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ABSTRACT Intelligent compound fault diagnosis of rotating machinery plays a crucial role for the
security, high-efficiency, and reliability of modernmanufacture machines, but identifying and decoupling the
compound fault are still a great challenge. The traditional compound fault diagnosis methods focus on either
bearing or gear fault diagnosis, where the compound fault is always regarded as an independent fault pattern
in the process of fault diagnosis, and the relationship between the single fault and compound fault is not
considered completely. To solve such a problem, a novel method called deep decoupling convolutional neural
network is proposed for intelligent compound fault diagnosis. First, one-dimensional deep convolutional
neural network is employed as the feature learning model, which can effectively learn the discriminative
features from raw vibration signals. Second, multi-stack capsules are designed as the decoupling classifier
to accurately identify and decouple the compound fault. Finally, the routing by agreement algorithm and
the margin loss cost function are utilized to train and optimize the proposed model. The proposed method
is validated by gearbox fault tests, and the experimental results demonstrate that the proposed method can
effectively identify and decouple the compound fault.

INDEX TERMS Compound fault decoupling, deep decoupling convolutional neural network (DDCNN),
intelligent fault diagnosis, rotating machinery, decoupling classifier.

I. INTRODUCTION
In the context of intelligent industry, modern manufacture
machines are becoming more and more complex, precise,
efficient and intelligent than ever before [1], [2], in which
rotating machinery is among the basic and significant part.
Intelligent fault diagnosis of rotating machinery plays a
crucial role for the security, high-efficiency and reliability
of modern manufacture machines. At the same time, as a
promising and powerful technology in the field of mechani-
cal prognostic and health management, intelligent compound
fault diagnosis methods have attracted more and more atten-
tion from industry and academia and obtained some achieve-
ments in recent years [3]–[6].

However, there are still great challenges in the intelligent
compound fault diagnosis methods, which can be summa-
rized as: (1) the critical components of rotating machinery,
such as bearings and gears, are usually running under the
condition of high speed, heavy load and harsh working envi-
ronment, which causes the vibration signals collected by the

accelerometer sensor are always complicated and coupled
with heavily background noise; (2) the compound fault, as the
mainly causes of catastrophic failure of rotating machin-
ery, usually occurs when several key parts of the rotating
machinery are damaged simultaneously, which are almost
nonlinear compound and interfered with each other, and more
dangerous and harmful than a single fault.

Unlike the traditional compound diagnosis methods
based on advanced signal processing techniques, such as
time-domain statistical feature extraction [7], spectral anal-
ysis [8], wavelet transform [9], [10], and empirical mode
decomposition method [11]–[13], intelligent compound fault
diagnosis can effectively identify the faults and automatically
report the results [14], [15].

In general, there are two necessary steps for intelligent fault
diagnosis of rotating machinery based on the state-of-the-
art methods in recent years [16]–[20]: (1) feature learning
using signal preprocessing skills or training a deep neural
network, and (2) fault classification using pattern recognition
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techniques [21]–[23]. Among the various intelligent algo-
rithms, the most common ones used in fault diagnosis are
k-Nearest Neighbor (k-NN) [24], Support Vector Machine
(SVM) [25], [26], Artificial Neural Network (ANN) [27], and
Deep Learning (DL) [28], [29]. Yaqub et al. [30] proposed
an inchoate fault detection framework based on an adaptive
feature extractor and k-NN classifier. Liu et al. [31] proposed
an intelligent diagnosis method based on a short-time match-
ing atom decomposition technique and SVM for bearing
fault diagnosis. Shen et al. [32] proposed a new intelligent
fault diagnosis scheme based on the statistical parameters of
wavelet packet paving and a generic support vector regressive
classifier, and the effectiveness of the intelligent fault diagno-
sis scheme is validated separately using datasets from bearing
and gearbox test rigs. Zhu et al. [33] used three classification
methods including classification, regression trees and radial
basis function support vector machine (RBFSVM), to test ten
fault datasets of rolling bearings. Li et al. [34] proposed a
novel dimension reduction algorithm called feature denois-
ing and nearest-farthest distance preserving projection for
rotating machine fault diagnosis, and the effectiveness of
the proposed method was validated by identifying compound
faults in the locomotive bearing. Shao et al. [35] used a deep
auto-encoder feature learning method to classify electrical
locomotive roller bearing faults which contains compound
bearing faults with multiple categories. A novel intelligent
diagnosis method combined with compressed sensing and
deep learning was proposed by Sun et al. [36], and validated
by datasets from rolling element bearings with multiple fault
categories. Ma et al. [37] proposed a deep coupling auto-
encoder model that utilizing multisource sensory data to per-
form accurate fault diagnosis for rotating machinery.

Although traditional intelligent diagnosis methods have
been succeeding in rotating machinery fault diagnosis, they
still have some inherent limitations which can be listed as
follows:

(a) The techniques in the field of fault diagnosis, espe-
cially the traditional compound fault diagnosis methods,
focus on either bearing or gear fault diagnosis. However,
a gear unhealthily will affect the bearing vibration signature
collected by data acquisition system, and vice versa [38].
It is difficult to make a precise diagnosis if only analyzes
the individual bearing or gear fault separately. Furthermore,
in practical industrial applications, the faults may be in both
gear and bearing, so the fault diagnosis methodsmay generate
wrong results;

(b) In the field of intelligent fault diagnosis, the single fault
and the compound fault are always regarded as independent
fault patterns, and the relationship between them is not con-
sidered. Moreover, traditional intelligent diagnosis methods
always depend on the labeled data of compound fault col-
lected by time-consuming and labor-intensive experiments;

(c) Since the vibration signatures are usually contaminated
by the background noise, the performance of traditionalmeth-
ods heavily depending on whether the learned and selected
features are sensitive for the different categories;

(d) The traditional classifier can only output one label
for a testing sample of compound faults, rather than multi-
ple labels, which will cause the compound faults cannot be
classified into two or more single faults. It means that the
compound faults cannot be decoupled as the single faults
in the process of fault diagnosis. Therefore, it is necessary
to investigate and develop a new intelligent compound fault
diagnosis method for rotating machinery.

As one of the intelligent fault diagnosis technology, deep
learning has brought brilliant progress to the state-of-the-
art in the field of fault diagnosis via a variety of neural
networks, which has been widely used in fault classifica-
tion, condition monitoring and remaining useful life predic-
tion of rotating machinery [3], [39]. In other words, deep
learning technology has a great capacity to overcome above
inherent limitations. Inspired by Deep Convolutional Neural
Network [40] and Dynamic Routing Between Capsules [41],
a novel method called Deep Decoupling Convolutional Neu-
ral Network (DDCNN) is developed for intelligent compound
fault identification. Firstly, one-dimensional deep convolu-
tional neural network (1D DCNN) is employed as the feature
learning model, which can effectively learn and extract the
discriminative features from raw vibration signals. Secondly,
multi-stack capsules are designed as the decoupling classi-
fier (DC) to accurately identify and decouple the compound
fault. Finally, the algorithm named routing by agreement and
the margin loss cost function are used to train and optimize
the proposed model. The proposed method is validated by the
gearbox fault tests. To the best knowledge of the authors,
this work is the first effort to identify and decouple the
compound fault for rotating machinery automatically and
efficiently.

The main contributions of the proposed method can be
summarized as follows:

(1) To decouple the compound fault containing both bear-
ing fault and gear fault, a decoupling classifier is designed to
output multiple labels for samples belonging to a compound
fault, which overcomes the limitations of (b) and (d);

(2)The margin loss function and the routing by agreement
algorithm are utilized to train and optimize the proposed
model, which effectively enlarges interclass differences and
reduces intraclass variations. The experimental results illus-
trate that the margin loss function and the routing by agree-
ment algorithm enable the Deep Convolutional Neural Net-
work (DCNN) to learn more sensitive and discriminative
features from the raw vibration signals, which is effective to
overcome the limitations of (a) and (c);

(3) The most creative characteristic is that the proposed
method can decouple the compound fault into single faults
even though the model is trained on the dataset only con-
taining normal and single fault samples. It can be effective to
solve the problem where the labeled data of compound fault
is insufficient or totally unavailable.

The rest of this paper is organized as follows. In section II,
the basic theory of the standard DCNN is briefly intro-
duced. Section III describes the proposed method in detail.
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The experimental results are discussed and analyzed in
section IV. Finally, a conclusion is drawn in section V.

II. DEEP CONVOLUTIONAL NEURAL NETWORK
The architecture of deep convolutional neural network
(DCNN), a state-of-the-art method for fault diagnosis and
classification of rotating machinery, is briefly introduced in
this section. Taking the 1D DCNN shown in Figure 1 as
example, it typically consisted of three kinds of layers: con-
volutional layer, pooling layer and fully connected layer.
The 1D DCNN has been tremendously succeed in feature
learning and classification from raw vibration signals due to
its shared-weights architecture and translation-invariant char-
acteristics [40]. Specifically, the 1D DCNN is a multi-step
neural network consisting of two key steps: feature learning
and softmax classification. The details about each step of 1D
DCNN will be described as follows.

FIGURE 1. The structure of 1D DCNN.

A. FEATURE LEARNING
Assuming there is a sample x = [x1, x2, · · · , xN ]T ∈ <1×N ,
the convolutional layer convolves the input vector x to the
hidden feature maps h = [h1,h2, · · · ,hK ] ∈ <K×D with the
filter kernels and activation function (ReLU, Rectified Linear
Unit). The output features y = [y1, y2, · · · , yK ] ∈ <

K×D can
be described as follows:

hi = Keri ∗ x+ bi =
∑D

j=1
Keri ∗ x(j)+ bi (1)

yi = ReLU (hi) = max{0,hi} (2)

where Keri and bi denotes the weights and bias of the i-
th filter kernel (i =1,2,. . . , K, K is the number of kernels),
respectively, hi denotes the i-th feature map, x(j) denotes the
j-th local region signal (j=1,2,. . . , D, D is the dimension of
the output feature), the notation ∗ denotes the dot product of
the kernel and the local region signal, and yi is thei-th output
feature.

The output of convolutional layer y is then modified by the
next pooling layer. In this paper, the average pooling is used

to conduct a form of downsampling, and the output feature of
average pooling layer p = [p1, p2, · · · , pK ] ∈ <

K×R can be
expressed as

pi =
∑R

r=1
{
1
W

∑tW

t=(t−1)W+1
yi(t)} (3)

where yi(t) denotes the value of the t-th neuron in the i-th
output feature of the former convolutional layer, W is the
width of pooling window, pi denotes the i-th pooling feature
map, and R is determined by the width of pooling window.

The convolutional and pooling layers can be stacked layer
by layer to learn the discriminative deep features and repre-
sentations. After the multi-stack convolutional and pooling
layers, the learned feature vectors are reshaped into one vector
and such vector is used as the input of the fully connected
layers. The process can be described as bellow:

yFC = ReLU (wFC (yFC−1)T + bFC ) (4)

where wFC and bFC denote the weight matrix and bias of the
fully connected layer, respectively, and yFC−1 is the output
feature of the previous fully connected layer or the vector
reshaped from the output feature of last pooling layer.

B. SOFTMAX CLASSIFICATION
Trained by the cross-entropy loss function, softmax classifier
is widely used to make a classification in deep learning neural
networks. Given a training set {xi, yitrue}Mi=1, where x i and
yitrue ∈ {1, 2, · · · ,C} is thei-th sample and label, respectively,
and M is the number of samples. The softmax function
softmax(·) can be represented as

ŷi = softmax(yFCi ) = exp(yFCi )/
∑C

c=1
exp(yFCc ) (5)

where yFC−1i is the output of the last fully connected layer, ŷi
is the output value of i-th neuron in the last fully connected
layer, and C is the number of classes. The label outputted by
softmax classifier can be calculated by

labelsoftmax = argmax(̂y) (6)

The cost function of DCNN is a cross-entropy cost func-
tion which shows stronger global optimization capability and
faster convergence speed than other cost functions [42]. The
model parameters are trained to minimize the cross-entropy
cost function:

J (ker,w, b) = −
1
M

[
M∑
m=1

C∑
c=1

1
{
ymtrue = c

}
log(̂ymc )

]
(7)

where 1{·} is the indicator function returning 1 if the state-
ment is true, and 0 if the statement is false. More details about
DCNN can be found in [43].

III. THE PROPOSED METHOD
In this paper, a new intelligent compound fault diagnosis
technique named Deep Decoupling Convolutional Neural
Network (DDCNN) is proposed for rotating machinery. This
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method includes two key parts: feature learning and decou-
pling classification. The theory of the feature learning model
designed in this method is almost the same as the previous
one (DCNN) introduced in section II except that the latter
reshapes the output features of last pooling layer into a vector
used as the input of the softmax classifier and the former
reshapes the output features into a matrix used as the input
of the decoupling classifier. In the process of decoupling
classification, a novel decoupling classifier is constructed
to identify the single fault or decouple the compound fault.
Furthermore, in order to learn more sensitive features from
the raw vibration signals, the margin loss function and the
routing by agreement algorithm are used to train and optimize
the proposed model.

A. DECOUPLING CLASSIFICATION
To decouple the compound fault into different single faults,
an urgent is required to design an intelligent decoupling clas-
sifier for rotating machinery. Inspired by Dynamic Routing
Between Capsules [41], the algorithm of routing by agree-
ment is applied to construct the decoupling classifier. The
theories and details of the decoupling classifier are described
as follows.

Firstly, for a matrix y = [y1, y2, · · · , yKl ]
T
∈ <

Kl×Rl

obtained from reshaping the output feature of the last pooling
layer, where yi ∈ <

Rl×1 is the i-th feature map (a vector) of
the last pooling layer, Kl denotes the kernel number of the
former layer, and Rl is determined by the width of pooling
window. The output tensor of decoupling classifier d ∈
<
C×Rd is a weighted sum over all middle prediction vectors

ŷ ∈ <C×Kl×Rd×1, and this process can be described as

d j =
∑Kl

i=1
ciĵy j|i (8)

ŷ j|i = W ijyi (9)

where i = 1, 2, · · · ,Kl , j = 1, 2, · · · ,C , W ij ∈ <
Rd×Rl

is weight matrix between ŷ j|i ∈ <
Rd×1 and yi, all the weight

matrix consist the weight tensorW ∈ <C×Kl×Rd×Rl , Rd is the
length of d j, d j denotes the j-th output vector of decoupling
classifier, and cij are coupling coefficients that are determined
by the iterative dynamic routing process.

The coupling coefficients cij between yi and all the outputs
of decoupling classifier sum to 1 and are updated by a routing
softmax whose initial logits bij are the log prior probabilities.
Such log prior probabilities can be discriminatively learned
as the other weights at the same time. The function of routing
softmax can be expressed as

cij = softmax(bij) = exp(bij)/
∑C

c=1
exp(bic) (10)

A non-linear squash function is designed as the activation
function to transform the short vectors to almost zero length
and long vectors to a length close 1, which is described as
follow

vj = squash(d j) =

∥∥d j∥∥2
1+

∥∥d j∥∥2 d j∥∥d j∥∥ (11)

The initial coupling coefficients are then iteratively
updated by measuring the agreement which is the scalar
product aij =< vj, ŷ j|i >. This agreement is added to the
initial logit bij before computing the new values for all the
coupling coefficients linking yi to d j.

Secondly, the L2 norm is used to convert the output ten-
sor of decoupling classifier d into a final prediction vector
ypred = [y1, y2, · · · , yC ] ∈ <C×1. Each magnitude of yi in
ypred represents the probability whose input sample belongs
to the i-th category. The probability of the predicted category
becomes larger when the magnitude yi is closer to 1.

Finally, a threshold ϕ is selected to restrict the number of
predicted labels for classification. The classifier will output
the label of the i-th class to 1 if the yi is larger than the selected
threshold, and 0 for the others. For a reliable classification,
a good prediction should be made at the situation that the
corresponding yi of actual classes are almost reached to 1,
and others to 0. The procedure of the decoupling classi-
fier algorithm are summarized in Table 1 and demonstrated
in Figure 2.

TABLE 1. The algorithm of decoupling classifier.

Note that the main difference between softmax classifier
and decoupling classifier is the number of the label that the
classifier can output. The softmax classifier can only output a
single label due to using the softmax activation function and
the arguments of the maxima (argmax) algorithm. Instead,
decoupling classifier can output single or multiple labels for a
testing sample because of multi-stack capsules and the algo-
rithm of routing by agreement. Assuming the square, circle
and triangle indicate three different single faults, and the
overlapping pattern of square and triangle represents the com-
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FIGURE 2. The flowchart of decoupling classifier.

FIGURE 3. The difference between softmax and decoupling classifier.

pound fault coupled by two different single faults. As illus-
trated in Figure 3, the decoupling classifier can identify and
decouple the compound fault accurately via outputting two
different labels which represents the two fault types coupling
the compound fault, but the softmax classifier identifies the
compound fault to a false category because it cannot decouple
the compound fault correctly.

B. MARGIN LOSS FUNCTION
Based on the decoupling classifier algorithm and inspired
by [44], the cost function named margin loss function is
adopted to design the DDCNN cost function for the multi-
label prediction. Different from cross-entropy cost function,
margin loss function is based on Euclidean distances that
directly measures the similarity of different categories. This
new loss function enlarges interclass differences and reduces
intraclass variations effectively, which can easily implement
the DDCNN training with multi-label. Hence, the model is

trained by minimizing the cost function

J=
∑C

c=1
Lc=

∑C

c=1

{Tcmax(0,m+ − ŷc)
2
+

λ(1− Tc) max(0, ŷc − m
−)2}

(12)

where Tc is an indicator function, Tc=1 means that an object
of class c is present and Tc=0 means not,m+ andm− denotes
the lower and upper boundary of ‖vc‖, respectively, and λ
is regular parameter down-weighting of the loss for absent
object classes. In this paper,m+=0.9,m−=0.1 and λ = 0.25,
which means that if an object of class c is present, then ‖vc‖
should be no less than 0.9, and if not, ‖vc‖ no more than 0.1.

C. THE GENERAL PROCEDURE OF DDCNN
The architecture of the proposed method is shown in Figure 4
and the procedure is listed as bellows.
Step 1: The raw vibration data of rotating machinery are

acquired by BBM-PAK test systemwith acceleration sensors.
Step 2: The original vibration data collected in the nor-

mal condition and the single fault condition are sliced to
obtain huge amounts of training samples, each with a length
of 8192 and 0.5 overlap rate. Meanwhile, the original vibra-
tion data collected in the compound fault condition are sliced
with the same length and overlap rate to obtain huge amounts
of testing samples.
Step 3: DDCNN is constructed and trained by the training

dataset which only contains the normal samples and the single
fault samples.
Step 4: All of the testing samples including the normal

samples, the compound fault samples and the single fault
samples are employed to validate the superiority and effec-
tivity of the proposed method, and the decoupled result of
compound faults will be reported automatically.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. DESCRIPTION OF EXPERIMENTAL DATASET
Bearing and gear are the most common and critical machine
components in condition monitoring of rotating machin-
ery, such as gearboxes of all automobiles, high-speed rails,
aircrafts, machine tools, wind turbines, which are easy to
degrade during the operation. In this experiment, a gearbox
dataset consists of bearing fault (inner race defect), gear fault
(chipped tooth defect) and a compound fault (bearing and
gear fault) have been collected on a five-speed automobile
transmission and used to verify the accuracy and efficiency
of the proposedmethod. The automobile transmission is oper-
ated at 1000rpm of shaft speeds and 50N • m of the output
shaft load torque. The original vibration signals are collected
with a sampling frequency of 24 kHz by an accelerometer
mounted on the gearbox case near the output shaft. Figure 5 is
the test rig of the automobile transmission and the sensor
configuration. The raw vibration data collected byBBM-PAK
test system are separated into training samples, including
normal samples, gear fault samples and bearing fault samples,
and testing samples containing both single gear or bearing
fault samples and compound fault samples. Details about the
gearbox dataset are listed in Table 2.
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FIGURE 4. The architecture of DDCNN.

It is worthy to note that the training dataset only contains
single faults and normal samples, which means that the pro-
posed model is trained without the compound fault. After the
DDCNN model being trained, the compound fault samples
will be used to test the performance of DDCNN model. All
the labels of training dataset are single labels which can be
used as the supervised indicator to calculate the margin loss
and supervise the model to learn the discriminative features.
To indicate the compound fault coupled by single faults,
multiple labels are used to represent the compound fault
in the testing dataset which would be used to validate the
performance of the proposedmethod in the task of decoupling
compound fault.

FIGURE 5. (a) The test rig of the automobile transmission. (b) sensor
configuration.

TABLE 2. Description of the gearbox dataset.

B. PARAMETER OF THE PROPOSED METHOD
As illustrated in section III, part A, the first key step is
feature learning. The model of 1D DCNN is designed to
learn and extract the deep discriminative and sensitive fea-
tures from the original vibration signals. In the second
step, the learned features are used as the input of decou-
pling classifier for fault classification. The hyper-parameters
of the proposed method are determined by grid-search in
scikit-learn which is a model hyper-parameter optimization
technique. As shown in Table 3, the architecture of the pro-
posed DDCNN model utilized in this experiment contains
two convolutional-pooling layers followed by a reshape layer
and two decoupling classification layers. The first convo-
lutional kernel size of the first convolutional-pooling layer
is 256×64×16, and the second one is 256×3×1. The size
of convolutional kernels in the second convolutional-pooling
layer is 128×3×1. The activation function is ReLU or squash
function, and the first and second pooling layers are the
average pooling and max pooling layers, respectively. After
two convolutional-pooling layers, a reshape layer and two

TABLE 3. The parameters of DDCNN.
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decoupling classification layers are used for fault classifica-
tion. The algorithm is implemented using the Keras toolbox.
The max training epoch is 20 with a batch-size of 64. In order
to minimize the cost function, the Adam optimizer [45] with
default parameter settings is applied to train and optimize the
DDCNN model.

After selected the hyper-parameters mentioned above,
there are still two significant parameters for implementa-
tion of proposed method. The first one is the threshold ϕ.
The higher threshold means a higher likelihood for the clas-
sification to be right. However, a larger threshold brings
less predictions, as well as an increased probability of error
rate. Therefore, there is a tradeoff between the accuracy of
the classification and the reliability of the prediction result.
ϕ = 0.7 is recommended in this paper. The another is the
number of iterations r . According to [41], r can be selected to
3 because the decoupling classifier algorithmwith 3 iterations
of dynamic routing process can perform the faster conver-
gence and lower loss.

C. EXPERIMENTAL RESULTS AND ANALYSIS
After choosing the hyper-parameters of the DDCNN,
the superiority and effectivity of the proposed model and
the features learned and extracted by the feature learning
model are investigated and compared with the state-of-the-
art intelligent fault diagnosis method (DCNN) here. The cost
function and classifier of DDCNN are the margin loss func-
tion and decoupling classifier, respectively, whereas those
of DCNN are cross-entropy function and softmax classifier
respectively. Besides these function and classifier, the other
parameters are the same for a fair comparison.

1) DIAGNOSIS RESULTS AND ANALYSIS
To illustrate the superiority of the DDCNN, the gearbox
dataset which contains the normal, bearing fault, gear fault
and compound fault samples is used to train and test the
performance of the DDCNN and DCNN. It is necessary to
point out that the proposed method uses the training dataset
only consisting of the normal samples and the single fault
samples to train the DDCNN and DCNN, but uses the testing
dataset contains both the training and the compound samples
to test the DDCNN and DCNN.

In this experiment, ten trials are carried out for each
method, and the evaluation metric is classification accu-
racy. The multi-class confusion matrix contains classification
accuracy and misclassification error, which is a significant
way to visualize the classification result of all conditions.
The horizontal axis of the confusion matrix represents the
predicted labels of samples, while the longitudinal axis rep-
resents the true labels of samples. The right color bar in
the figure indicates the correspondence between values and
colors. In Figures 6 (a) and (b) presents the multi-class
confusion matrix of the traditional DCNN and the proposed
method. Figure 6 (a) illustrates that the signal fault sam-
ples can be accurately classified into the actual categories
by the traditional DCNN, but the compound fault samples

FIGURE 6. The confusion matrix (a) DCNN; (b) DDCNN.

are totally confused with the normal samples. On the con-
trary, Figure 6 (b) shows that the accuracy of the proposed
method for the compound fault identification and decoupling
is 97.2%, which is completely higher than that of DCNN.
In other words, the DDCNN model can make a precise diag-
nosis for the compound fault. Specifically, 2.8% of errors are
caused by the false classification (1.8%) of the compound
fault with the bearing fault and gear fault (1.0%), respectively.
Comparing Figure 6 (a) and 6 (b), a conclusion can be drawn
that the proposed method achieves the superior and competi-
tive results for the gearbox fault diagnosis.

In addition, from the comparison of DCNN and DDCNN,
a conclusion can also be drawn that the compound fault
can be decoupled into multiple-single faults by the pro-
posed method. In order to further illustrate the powerful
ability of DDCNN on decoupling compound fault, the pre-
dicted and actual labels of the two methods are shown in
Figures 7 (a) and (b). It can be found that DDCNN com-
pletely decouples the compound fault coupled by bearing and
gear faults into two single faults. However, DCNN classifies
the all of compound samples into the normal category because
of the DCNN inherent limitations mentioned in section I.
These results demonstrate that the proposed method has a
powerful ability for decoupling the compound fault for rotat-
ing machinery. Moreover, it might be a great progress for the
compound fault diagnosis using artificial intelligent skills.
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FIGURE 7. The predicted and actual label of (a) DCNN; (b) DDCNN.

2) THE LEARNED DEEP FEATURES EVALUATION
It is a critical step to learn and obtain discriminative fea-
tures for intelligent compound fault identification. The qual-
ity of the deep features learned by DCNN and DDCNN is
compared and evaluated in this part. A new dimensionality
reduction technique called t-Distributed Stochastic Neighbor
Embedding (t-SNE) is used to visualize the high-dimensional
learned features [46]. Taking the last trial as an example,
Figures 8 (a) and (b) show the clustering results of DCNN
and DDCNN respectively. The deep features learned by the
DCNN show some overlaps between the normal condition
and the compound fault samples. Fortunately, the clustering
result of the features learned by DDCNN is obviously sepa-
rable, which is better than that of DCNN. Thus, it could be
easily obtained a conclusion that the deep features learned by
the DDCNN can represent the original data in amore discrim-
inative way than that of learned by the DCNN. This is mainly
because the margin loss function, rather than cross-entropy
loss function, is used as the cost function to train and optimize
the proposed model. Margin loss function is able to make the
centers of interclass distributed separately with large margins
by adding the interclass constraint, which also facilitates the
DDCNN model converging to a generalization optimal result
accurately.

In addition, six deep features learned by the two meth-
ods are randomly selected from the last layer of the fea-
ture learning model and displayed in Figures 9 (a) and (b)
respectively. The horizontal axis of each sub-figure represents

FIGURE 8. The clustering results using T-SNE (a) DCNN. (b) DDCNN.

the number of samples, and the longitudinal axis represents
the value of features. Comparing these deep features, it can
be seen that the normal condition and the compound fault
features learned by DCNN are always overlapped. Moreover,
as shown in the last two features of Figure 9 (a), the features
which are totally overlapped with all categories are com-
pletely indistinguishable. This is reason for that the DCNN
model classifies the compound fault samples into the normal
samples and generates wrong results. By contrast, the deep
features learned by DDCNN, as shown in Figure 9 (b), are
more discriminative than that of DCNN. On one hand, there
are also some features indistinguishable, such as the second
and the last features, possibly since the vibration signatures
are usually influenced by the heavy background noise or the
common features of different categories have been learned.
On the other hand, the value of compound fault features either
close to the bearing fault features or the gear fault features,
such as the first, third, fourth and fifth feature, which indi-
cates that the common features between the bearing fault and
compound fault, as well as the gear fault and compound fault,
are learned by the DDCNN. From the above analysis and
discussion above, it can be found that DDCNN can effectively

FIGURE 9. The deep features (a) DCNN; (b) DDCNN.

VOLUME 7, 2019 1855



R. Huang et al.: DDCNN for Intelligent Compound Fault Diagnosis

learn the decoupled features from the raw compound fault
vibration signals.

From the figures 8 and 9, the performance of the DDCNN
on learning and extracting the deep features is presented in
qualitative analysis. To further evaluate the discriminabil-
ity of deep features in quantitative analysis, two parame-
ters including between-class covariance Sb and within-class
covariance Sw are calculated.Mathematically, assuming there
is a reduced feature matrix f = [f 1, f 2, · · · , f N ], where
N is the total number of sample, the formulas of the two
parameters are described as follows [47]:

Sb =
∑C

c=1
Nc(mc −m)(mc −m)T (13)

Sw =
∑C

c=1

∑
n∈Cc

(f n −mc)(f n −mc)T (14)

with

mc = 1/Nc
∑

n∈Cc
f n (15)

m = 1/N
∑N

n=1
f n (16)

where C is the number of class, Nc is the number of samples
in class Cc, mc is the mean for samples in c th class, and m is
the mean for total samples.

The between-class covariance is used to indicate the scat-
tered degree among different classes, while the within-class
covariance is used to describe the concentrated degree in the
same class. Specifically, a larger between-class covariance
denotes the separation of different classes is clearer and a
smaller within-class covariance indicate that the concentra-
tion of each category is stronger [48]. In this paper, four evalu-
ation indexes are calculated combined with the between-class
and within-class covariances, which are used to quantitatively
describe the quality of the learned features. The formulas of
these indexes are defined as

J1 = Tr[S−1w Sb] (17)

J2 = |Sb| / |Sw| (18)

J3 = Tr[Sb]/Tr[Sw] (19)

J4 = |Sw + Sb| / |Sw| (20)

where Tr(A) means the trace of the matrix A.
In the testing stage, the four evaluation indexes are cal-

culated based on (17) - (20). As shown in Table 4, the four
evaluation indexes of the deep features learned by DDCNN
are 9.79, 2.32, 2.58 and 2.53, respectively, whereas those
of the deep features learned by DCNN are only 5.33, 1.98,
1.90 and 2.23. According to the evaluation criterion, the clas-
sification is better when a larger Ji is obtained. The above
results demonstrate that the proposed method has a powerful
ability in learning the discriminative representations from the
raw vibration data.

Through the aforementioned comparison and discussion,
there are some conclusions could be clearly obtained. Firstly,
the compound fault can be decoupled into multiple-single
faults by the proposed method, even without the compound

TABLE 4. Quantitative evaluation of the features learned by the two
kinds of method.

fault training samples. Secondly, using the margin loss func-
tion and routing by agreement algorithm to train and optimize
the proposed model, the discriminative deep features are
learned and obtained for intelligent compound fault iden-
tification. Finally, compared with DCNN, the effectiveness
and superior performance of the proposed method is demon-
strated by the experiment.

V. CONCLUSIONS
This paper proposes a novel method, DDCNN, to address
the task of compound fault identification and decoupling in
the field of intelligent fault diagnosis. In accordance with
the demands from practical industrial applications, DDCNN
aims to learn deep discriminative features and decouple the
compound fault via only normal and single-fault training
samples to train and optimize the model. The experimental
results and the compared analyses illustrate that the pro-
posed method can effectively identify and decouple the com-
pound fault for rotating machinery. Both the learned deep
features and the diagnosis accuracy of DDCNN are more
powerful than that of traditional intelligent fault diagnosis
methods. In other words, the proposed method outperforms
the state-of-the-art methods in the field of intelligent fault
diagnosis. In the future, decoupling the compound fault in
a semi-supervised or unsupervised manner may be a great
challenge. Therefore, investigating the application of a semi-
or unsupervised neural network for compound fault diagnosis
will be of importance, which is the direction that the authors
would make further efforts.
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