continues until we produce the
best possible distribution of the labels at each node, i.e., a
total unmixing of data is achieved. One can quantify the
mixing or uncertainty at a single node by a metric called
‘Gini impurity’ which can be minimized by devising rules
based on information gain. We can use these measures to
ask the best question at each node and continue to build the
decision tree recursively until there are no more questions
to ask. Decision trees can quickly overfit the training data
which can be rectified by using random forests [74]. Random
forest builds an ensemble of decision trees using a random
selection of data and produces class labels based on many
decisions trees. Representative works using random forests
include [71], [75]–[78].
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G. SUPPORT VECTOR MACHINES
When it comes to classifying the n-dimensional data points,
the goal is not only to separate the data into a certain number
of categories but to find such a dividing boundary that offers
maximum possible separation between classes. Support vec-
tor machine (SVM) [79], [80] offers such a solution. SVM is
a supervised method that separates the data with a linear
hyperplane, also called maximum-margin hyperplane, that
offers maximum separation between any combination of two
classes. SVM can also be used to learn nonlinear classifi-
cation boundaries with the kernel trick. The idea of kernel
trick is to project the nonlinearly separable low dimensional
data into a high dimensional space where the data is lin-
early separable. After applying SVM into high dimensional
linearly separable space, project the solution back to low-
dimensional, nonlinearly separable space to get a nonlinear
hyperplane boundary.

VI. A TAXONOMY OF PROBLEMS
A. IMAGE CLASSIFICATION
1) PROLOGUE AND SIGNIFICANCE
Image recognition is a basic, yet one of the fundamen-
tal tasks for visual scene understanding. Information about
the scene or object category can help in more sophisti-
cated tasks such as scene segmentation and object detection.
Classification algorithms are being used in diverse areas
such as medical imaging, self-driving cars and context-aware
devices. In this section, we will provide an overview of
some of the most important methods for 2.5D/3D scene
classification. These approaches employ a diverse set strate-
gies including handcrafted features [81], automatic feature
learning [47], [52], unsupervised learning [82] and work on
different 3D representations such as voxels [83] and point
clouds [49].

2) CHALLENGES
Important challenges for image classification include:
• 2.5/3D data can be represented in multiple ways as
discussed above. Challenge then is to choose the data
representation that provides maximum information with
minimum computational complexity.

• A key challenge is to distinguish between fine-
grained categories and appropriately model intra-class
variations.

• Designing algorithms that can handle illuminations,
background clutter and 3D deformations.

• Designing algorithm that can learn from limited data.

3) METHODS OVERVIEW
A bottom-up approach to scene recognition was introduced
in [81], where the constituent objects were first identi-
fied to improve the scene classification accuracy. In this
regard, they first extended a contour detection method
(gPb-ucm [84]) to RGB-D images by effectively incorporat-
ing the depth information. Note that the gPb-ucm approach

produces hierarchical image segmentation by using contour
information [84]. The predicted semantic segmentation maps
were used as features for scene classification. They used
a special pyramid formulation, similar to spatial pyramid
matching approach [85], along with SVM as a classifier.

Sochar et al. [47] introduced a method to learn features
from RGB-D images using RNN. They used a convolutional
layer to learn low-level features which were then passed
through multiple RNNs to learn high-level feature repre-
sentations before feeding to a classifier. At the CNN stage,
RGB and depth patches were clustered using k-means
to obtain the convolutional filters in an unsupervised
manner [86]. These filters were then convolved with images
to get low-level features. After performing dimensionality
reduction via pooling process, these features were then fed to
multiple RNNs which recursively operate in a tree-like struc-
ture to learn high-level feature representations. The outputs
of these multiple RNNs were concatenated to form a final
vector which is forwarded to a SoftMax classifier for the final
decision. An interesting insight of their work is that weights
of RNNswere not learned through back propagation rather set
to random values. Increasing the number of RNNs resulted in
an improved model classification accuracy. Another impor-
tant insight of their work is that RGB and depth images
produce independent complimentary features and their com-
bination improves the model accuracy. Similar to this work,
[87] extracted features from RGB and depth modalities via
two stream networks, which were then fused together. Ref-
erence [88] extended the same pattern by learning features
from modalities like RGB, depth and surface normals. They
also proposed to encode local CNN features with fisher vector
embedding and then combine them with global CNN features
to obtain better representations.

In an effort to build a 3D shape classifier, Wu et al. [89]
introduced a convolutional deep belief network (DBN)
trained on 3D voxelized representations. Note that different
from restricted Boltzmann machines (RBM), a DBN is a
directed model that can detect patterns from unlabeled data.
An RBM is a two-way translator that takes input in a forward
pass and translate it to latent representation that encodes
the input, while in the backward pass it takes the latent
representation and translates it back to reconstruct the input.
Reference [90] showed that DBN could learn the joint dis-
tributions of 2D image pixels and labels. Reference [89]
extended this idea to learn joint probabilistic distributions
of 3D voxels and object categories. The novelty in their archi-
tecture is to introduce convolutional layers which, in contrast
to fully connected layers, allow weight sharing and signifi-
cantly reduce the number of parameters in the DBN. On sim-
ilar lines, [91] advocates using 3D CNN on a voxel grid
to extract meaningful representations while [51] proposes to
approximate 3D spaces as volumetric fields to deal with the
computational cost of directly applying 3D CNN to voxels.

Though it seems logical to build a model that can directly
consume 3D shapes to recognize them (e.g., [89]), however
the 3D resolution of a shape must be significantly reduced
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FIGURE 8. Multi-view CNN for 3D shape recognition [52]. Extracted
features of different views from CNN1 are pooled together before passing
through CNN2 for final score prediction. (Courtesy of [52]).

to allow feasible training of a deep neural network. As an
example, 3D ShapeNets [89] used a 30 × 30 × 30 binary
voxel grid to represent 3D shapes. Su et al. [52] provided
evidence that 3D shapes can be recognized by their 2D views
and presented a multi-view CNN (MVCNN) architecture
to recognize 3D shapes that can be trained on 2D ren-
dered views. They used the Phong reflection method [92]
to render 2D views of 3D shapes. Afterwards, a pre-trained
VGG-M network [93] was fine-tuned on these rendered
views. To aggregate the complementary information across
different views, each rendered view was passed through the
first part of the network (CNN1) separately, and the results
across views were combined using element-wise maximum
operation at the pooling layer before passing them through
the rest of network (CNN2, see Figure 8). MVCNN thus
combines the multiple view information to better recognize
3D shapes. While MVCNN represented 3D shapes with mul-
tiple 2D images, [94] proposes to convert 3D shapes into a
panoramic view.

We have observed so far that the existing models utilize
different 3D shape representations (i.e., volumetric, multi-
view and panoramic) to extract useful features. Intuitively
volumetric representations should contain more information
about the 3D shape, but multi-view CNNs [52] perform better
than volumetric CNNs [89]. Qi et al. [83] argued that network
architecture differences and input resolutions are the reasons
for the gap in performance. Inspired from multi-view CNNs,
[83] introduced a multi-orientation network architecture that
takes various orientations of input voxel grid, extract features
for each orientation using a shared network CNN1, pooled
the features before passing through CNN2. To take benefit of
well trained 2D CNN, they introduced 3D-to-2D projection
using anisotropic probing kernels to classify the 2D pro-
jection of the 3D shape. They also improved multi-view
CNNs [52] performance by introducing a multi-resolution
scheme. Inspired by the performance efficiency of MVCNN
and volumetric CNN, [95] fused both modalities to learn
better features for classification.

A point cloud is a primary geometric representation cap-
tured by 3D scanners. However, due to its variable number of
points from one shape to another, it needs to be transformed
to a regular input data format, e.g., voxel grid or multi-view
images. This transformation, however, can increase the data
size and result in undesired artifacts. PointNet [49] is a deep

FIGURE 9. PointNet++ [96] architecture for point cloud classification and
segmentation. PointNet architecture [49] is being used in a hierarchical
fashion to extract local geometric features (Courtesy of [96]).

net architecture that can consume point clouds directly and
output the class label. PointNet takes a set of points as input,
performs feature transformations for each point, assemble
feature across points via max-pooling and output the classifi-
cation score. Even though PointNet process unordered point
clouds but by design, it lacks the ability to capture local
contextual features due to metric space of the points. Just like
a CNN architecture learns hierarchical features mapped from
local patterns to more abstract motifs, Qi et al. [96] applied
PointNet on point sets recursively to learn local geometric
features and then grouped these features to produce high-level
features for the whole point set (see Figure 9). A similar idea
was adopted in [97], which performed a hierarchical feature
learning over a k-d tree structured partitioning of 3D point
clouds.

Finally, we would like to describe an unsupervised
method for 3D object recognition. By combining the
power of volumetric CNN [89] and generative adversarial
networks (GAN) [98], Wu et al. [82] presented a novel
framework called 3D-GAN for 3D object generation and
recognition. An adversarial discriminator in GAN learns
to classify whether an object is real or synthesized.
Reference [82] showed that representations learned by an
adversarial discriminator without supervision could be used
as features for linear SVM to obtain classification scores
of 3D objects.

B. OBJECT DETECTION
1) PROLOGUE AND SIGNIFICANCE
Object detection deals with recognizing object instances and
categories. Usually, an object detection algorithm outputs
both the location (defined by a 2/3D bounding box around
the visible parts of an object instance) and the class of an
object, e.g., sofa, chair. This task has high significance for
applications such as self-driving cars, augmented and virtual
reality. However, in applications such as robot navigation,
we need so-called ‘amodal object detection’ that tries to
find an object’s location as well as its complete shape and
orientation in 3D space when only a part of it is visible.
In this section, we review 2.5/3D object detection methods
mainly focused on indoor scenes. We observe the role of
handcrafted features in object recognition [66], [99], [100]
and the recent transition to deep neural networks based region
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proposal (object candidate) generation and object detection
pipelines [24], [101], [102]. Apart from the supervised
models, we also review unsupervised 3D object detection
techniques [103].

2) CHALLENGES
Key challenges for object detection are as follows:
• Real world environments can be highly cluttered and
object identification in such environments is very
challenging.

• Detection algorithm should also be able to handle view-
point and illuminations variations and deformations.

• Inmany scenarios, it is necessary to understand the scene
context to successfully detect objects.

• Objects categories have a long-tail (imbalanced) distri-
bution, which makes it challenging to model the infre-
quent classes.

3) METHODS OVERVIEW
Jiang et al. [104] proposed a bottom-up approach to detect
3D object bounding boxes using RGB-D images. Starting
from a large number of object proposals, physically plausible
boxes were identified by using volumetric properties such as
solidness, 3D overlap, and occlusion relationships. Later, [99]
argued that convex shapes are more descriptive than cuboids
and can be used to represent generic objects. A limitation
of these techniques is that they ignore semantics in a scene
and are limited to finding object shape. In a real-world sce-
nario, a scene can contain regular objects (e.g., furniture)
as well as cluttered regions (e.g., clothes pile on a bed).
Khan et al. [66] extended the technique presented in [104]
to jointly detect 3D object cuboids and indoor structures
(e.g., floor, walls) along with pixel level labeling of cluttered
regions in RGB-D images. A CRF model was used to model
the relationships between objects and cluttered regions in
indoor scenes. However, these approaches do not provide
object-level semantic information apart from a broad catego-
rization into regular objects, clutter, and background.

Several object detection approaches [24], [72], [100], [105]
have been proposed to provide category information and
location of each detected object instance. Reference [72] pro-
posed a sparse coding network to learn hierarchical features
for object recognition from RGB-D images. Sparse coding
models data as a linear combination of atoms belonging
to a codebook subject to sparsity constraints. The multi-
layer network [72] learns codebooks for RGB-D images via
K-SVD algorithm [106], using the grayscale, color, depth,
and surface normal information. The feature hierarchy is
built as the receptive field size increases along the net-
work depth which helps to learn more abstract represen-
tations of RGB-D images. They used orthogonal matching
pursuit [107] algorithm for sparse coding, feature pooling
to reduce dimensionality and contrast normalization at each
layer of the network.

The performance of an object detection algorithm can
suffer due to variations in object shapes, viewpoints,

FIGURE 10. (a) 3D region proposals extraction using using CNNs
operating on 3D volumes. (b) A combination of 2D and 3D CNN jointly
used to predict object category and location through regression.
(Courtesy of [24]).

illumination, texture, and occlusion. Song and Xiao [100]
proposed a method to deal with these variations by exploiting
synthetic depth data. They take a collection of 3D CAD
models of an object category and render it from different
viewpoints to obtain depth maps. The feature vectors cor-
responding to depth maps of an object category are then
used as positives to train exemplar SVM [108] against
negatives obtain from RGB-D datasets [10]. At test time,
a 3D window is slid on the scene to be classified by
the learned SVMs. While [100] represented objects with
CAD models, other representations are also explored in liter-
ature such as [105] and [109] proposed 3D deformable wire-
frame modeling and cloud of oriented gradients representa-
tion, respectively, and [110] build object detector based on
3D mesh representation of indoor scenes.

Typically, an object detection algorithm produces a bound-
ing box on visible parts of the object on an image plane,
but for practical reasons, it is desirable to capture the full
extent of the object regardless of occlusion or truncation.
Song and Xiao [24] introduced a deep learning framework
for amodal object detection. They used three deep network
architectures to produce object category labels along with
3D bounding boxes. First, a 3D network called Region Pro-
posal Network (RPN) takes a 3D volume generated from
depth map and produces 3D regional proposals for the
whole object. Each region proposal is feed into another
3D convolutional net, and its 2D projection is fed to a
2D convolutional network to jointly learn color and depth
features. The final output is the object category along with
the 3D bounding box (see Figure 10). A limitation of this
work is that the object orientation is not explicitly con-
sidered. As [111] demonstrated with their oriented-boosted
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FIGURE 11. Siamese factorization network [103] that takes pair of frames and estimate view point, depth and finally produce point cloud of estimated
3D geometry. Once the network is trained, it can produce viewpoint, depth and 3D geometry from single image at test time. (Courtesy of [103]).

3D CNN (Vox-net), this can adversely affect the detection
performance and joint reasoning about the object category,
location, and 3D pose leads to a better performance.

Deng et al. [102] introduced a novel neural network archi-
tecture based on Fast-RCNN [26] for 3D amodal object
detection. Given RGB-D images, they first computed the
2D bounding boxes using multiscale combinatorial group-
ing (MCG) [112] over superpixel segmentations. For each
2D bounding box, they initialized the location of the 3D box.
The goal is then to predict the class label and adjust the
location, orientation, and dimension of the initialized 3D box.
In doing so, they successfully showed the correlation between
2.5D features and 3D object detections. Novotny et al. [103]
proposed to learn 3D object categories from videos in an
unsupervised manner. They used Siamese factorization net-
work architecture to align videos of 3D objects to estimate
viewpoint, then produce depth maps using the estimated
viewpoints, and finally, the 3D object model is constructed
using the estimated depth map (see Figure 11).

Finally, we would like to mention 3D object detection
with attention mechanism. To understand a specific aspect of
an image, humans can selectively focus their attention on a
specific part of the image to gain information. Inspired by
this, [113] proposed 3D attention model that scan a scene
to select best views and focus on most informative regions
for object recognition task. It further combines the 3D CAD
models to replace the actual objects, such that a full 3D scene
can be reconstructed. This demonstrates how object detection
can help in other tasks such as scene completion.

C. SEMANTIC SEGMENTATION
1) PROLOGUE AND SIGNIFICANCE
This task relates to the labeling of each pixel in an image with
its corresponding semantically meaningful category. Appli-
cations of semantic segmentation include domestic robots,
content-based retrieval, self driving cars and medical imag-
ing. Efforts to address the semantic segmentation problem
have come a long way from using hand crafted and data
specific features to automatic feature learning techniques.

Here, we summarize the important challenges for the prob-
lem and some of the most important methods for semantic
segmentation that have had significant impact and inspired a
great deal of research in this area.

2) CHALLENGES
Despite being an important task, segmentation is highly chal-
lenging because:

• Pixel level labeling requires both local and global infor-
mation and challenge then is to design such algorithms
that can incorporate the wide contextual information
together.

• The difficulty level increases a lot for the case of instance
segmentation, where the same class is segmented into
different instances.

• Obtaining dense pixel level predictions, especially close
to object boundaries, is challenging due to occlusions
and confusing back-grounds.

• Segmentation is also affected by appearance, viewpoint
and scale changes.

3) METHODS OVERVIEW
Traditionally, CRFs have been the default choice in the con-
text of semantic segmentation [114]–[117]. This is due to
the reason that CRFs provide a flexible framework to model
contextual information. As an example, [116] exploit this
property of CRF for the case of semantic segmentation of
RGB-D images. They first developed a 2D semantic seg-
mentation method based on decision forests [74] and then
transfered the 2D labels to 3D using a 3D CRF model to
improve the RGB-D segmentation results. Other efforts to
formulate semantic segmentation task into CRF framework
include [114], [115], [117]. More recently, CNNs have been
used to extract rich local features for 2.5D/3D image seg-
mentation tasks [28], [118]–[120]. A dominant trend in the
deep learning based methods for semantic segmentation tasks
has been to use encoder-decoder networks in an end-to-end
learnable pipeline, which enable high resolution segmenta-
tion maps [46], [60], [121], [122].
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The work by Couprie et al. [118] is among the pioneering
efforts to use depth information along with RGB images
for feature learning in semantic segmentation task. They
used multi-scale convolutional neural networks (MCNN) for
feature extraction that can be efficiently implemented using
GPUs to operate in real-time during inference. Their work-
flow involves fusing the RGB image with depth image using
a Laplacian pyramid scheme which was then fed into the
MCNN for feature extraction. The resulting features had a
spatially low resolution, this was overcome using an up-
sampling step. In parallel, RGB image was segmented into
super-pixels. Final scene labeling was produced by aggregat-
ing the classifier predictions into the super-pixels. Note that
although this approach was applied for video segmentation,
it does not leverage temporal relationships and independently
segments each frame. The real-time scene labeling of video
sequences was achieved by using a computational efficient
graph based scheme [123] to compute temporal consistent
super-pixels. This technique was able to compute super-
pixels in quasi-linear time, there by making it possible to use
for real-time video segmentation.

Girshick et al. [124] presented a region CNN (R-CNN)
method for detection and segmentation of RGB images which
was later extended to RGB-D images [28]. The R-CNN [124]
method extracts regions of interest from an input image,
compute the features for each of the extracted regions
using a CNN and then classify each region using class-
specific linear SVMs. Gupta et al. [28] then extended the
R-CNN method to RGB-D case by using a novel embedding
for depth images. They purposed a geo-centric embedding
called HHA to encode depth images using height above
ground, horizontal disparity and angle with gravity for each
pixel. They demonstrated that CNN can learn better features
using the HHA embedding compared to raw depth images.
Their proposed method [28] first uses multiscale combi-
natorial grouping (MCG) [112] to obtain region proposals
from RGB-D images, followed by feature extraction using
a CNN [125] pre-trained on Imagenet [45] and fin-tuned on
HHA encoded depth images. Finally, they pass these learned
features of RGB and depth images through SVM classifier to
perform object detection. They used superpixel classification
framework [81] on the output of the object detectors for
semantic scene segmentation.

Long et al. [121] built an encoder-decoder architecture
using a Fully Convolutional Network (FCN) for pixel-wise
semantic label prediction. The network can take arbitrary
sized input and produce corresponding sized outputs due
to the fully convolutional architecture. Reference [121]
first redefined the pre-trained classification networks
(AlexNet [125], VGG net [27], GoogLeNet [126]) into their
equivalent FCNs and therefore transferred their learned rep-
resentation to the segmentation task. As one can expect,
the FCNs based on classification nets downgrade the spa-
tial resolution of visual information through consecutive
sub-sampling operations. To improve the spatial resolution,
[121] augments the FCN with a convolution transpose block

FIGURE 12. A schematic of Bayesian encoder-decoder architecture for
semantic segmentation with a measure of model uncertainty. (Courtesy
of [60]).

for upsampling while keeping the end-to-end learning intact.
Further the final classification layer of each classification
net [27], [125], [126] was removed and the fully connected
layers were replaced with 1x1 convolution followed by
deconvolutional layer to upsample the output. To refine the
predictions and for detailed segmentation, they introduced
a skip architecture which combined deep semantic infor-
mation and shallow appearance information by fusing the
intermediate activations. To extend their method to RGB-D
images, [121] trained two networks: one for RGB images and
a second for depth images represented by three dimensional
HHA depth encoding introduced in [28]. The predictions
from both nets are then summed at the final layer. After the
successful application of FCNs [121] to semantic segmenta-
tion, FCN based architectures since attracted a lot of attention
from the research community and are extended to number of
new tasks like region proposal [127], contour detection [128]
and depth regression [129]. In a follow up paper
Shelhamer et al. [130] revisited the FCNs for semantic
segmentation to further analyze, tune and improve results.

A measure of confidence based on which we can trust the
semantic segmentation output of our model can be important
in many important applications such as autonomous driving.
None of the methods we discussed so far can produce proba-
bilistic segmentation with a measure of model uncertainty.
Kendall et al. [60] came up with a framework to assign
class labels to pixels with a measure of model uncertainty.
Their method converts a convolutional encoder decoder
network [46] to Bayesian convolutional network that can
produce probabilistic segmentation [131] (see figure 12).
This technique can not only be used to convert many state
of the art architecture like FCN [121], Segnet [46] and
Dilation Network [132] to output probabilistic semantic
segmentation but also improves the segmentation results
by 2-3% [60]. The work of Kendall et al. [60] is inspired by
Gal and Ghahramani [131] and [133] show that dropout [134]
can be used to approximate inference in a Bayesian neural
network. Reference [133] shows that dropout [134] used
at test time impose a Bernoulli distribution over the net-
work’s filter weights by sampling the network with randomly
dropped out units at the test time. This can be considered
as obtaining Monte Carlo samples from the posterior distri-
butions over the model. Reference [60] used this method to
perform probabilistic inference over the segmentation model.
It is important to note that softmax classifier produces relative
probabilities between the class labels while the probability

1870 VOLUME 7, 2019



M. Naseer et al.: Indoor Scene Understanding in 2.5/3D for Autonomous Agents: Survey

FIGURE 13. SegCloud [135] framework that takes a 3D point cloud as
input, that is voxelized before feeding to 3D CNN. The voxelized
representation is projected to the point cloud representation using
trilinear interpolation. (Courtesy of [135]).

distribution from theMonte Carlo sampling [60], [131], [133]
is an overall measure of the model’s uncertainty.

Finally, we would like to mention that deep learning based
models can learn to segment from irregular data representa-
tions e.g., consuming raw point clouds (with variable number
of points) without the need of any voxelization or rendering.
Qi et al. [49] developed a novel deep learning architecture
called PointNet that can directly take point clouds as inputs
and outputs segment labels for each point in the input. Subse-
quent works based on deep networks which directly operates
on point clouds have also demonstrated excellent perfor-
mance on the semantic segmentation task [96], [97]. Instead
of solely using deep networks for context modeling, some
recent efforts combine both CNN and CRFs for improved
segmentations. As an example, a recent work on 3D point
cloud segmentation combines the FCN and a fully connected
CRF model which helps in better contextual modeling at
each point in 3D [135]. To enable a fully learnable sys-
tem, the CRF is implemented as a differentiable recurrent
network [48]. Local context is incorporate in the proposed
scheme by obtaining a voxelized representation at a coarse
scale, and the predictions over voxels are used as the unary
potentials in the CRF model (see Figure 13).

We note that the encoder-decoder and dilation based archi-
tectures provide a natural solution to resolve the low resolu-
tion segmentation maps in RGBD based CNN architectures.
Geometrically motivated encodings of raw depth information
e.g., HHA encoding [28] can help improve model accuracy.
Finally, a measure of model uncertainty can be highly useful
for practical applications which demand high safety.

D. PHYSICS-BASED REASONING
1) PROLOGUE AND SIGNIFICANCE
A scene is a static picture of the visual world. However,
when humans look at the static image, they can infer hidden
dynamics in a scene. As an example, from a still picture
of a football field with players and a ball, we can under-
stand the pre-existing motion patterns and guess the future
events which are likely to happen in a scene. As a result,
we can plan our moves and take well-informed decisions.
In line with this human cognitive ability, efforts have been
made in computer vision to develop an insight into the
underlying physical properties of a scene. These include

estimating both current and future dynamics from a static
scene [136], [137], understanding the support relationships
and stability of objects [10], [138], [139], volumetric and
occlusion reasoning [73], [78], [140]. Applications of such
algorithms include task and motion planning for robots,
surveillance and monitoring.

2) CHALLENGES
Key challenges for physics-based reasoning include:
• This task requires starting with very limited information
(e.g., a still image) and performing extrapolation to pre-
dict rich information about scene dynamics.

• A desirable characteristic is to adequately model prior
information about the physical world.

• Physics based reasoning requires algorithms to reason
about the contextual informations.

3) METHODS OVERVIEW
a: DYNAMICS PREDICTION
Mottaghi et al. [136] predicted the forces acting on an object
and its future motion patterns to develop a deep physical
understanding of a scene. To this end, they mapped a real
world scenario to a set of 3D physical abstractions which
model the motion of an object and the forces acting on
it in the simplest terms e.g., a ball that is rolling, falling,
bouncing or moving along a projectile. This mapping is per-
formed using a neural network with two branches, the first
one processes a 2D real image while the other one processes
3d abstractions. The 3D abstractions were obtained from
game rendering engines and their corresponding RGB, depth,
surface normal and optical flow data was fed to the deep
network as input. Based on the mapped 3D abstraction, long
term motion patterns from a static image were predicted
(see Figure 14).

Wu et al. [137] proposed a generative model based on
behavioral studies with the argument that physical scene
understanding developed by human brain is a simulation of
a mental physics engine [141]. The mental engine carries
physical information about the world objects and the New-
tonian laws they obey, and performs simulations to under-
stand and infer scene dynamics. The proposed generative
model, called ‘Galileo’, predicts physical attributes of objects
(i.e., 3D shape position, mass and friction) by taking the feed-
back from a physics engine which estimates the future scene
dynamics by performing simulations. An interesting aspect
of this work is that a deep network was trained using the
predictions from the Galileo, resulting in a model which can
efficiently predict physical properties of objects and future
scene dynamics in static images.

b: SUPPORT RELATIONSHIPS
Alongside the hidden dynamics in a scene, there exist rich
physical relationships in a scene which are important for
scene understanding. As an example, a book on a table will
be supported by the table surface and the table will be sup-
ported by the floor or the wall. These support relationships
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FIGURE 14. Newtonian Neural Network (N3) [136]. The top stream of the architecture takes RGB image augmented with localization map
of the targeted object and the bottom stream processes inputs from a game engine. Features from both streams are combined using
cosine similarity and maximum response is used to find the scenario that best describes object motion in an image. (Courtesy of [136]).

are important for robotic manipulation and interaction in
man-made environments. Silberman et al. [10] proposed
a CRF model to segment cluttered indoor environments
and identify support relationships between the objects in
RGB-D imagery. They categorized a scene into four geo-
metric classes, namely ground, fixed structures (e.g., walls,
ceiling), furniture (e.g., cabinet, tables) and props (small
moveable objects). The overall energy function incorporated
both local features (e.g., appearance cues) and pairwise inter-
actions between objects (e.g., physical proximity). An inte-
ger programming formulation was introduced to efficiently
minimize the energy function. The incorporation of sup-
port relationship information has been shown to improve
the performance on other relevant tasks such as the scene
parsing [142], [143].

c: STABILITY ANALYSIS
In static scenes, it is highly unlikely to find objects which are
unstable with respect to gravity. This physical concept has
been employed in scene understanding to recover geometri-
cally and physically stable objects and scene parses. Note that
the support relationships predicted in [10] does not ensure
the physical stability of objects. Zheng et al. [138] reasoned
about the stability of 3D volumetric shapes, which were
recovered from a either a sparse or a dense 3D point cloud
of indoor scenes (available from range sensors). A parse
graph was built such that each primitive was constrained to be
stable under gravity, and the falling primitives were grouped
together to form stable candidates. The graph labeling prob-
lem was solved using the Swendsen-Wang Cut partitioning
algorithm [139]. They noted that such a reasoning helps in
achieving better performance on linked tasks such as object
segmentation and 3D volume completion (see Figure 15).

While [138] performed physical reasoning utilizingmainly
depth information, Jia et al. [140] incorporate both color and
depth data for such analysis. Similar to [138] and [140] also
fits 3D volumetric shapes on RGB-D images and performs
physics-based reasoning by considering their 3D intersec-
tions, support relationships and stability. As an example,

FIGURE 15. A 3D scene converted into point cloud before feeding to
geometric and physical reasoning module [138]. (Courtesy of [138]).

a plausible explanation of a scene is the one, where 3D shapes
cannot overlap each other, are supported by each other
and will not fall under gravity. An energy function was
defined over the over-segmented image and a number of
unary and pairwise features were used to account for stabil-
ity, support, appearance and volumetric characteristics. The
energy function was minimized using a randomized sampling
approach [144] which either splits or merges the individual
segments to obtain improved segmentations. They used the
physical information for semantic scene segmentation, where
it was shown to improve the performance.

d: HAZARD DETECTION
An interesting direction from the previous works is to pre-
dict which objects can potentially fall in a scene. This can
be highly useful to ensure safety and avoid accidents in
work places (e.g., a construction site), domestic environments
(e.g., child care) and due to natural disasters (e.g., earth
quake). Zheng et al. [145] first estimated potential causes
of disturbance (i.e. human activity and natural disasters)
and then predicted the potentially unstable objects which
can fall as a result of disturbance. Given a 3D point cloud,
a ‘disturbance field’ is predicted for a possible type of distur-
bance (e.g. using motion capture data for human movement)
and its effect is estimated using the mechanics principles
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(e.g., conservation of energy and momentum after collision).
In terms of predicting scene dynamics, this approach goes
beyond inferring motions from the given static image, rather
it considers ‘‘what if?’’ scenarios and predicts associated
dynamics. More recently, Dupre et al. [146] have proposed
to use CNN to perform automatic risk assessment in scenes.

e: OCCLUSION REASONING
Occlusion relationship is another important physical and
contextual cue, that commonly appears in cluttered scenes.
Wang et al. [73] showed that occlusion reasoning helps in
object detection. They introduced a hough voting scheme,
which uses depth context at multiple levels (e.g., object rela-
tionship with near-by, far-away and occlusion patches) in the
model to jointly predict the object centroid and its visibility
mask. They used a dictionary learning approach based on
local features such as Histogram of Gradients (HOG) [147]
and Textons [148]. An interesting result was that the occlu-
sion relationships are important contextual cues which can
be useful for object detection and segmentation. In another
subsequent work, Bonde et al. [78] used occlusion infor-
mation computed from depth data to recognize individual
object instances. They used a random decision forest clas-
sifier trained using a max-margin objective to improve the
recognition performance.

E. OBJECT POSE ESTIMATION
1) PROLOGUE AND SIGNIFICANCE
The pose estimation task deals with finding object’s position
and orientation with respect to a specific coordinate sys-
tem. Information about an object’s pose is crucial for object
manipulation by robotic platforms and scene reconstruction
e.g., by fitting 3D CADmodels. Note that the pose estimation
task is highly related to the object detection task, therefore
existing works address both problems sequentially [149] or in
a joint framework [76], [111], [150]. Direct feature matching
techniques (e.g., between images and models) have also been
explored for pose estimation [75], [151].

2) CHALLENGES
Important difficulties that pose estimation algorithms
encounter are:
• The requirement of detecting objects and estimating
their orientation at the same makes this task particularly
challenging.

• Object’s pose can vary significantly from one scene to
another, therefore algorithm should be invariant to these
changes.

• Occlusions and deformations make the pose estimation
task difficult especially whenmultiple objects are simul-
taneously present.

3) METHODS OVERVIEW
Lim et al. [151] used 3D object models to estimate object
pose in a given image. Object appearances can change from
one scene to another due to number of factors including

FIGURE 16. Pose estimation pipeline as proposed by [154]. RGB-D input
is first processed by random forest. These predictions are used to find
pose candidates then a reinforcement agent refines these candidates to
find the best pose. (Courtesy of [154]).

geometric deformation and occlusions. The challenge then
is not only to retrieve the relevant model for an object but
to accurately fit it to real images. Their proposed algorithm
takes key detectors like geometric distances, their local cor-
respondence and global alignment to find candidate poses.
Tejani et al. [75] proposed a method for 3D object detection
and pose estimation which is robust to foreground occlu-
sion and background clutter. The presented framework called
Latent-Class Hough Forests (LCHF) is based on a patch
based detector calledHough Forests [152] and trained on only
positive data samples of 3D synthetic model renderings. They
used LINEMOD [153], a 3D holistic template descriptor, for
patch representation and integrate it into random forest frame-
work using template-based splitting function. At test time,
class distributions are iteratively inferred to jointly estimate
3D object detection, pose and pixel-wise visibility map.

Mottaghi et al. [76] argued that object detection, 3D pose
estimation and sub-category recognition are correlated tasks.
One task can provide complimentary information to better
understand the others, therefore, they introduced a hierarchal
method based on a hybrid random field model that can handle
both continuous and discrete variables to jointly tackle these
three tasks. The main idea here is to represent objects in a
hierarchal fashion such that the top-layer captures high level
coarse information e.g., discrete view point and object rough
location and layers below capture more accurate and refined
information e.g., continuous view point and object category
(e.g., a car) and sub-category (e.g., specific type of a car).
Similar to [76], Brannchman et al. [150] proposed a method
to jointly estimate object class and its 6D pose (3D rotation,
3D translation) in a given RGB-D image. They trained a
decision forest with 20 objects under two different lighting
conditions and a set of background images. The forest con-
sists of three trees that use color and depth difference features
to jointly learn 3D object coordinates and object instances
probabilities. A distinguishing feature of their approach is the
ability to scale to both textured and texture-less objects.

The basic idea behind methods like [150] is to generate
number of interpretations or sample pose hypothesis and then
find the one that best describe an object pose. Reference [150]
achieves this by minimizing an energy function
using RANSAC. Reference [156] built upon the idea in [150],
but used a CNN trained with a probabilistic approach to find
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FIGURE 17. CNN trained to learn generic features by matching image patches with their corresponding camera angle. These
generic feature representation can be used for multiple tasks at test time including object pose estimation. (Courtesy of [155]).

the best pose hypothesis. [156] generated pose hypothesis,
scored it based on their quality and decided which hypoth-
esis to explore next. This sort of decision making is non-
differentiable and does not allow an end-to-end learning
framework. Krull et al. [154] improved upon the work pre-
sented in [156] by introducing a reinforcement learning to
incorporate non-differentiable decision making into an end-
to-end learning framework (see Figure 16).

To benefit from representation power of CNN,
Schwarz et al. [149] used AlexNet [125], a large-scale
CNN model trained on ImageNet visual recognition dataset.
This model was used to extract features for object detection
and pose estimation in RGB-D images. The novelty in their
work is the pre-processing of color and depth images. Their
algorithm segments objects form a given RGB image and
removes the background. They colorized the depth image
based on the distance from the object center. Both processed
images are then fed to the AlexNet to extract features which
are then concatenated before passing through a SVM classi-
fier for object detection and a support vector regressor (SVR)
for pose estimation.

One major challenge for pose estimation is that it can vary
significantly from one image to another. To address this issue,
Wohlhart and Lepetit [157] proposed to create clusters of
CNN based features, that are indicative of object category and
their poses. The idea is to generate multiple views of each
object in the database, then each object view is represented
by a learned descriptor that stores information about object
identity and its pose. The CNN is trained under euclidean
distance constraints such that the distance between descrip-
tors of different objects is large and the distance between
descriptors of same object is small but still provides ameasure
of differences in pose. In this manner, clusters of object labels
and poses are formed in the descriptor space. At test time,
a nearest neighbor search was used to find similar descriptor
for a given object. To further improve and tackle the pose
variation issue in an end-to-end fashion, [158] formulated the
pose estimation problem as regression task and introduced an
end-to-end Siamese learning framework. Angles variations

of the same object in multiple images are tackled by using
Siamese network architecture with novel loss function to
enforce similarity between the features of given training
images and their corresponding poses.

CNN models have an extraordinary ability to learn
generic representations that are transferable across tasks.
Zamir et al. [155] validated this by training a CNN to learn
3D generic representations to simultaneously address mul-
tiple tasks. In this regard, they trained a multi-task CNN to
jointly learn camera pose estimation and key point matching
across extreme poses. They showed with extensive experi-
mentation that internal representation of such a trained CNN
can be used for other predictions tasks such as object pose,
scene layout and surface normal estimation (see Figure 17).
Another important approach on pose estimation was intro-
duced in [59], where instead of full images, a network was
trained on image patches. Kehl et al. [59] proposed a frame-
work that consists of sampling the scene at discrete steps
and extracting local and scale invariant RGB-D patches. For
each patch, they compute its deep-regressed feature using a
trained auto-encoder network and perform K-NN search with
a codebook of local object patches. Each codebook entry
holds a local 6D vote and is cast into Hough space only
to survive a confident threshold. The codebook entries are
coming from densely sampled synthetic views. Each entry
stores its deep-regression feature and a 6D local vote. They
employ a convolutional auto-encoder (CAE) that has been
trained on 1.5M local RGB-D patches.

F. 3D RECONSTRUCTION FROM RGB-D
1) PROLOGUE AND SIGNIFICANCE
Humans visualize and interpret surrounding environments
in 3D. The 3D reasoning about an object or a scene
allows a deeper understanding of the mechanics, shape and
3D texture characteristics. For this purpose, it is often desir-
able to recover the full 3D shape from a single or mul-
tiple RGB-D images. 3D reconstruction is useful in many
applications areas including medical imaging, virtual reality
and computer graphics. Since, the 3D reconstruction from
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FIGURE 18. A Random forest based framework to predict 3D geometry [77]. (Courtesy of [77]).

FIGURE 19. SSCNet architecture [9] trained to reconstruct complete 3D scene from a single depth image. (Courtesy of [9]).

densely overlapping RGB-D views of an object [159], [160]
is relatively a simpler problem, here we focus on scene recon-
struction from either a single or a set of RGB-D images with
partial occlusions leading to incomplete information. .

2) CHALLENGES
3D reconstruction is highly challenging problem because:
• Complete 3D reconstruction from incomplete informa-
tion is an ill-posed problem with no unique solution.

• This problem poses a significant challenge due to sensor
noise, low depth resolution, missing data and quantiza-
tion errors.

• It requires appropriately incorporating external informa-
tion about the scene or object geometry for a successful
reconstruction.

3) METHODS OVERVIEW
3D reconstruction from a single RGB-D image has recently
gained popularity due to the availability of cheap depth
sensors and powerful representation learning networks. This
task is also called as the ‘shape or volumetric completion’
task, since a RGB-D image provides a sparse and incomplete
point cloud which is completed to produce a full 3D output.
For this task, CRFmodels have been a natural choice because
of their flexibility to encode geometric and stability rela-
tionships to generate physically viable outputs [67], [138].
Specifically, Kim et al. [67] proposed a CRF model defined
over voxels to jointly reconstruct 3D volumetric output along
with the semantic category labels for each voxel. Such a
joint formulation helps in modeling the complex interplay
between semantic and geometric information in a scene.
Firman et al. [77] proposed a structured prediction frame-
work developed using a Random Forest to predict the
3D geometry given the observed incomplete shapes.
Unlike [67], a shortcoming of their model is that it does

not uses semantic details of voxels alongside the geometric
information (see Figure 18).

With the success of deep learning, the above mentioned
ideas have recently been formulated as end-to-end trainable
networks with several interesting extensions. As an exam-
ple, Song et al. [9] proposed a 3D CNN to jointly perform
semantic voxel labeling and scene completion from a single
RGB-D image. The CNN architecture makes use of success-
ful ideas in deep learning such as skip connections [161] and
dilated convolutions [132] to aggregate scene context and
the use of a large-scale dataset (SUNCG) (see Figure 19).
A convolutional LSTM based recurrent network has been
proposed in [57] for 3D reconstruction of individual objects
(in contrast to complete scenes as in [9]). First, an object view
is encoded followed by learning a representation using LSTM
which is then used for decoding. The benefit of this approach
is that the latent representations can be stored in the memory
(LSTM) and updated if more views of an object become
available. Another similar approach for shape completion
uses first an encoder-decoder architecture to obtain a coarse
3D output which is refined using similar high-resolution
shapes available as prior knowledge [63]. This incorporates
both bottom-up and top-down knowledge transfer (i.e. using
shape category information along with the incomplete input)
to recover better quality 3D outputs. Gupta et al. [162] investi-
gated a similar data-driven approach by first identifying indi-
vidual object instances in a scene and using a library of com-
mon indoor objects to retrieve and align the 3D model with
the given RGB-D object instance. This approach, however,
does not implement an end-to-end learnable pipeline and
focuses only on object reconstruction instead of a full scene
reconstruction.

Early work on 3D reconstruction from multiple overlap-
ping RGB-D images used the concept of averaging TSDF
obtained from each of the RGB-D views [163], [164].
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However, the TSDF based reconstruction techniques require
a large number of highly overlapping images due to their
inability to complete occluded shapes. More recently, Oct-
Net based representations have been used in [165], which
allow scaling 3D CNNs to work on considerably high dimen-
sional volumetric inputs compared to the regular voxel based
models [166]. The octree based representations take account
of empty spaces in 3D environments and use low spatial
resolution voxels for the unoccupied regions, thus lead-
ing to faster processing with high resolutions in 3D deep
networks [61]. In contrast to the regular octree based
methods [61], the scene completion task requires the pre-
diction of reconstructed scene along with a suitable 3D par-
titioning for the octree representation. These two outputs
are predicted using a u-shaped 3D encoder-decoder network
in [165], where the short-cut connections exist between the
corresponding coarse-to-fine layers in the encoder and the
decoder modules.

G. SALIENCY PREDICTION
1) PROLOGUE AND SIGNIFICANCE
The human visual system selectively attends to salient
parts of a scene and performs a detailed understanding for
the most salient regions. The detection of salient regions
corresponds to important objects and events in a scene
and their mutual relationships. In this section, we will
review saliency estimation approaches which use a variety
of 2.5/3D sensing modalities including RGB-D [167], [168],
stereopsis [169], [170], light-field imaging [171] and
point-clouds [172]. Saliency prediction is valuable in several
applications e.g., user experience analysis, scene summariza-
tion, automatic image/video tagging, preferential processing
on resource constrained devices, object tracking and novelty
detection.

2) CHALLENGES
Important problems for the saliency prediction task are:
• Saliency is a complex function of different factors
including appearance, texture, background properties,
location, depth etc. It is a challenge to model these
intricate relationships.

• It requires both top-down and bottom-up cues to accu-
rately model objects saliency.

• An key requisite is to adequately encode the local and
global context.

3) METHODS OVERVIEW
Lang et al. [167] were the first to introduce a RGB-D and
3D dataset (NUS-3DSaliency) with corresponding eye-
fixation data from human viewers. They analyzed the differ-
ences between the human attention maps for 2D and 3D data
and found depth to be an important cue for visual attention
(e.g., attention is focused more on nearby depth ranges).
To learn the relationships between visual saliency and depth,
a generative model was trained to learn their joint distribu-
tions. They showed that the incorporation of depth resulted

in a consistent improvement for previous saliency detection
methods designed for 2D images.

Based on the insight that salient objects are likely to appear
at different depths, Peng et al. [168] proposed a multi-stage
model where local, global and background contrast-based
cues were used to predict a rough estimate of saliency. This
initial saliency estimate was used to calculate a foreground
probability map which was combined with an object prior
to generate final saliency predictions. The proposed method
was evaluated on a newly-introduced large-scale benchmark
dataset. In another similar approach, Coptadi et al. [174]
calculated local 3D shape and layout features (e.g., plane
and normal cues) using the depth information to improve
object saliency. Feng et al. [175] advocated that simple
depth-contrast based features create confusions for rich back-
grounds. They proposed a new descriptor which measures the
enclosure provided by the background to fore-ground salient
objects.

More recently, [176] proposed to use a CNN for RGB-
D saliency prediction. However, their approach is not end-
to-end trainable as they first extract several hand-crafted
features and fuse them together followed by an off-line
smoothing and saliency prediction stage with in a CNN.
Shigematsu et al. [173] extended a RGBbased saliency detec-
tion network (ELD-Net [177]) for the case of RGBD saliency
detection (see Figure 20). They augmented the high-level
feature description from a pre-trained CNN with a number
of low-level feature descriptions such as the depth contrast,
angular disparity and background enclosure [175]. Due to
the limited size of available RGB-D datasets, this technique
relies on the weights learned on color image based saliency
datasets.

Stereoscopic images provide approximate depth informa-
tion based on the disparity map between a pair of images.
This additional information has been shown to assist in visual
saliency detection especially when the salient objects do not
carry significant color and texture cues. Niu et al. [169]
introduced an approach based on the disparity contrast to
incorporate depth information in saliency detection. Further,
a prior was introduced based on domain knowledge in stereo-
scopic photography, which prefers regions inside the viewing
comfort zone to be more salient. Fang et al. [170] developed
on similar lines and used appearance as well as depth feature
contrast from stereo images. A Gaussian model was used
to weight the distance between the patches, such that both
the global and local contrast can be accounted for saliency
detection.

Plenoptic camera technology can capture the light field
of a scene, which provides both the intensity and direction
of the light rays. Light field cameras provide the flexibility
to refocus after photo capture and can provide a depth map
in both indoor and outdoor environments. Li et al. [171]
used the focusness and depth information available from light
field cameras to improve saliency detection. Specifically,
frequency domain analysis was performed to measure focus-
ness in each image. This information was used alongside
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FIGURE 20. Network architecture for saliency prediction [173]. RGB saliency features are fused with super-pixel based handcrafted features to get the
overall saliency score. (Courtesy of [173]).

depth to estimate foreground and background regions, which
were subsequently improved using contrast and objectness
measures.

In contrast to the above techniques which mainly augment
depth information for saliency prediction, [172] detected
salient patterns in 3D city-scale point clouds to identify
land-mark buildings. To this end, they introduced a distance
measure which quantifies the uniqueness of a landmark by
considering its distinctiveness compared to the neighborhood.
While this work is focused on outdoor man-made structures,
to the best of our knowledge, the problem of finding salient
objects in indoor 3D scans is not investigated in the literature.

H. AFFORDANCE PREDICTION
1) PROLOGUE AND SIGNIFICANCE
Object based relationships (e.g., chairs are close to desk) have
been used with success in scene understanding tasks such as
semantic segmentation and holistic reasoning [25]. However,
an interesting direction to interpret indoor scenes is by under-
standing the functionality or affordances of objects [178]
i.e., what actions can be performed on a particular object
(e.g., one can sit on a chair, place a coffee cup on a table).
These characteristics of objects can be used as attributes,
which have been found to be useful to transfer knowledge
across categories [179]. Such a capability is important in
application domains such as assistive, domestic and industrial
robotics, where the robots need to actively interact with the
surrounding environments.

2) CHALLENGES
Affordance detection is challenging because:
• This task requires information frommultiple sources and
reasons about the content to discover relationships.

• It often requires modeling the hidden context
(e.g., humans not present in the scene) to predict the
correct affordances of objects.

• Reasoning about physical and material properties is cru-
cial for this affordance detection.

3) METHODS OVERVIEW
A seminal work on affordance reasoning by
Grabner et al. [180] estimated places where a person can
‘sit’ in an indoor 3D scene. Their key idea was to predict
affordance attributes by assuming the presence of an inter-
acting entity i.e., a human. The functional attributes proved
to be a complementary source of information which in turn
improved the ’chair’ detection performance. On similar lines,
Jiang et al. [68], [181] hallucinated humans in indoor environ-
ments to predict the human-object relationships. To this end,
a latent CRF model was introduced, which jointly infers the
human pose and object affordances. The proposed probabilis-
tic graphical model was composed of objects as nodes and
their relationships were encoded as graph edges. Alongside
these, latent variables were used to represent hidden human
context. The relationships between object and humans were
used to perform 3D semantic labeling of point clouds.

Koppula and Saxena [69] used object affordances in a
RGB-D image based CRFmodel to forecast the future human
actions so that an assistive robot can generate a response in
time. [182] suggested affordance descriptors whichmodel the
way an object is operated by a human in a RGB-D video.
The above mentioned approaches deal with the affordance
prediction for generic objects. Myers et al. [71] introduced a
new dataset comprising of everyday use tools (e.g., hammer,
knife). A given image was first divided into super-pixels, fol-
lowed by computation of a number of geometric features such
as normals and curvedness. A sparse coding based dictionary
learning approach was used to identify parts and predict the
corresponding affordances. For large dictionary sizes, such an
approach can be quite computationally expensive, therefore
a random forest based classifier was proposed for real-time
applications. Note that all of the approaches mentioned so
far, including [71], used hand-crafted features for affordance
prediction.

More recently, automatic feature learning mechanisms
such as CNNs have been used for object affordance
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FIGURE 21. A multi-scale CNN proposed in [184]. The coarse scale
network extracts global representations encoding wide context while the
fine-scale network extracts local representations such as object
boundaries. Affordance labels are predicted by combining both
representations. (Courtesy of [184]).

prediction [62], [183], [184]. Nquyen et al. [62] proposed a
convolutional encoder-decoder architecture to predict grasp
affordances for tools using RGB-D images. The network
input was encoded as a HHA encoding [28] of depth along
with the color image. A more generic affordance prediction
framework was presented in [184], which used a multi-scale
CNN to provide affordance segmentations for indoor scenes
(see Figure 21). Their architecture explicitly used mid-level
geometric and semantic representations such as labels, sur-
face normals and depth maps at coarse and fine levels to
effectively aggregate information. Ye et al. [183] framed the
affordance prediction problem as a region detection task and
used the VGGnet CNN to categorize a region into a rich set of
functional classes e.g., whether a region can afford an open,
move, sit or manipulate operation.

I. HOLISTIC/HYBRID APPROACHES
1) PROLOGUE AND SIGNIFICANCE
Up till now, we have covered individual tasks that are impor-
tant to develop an understanding about e.g., scene semantics,
constituent objects and their locations, object functionalities
and their saliency. In holistic scene understanding, a model
aims to simultaneously reason about multiple complimentary
aspects of a scene to provide a detailed scene understanding.
Such an integration of individual tasks can lead to practical
systems which require joint reasoning such as robotic plat-
forms interacting with the real world (e.g., automated systems
for hazard detection and quick response and rescue). In this
section, we will review some of the significant efforts for
holistic 2.5D/3D scene understanding. We will outline the
important challenges and explore different ways the informa-
tion from multiple sources is integrated in the literature for
the specific case of indoor scenes [64], [143], [185]–[187].

2) CHALLENGES
Important obstacles for holistic scene understanding are:
• Accurately modeling relationships between objects and
background is a hard task in real-world environments
due to the complexity of inter-object interactions.

• Efficient training and inference is difficult due to the
requirement of reasoning at multiple levels of scene
decomposition.

• Integration of multiple individual tasks and comple-
menting one source of information with another is a key
challenge.

3) METHODS OVERVIEW
Li et al. [185] proposed a Feedback Enabled Cascaded
Classification Model (FE-CCM), which combines individ-
ual classifiers trained for a specific task e.g., object, event
detection, scene classification and saliency prediction. This
combination is performed in a cascaded fashion with a feed-
back mechanism to jointly learn all task specific models for
scene understanding and robot grasping. They argued that
with the feedback mechanism, FE-CCM learns meaningful
relationships between sub-tasks. An important benefit of
FE-CCM [185] is that it can be trained on heterogeneous
datasets meaning it does not require data points to have labels
for all the tasks. Similar to [185], a two-layer generic model
with a feedback mechanism was presented in [188]. In con-
trast to the above methods, [64] presented a holistic graphical
model (a CRF) to integrate scene geometry, relations between
objects, interaction of objects with scene environment for
3D object recognition (see Figure 23). They extended Con-
strained Parametric Min-Cuts (CPMC) [189] method to gen-
erate cuboids from RGB-D images. These cuboids contain
information about scene geometry, appearance and help in
modeling contextual information for objects.

To understand complex scenes, it is desirable to learn
interactions between scene elements e.g., scene structures-
to-object interaction and object-to object interaction.
Choi et al. [186] proposed a method that can learn these scene
interactions and integrate information at multiple levels to
estimate scene composition. Their hierarchal scene model
learns to reason about complex scenes by fusing together
scene classification, layout estimation and object detection
tasks. The model takes a single image as an input and gen-
erates a parse graph that best fit the image observations. The
graph root represents the scene category and layout, while
the graph leaves represent objects detections. In between,
they introduced novel 3D Geometric Phrases (3DGP) that
encode semantic and geometric relations between objects.
A Reversible Jump Markov Chain Monte Carlo (RJMCMC)
sampling technique was used to search for the best fit graph
for the given image.

The wide contextual information available from human
eyes plays a critical role in human scene understanding. Field
of view (FOV) of a typical camera is only 15% compared
to human vision system. Zhang et al. [50] argued that due
to limited FOV, a typical camera cannot capture full details
presented in a scene e.g., number of objects or occurrences
of an object. Therefore, a model built on single images with
limited FOV cannot exploit full contextual information in a
scene. Their proposed method takes a 360-degree panorama
view and generates 3D box representation of the room layout
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FIGURE 22. 3D scene understanding framework as proposed by [25]. A volumetric representation is first derived from depth image and aligned with the
input data, next a 3D CNN estimates the objects presence and adjust them based on holistic scene features for full 3D scene understanding (Courtesy
of [25]).

FIGURE 23. Appearance and geometric properties are represented using
object cuboids which are then used to define scene to object and object
to object relations. This information is integrated by a CRF model for
holistic scene understanding. (Courtesy of [64].

along with all of the major objects. Multiple 3D representa-
tions are generated using variety of image characteristics and
then a SVM classifier is used to find the best one.

Zhang et al. [25] developed a 3D deep learning architecture
to jointly learn furniture category and location from a single
depth image (see Figure 22). They introduced a template
representation for 3D scene to be consumed by a deep net for
learning. A scene template encodes a set of objects and their
contextual information in the scene. After training, their so
called DeepContext net learns to recognize multiple objects
and their locations based on both local object and contextual
features. Zhou et al. [143] introduced a method to jointly
learn instance segmentation, semantic labeling and support
relationships by exploiting hierarchical segmentation using
a Markov Random Field for indoor RGB-D images. The
inference in the MRF model is performed using an integer
linear program that can be efficiently solved.

Note that some of the approaches discussed previously
under the individual sub-tasks also perform holistic reason-
ing. For example, [10] jointly models the semantic labels
and physical relationships between objects, [9] jointly recon-
structs 3D scene and provides voxel labels, [66] concur-
rently performs segmentation and cuboid detectionwhile [75]

detects the objects and their 3D pose in a unified frame-
work. Such a task integration helps in incorporating wider
context and results performance improvements across the
tasks, however the model complexity significantly increases
and efficient learning and inference algorithms are therefore
required for a feasible solution.

VII. EVALUATION AND DISCUSSION
A. EVALUATION METRICS
1) METRIC FOR CLASSIFICATION
Classification is the task of categorizing a scene or an object
in to its relevant class. Classifier performance can be mea-
sured by classification accuracy as follows:

Accuracy =
Number of samples correctly classified

Total number of samples
. (1)

2) METRIC FOR OBJECT DETECTION
Object detection is the task of recognizing each object
instance and its category. Average precision (AP) is a com-
monly used metric to measure an object detector’s perfor-
mance:

AP =
1

classes

∑
i∈classes

TP(i)
TP(i)+ FP(i)

, (2)

where
• TP(i) represent the number of true positives i.e., predic-
tions for class i that match with the ground-truth.

• FP(i) represent the number of false positives i.e., predic-
tions for class i that do not match with the ground-truth.

3) METRIC FOR POSE ESTIMATION
Object pose estimation task deals with finding object’s posi-
tion and orientation with respect to a certain coordinate
system. The percentage of correctly predicted poses is the
efficiency measure of a pose estimator. A pose estimation
is consider correct if average distance between the esti-
mated pose and ground truth is less than a specific threshold
(e.g., 10% of the object diameter).

4) SALIENCY PREDICTION EVALUATION METRIC
Saliency prediction deals with the detection of important
objects and events in a scene. There are many evalua-
tion metrics for saliency prediction including Similarity,
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Normalized Scanpath Saliency (NSS) and F-measure (Fβ ).

• Similarity = SM − FM , (3)

where SM is the predicted saliency map and FM is the human
eye fixation map or ground truth.

• NSS(p) =
SM (p)− µSM

δSM
, (4)

where SM is the predicted saliency map, p is the location of
one fixation,µSM is the mean value of predicted saliencymap
and δSM is the standard deviation of the predicted saliency
map. Final NSS score is the average of all NSS(p) for all
fixations.

• Fβ =

(
1+ β2

)
∗ (percision) ∗ (recall)

β2 ∗ (percision)+ (recall)
, (5)

where β2 is a hyper parameter normally set to 0.3.

5) SEGMENTATION EVALUATION METRICS AND RESULTS
Semantic segmentation is the task that involves labeling each
pixel in a given image by its corresponding class. Following
evaluation metrics are used to evaluate a model’s accuracy:

Pixel Accuracy =

∑
i nii∑
i ti

Mean Accuracy =
(

1
ncl

)∑
i

nii
ti

MIoU =
(

1
ncl

)∑
i

nii(
ti +

∑
j nji − nii

)
FIoU =

(∑
k

tk

)−1∑
i

tinii(
ti +

∑
j nji − nii

) , (6)

where, MIoU stands for Mean Intersection over Union,
FIoU denotes Frequency weighted Intersection over Union,
ncl are the number of different classes, nii is the number
of pixels of class i predicted to belong to class i, nji is the
number of pixels of class i predicted to belong to class j and
ti =

∑
j nji is the total number of pixels belong to class i.

6) AFFORDANCE PREDICTION EVALUATION METRIC
Affordance is the ability of a robot to predict possible actions
that can be performed on or with an object. The common
evaluation metric for affordance is the accuracy:

Accuracy =
Number of affordances correctly classified

Total number of affordances
.

(7)

7) 3D RECONSTRUCTION
3D reconstruction is a task of recovering full 3D shape from
a single or multiple RGB-D images. Intersection over union
is commonly used as an evaluation metric for the 3D recon-
struction task,

IoU =
∑
i

vii(
Ti +

∑
j vji − vii

) . (8)

TABLE 3. Performance comparison between prominent 3D object
classification methods on ModelNet40 dataset [89].

TABLE 4. Performance comparison between state-of-the-art 3D object
detection methods.

where vii is the number of voxels of class i predicted to belong
to class i, vji is the number of voxels of class i predicted to
belong to class j and Ti =

∑
j vji is the total number of voxels

belong to class i.

B. DISCUSSION ON RESULTS
In this section, we present quantitative comparisons on a set of
key sub-tasks including shape classification, object detection,
segmentation, saliency prediction and 3D reconstruction.
Wu et al. [89] created a 3D dataset, ModelNet40, for shape
classification which is publicly available. Since then a num-
ber of algorithms have been proposed and tested on this
dataset. Performance comparison is shown in Table 3. It can
be seen that most successful methods use CNN to extract
features from 3D voxelized or 2D multi-view representa-
tions and the method based on generative and discrimi-
native modeling [190] outperformed other competitors on
this dataset. Object detection results are shown in Table 4.
Point cloud is normally a difficult to process data represen-
tation and therefore, it is usually converted to other repre-
sentations such as voxel or octree before further process-
ing. However, an interesting result from Table 4 is that
processing point clouds directly using CNNs can boost the
performance. Next comparison is shown in Table 5 for
semantic segmentation task on NYU [10] dataset. It is evi-
dent that encoder-decoder network architecture with a mea-
sure of uncertainty [60] outperforms for RGBD seman-
tic segmentation task. Saliency prediction algorithms are
compared against LSFD [171] in Table 7 where the most
promising results are delivered when hand-crafted fea-
tures are combined with CNN feature representation [176].
3D reconstruction algorithms are compared in Table 6
where again best performing method is based on CNN that
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TABLE 5. Performance of state-of-art segmentation methods on NYU v2 [10] dataset.

TABLE 6. Performance of state-of-the-art methods for 3D reconstruction through scene completion on Rendered NYU [77].

effectively incorporates contextual information using dilated
convolutions. As a general trend, we note that context plays
a key role in individual scene understanding tasks as well as
holistic scene understanding. Several approaches to incorpo-
rate scene context have been proposed e.g., skip connections
in encoder-decoder frameworks, dilated convolutions, com-
bination of global and local features. Still, the encoding of
useful scene context is an open research problem.

VIII. CHALLENGES AND FUTURE DIRECTIONS
A. LIGHT-WEIGHT MODELS
In the last few years, we have seen a dramatic growth
in the capabilities of computational resources for machine
vision applications [200]. However, the deployment of
large-scale models on hand-held devices still faces
several challenges such as limited processing capability, low
memory and power resources. The design of practical sys-
tems require a careful consideration about model complexity
and desired performance. It also demands development of
novel light-weight deep learning models, highly parallelize-
able algorithms and compact representations for 3D data.

B. TRANSFER LEARNING
Scene understanding involves prediction about several inter-
related tasks, e.g., semantic labeling can benefit from scene
categorization and object detection and vice versa. The basic
tasks such as scene classification, scene parsing and object
detection have normally large quantities of annotated exam-
ples available for training, however, other tasks such as affor-
dance prediction, support prediction and saliency prediction
do not have huge datasets available. A natural choice for these
problems is to use the knowledge acquired from pre-training
performed on a large-scale 2D, 2.5D or 3D annotated dataset.
However, the two domains are not always closely related and

TABLE 7. Performance of state-of-art saliency detection methods on
LSFD [171] dataset.

it is an open problem to optimally adapt an existing model
to the desired task such that the knowledge is adequately
transfered to the new domain.

C. EMERGENCE OF HYBRID MODELS
Holistic scene understanding requires high flexibility in the
learned model to incorporate domain knowledge and priors
based on previous history of experiences and interactions
with the physical world. Furthermore, it is often required to
model wide contextual relationships between super-pixels,
objects, labels or among similar type scenes to be able to
reason about more complex tasks. Deep networks have turned
out to be an excellent resource for automatic feature learning,
however they only allow limited flexibility. We foresee a
growth in the development of hybrid models, which take
advantage from complementary strengths of model classes to
better learn the contextual relationships.

D. DATA IMBALANCE
In several scene understanding tasks such as semantic label-
ing, some class representations are scarce while others have
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abundant examples. Learning a model which respects both
type of categories and equally performs well on frequent as
well as less frequent ones remains a challenge and needs
further investigation.

E. MULTI-TASK LEARNING
Given the multi-task nature of complete scene understand-
ing, a suitable but less investigated paradigm is to jointly
train models on a number of end-tasks. As an exam-
ple, for the case of semantic instance segmentation, one
approach could be jointly regress the object instance bound-
ing box, its fore-ground mask and the category label for
each box. Such a formulation can allow learning robust
models without undermining the performance on any single
task.

F. LEARNING FROM SYNTHETIC DATA
The availability of large-scale CAD model libraries and
impressive rendering engines have provided huge quantities
of synthetic data (esp. for indoor environments). Such data
eliminates the extensive labeling requirements required for
real data, which is a bottleneck for training large-scale data-
hungry deep learning models [9]. Recent studies show that
models trained on synthetic data can achieve strong perfor-
mance on real data [37], [201].

G. MULTI-MODAL FEATURE LEARNING
Joint feature learning across different sensing modalities
has been investigated in the context of outdoor scenes
(e.g., using LIDAR and stereo cameras [202]), but not for
the case of indoor scenes. Recent sensing devices such as
Matterport allow collection of multiple modalities (e.g., point
clouds, mesh and depth data) in the indoor environments.
Among these modalities, some have existing large-scale pre-
trained models which are unavailable for other modalities.
An open research problem is to leverage the frequently avail-
able data modalities and perform cross-modality knowledge
transfer [31].

H. ROBUST AND EXPLAINABLE MODELS
With the adaptability of deep learning models in safety
critical applications including self-driving cars, visual
surveillance and medical field, there comes a responsibility
to evaluate and explain the decision-making process of these
models. We need to develop easy to interpret frameworks
to better understand decision-making of deep learning sys-
tems Frosst et al. [203] explained CNN decision-making
using a decision tree. Furthermore, deep learning models
have shown vulnerability to adversarial attacks. In these
attacks, carefully-perturbed inputs are designed to mislead
the model at inference time [204]. There is not only a need
to develop methods that can actively detect and alarm against
adversarial attacks, but better adversarial training mecha-
nisms are also required to make model robust against these
vulnerabilities.
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