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ABSTRACT The estimation of image noise level is a critical task for image denoising or super-resolution
reconstruction. Mathematical methods like patch-based or model-based methods, suffer from the sensitivity
of the selection of homogeneous regions or the selection of a proper statistic model, leading to inaccurate
estimation, especially in signal-dependent noise cases, such as Rice noise. Ordinary, fully connected
networks often suffer from the over-fitting problem, restricting their usage for realistic images. This article
proposes a deep-learning-based algorithm by building a deep neural network, and train it by using the
evolutionary genetic algorithm and extreme learning machine (ELM) algorithm extended into Hinton’s
dropout framework. By combining the evolutionary genetic algorithm and the proposed extended ELM
algorithm, comparative results are obtained, showing higher accuracy and better stability than several state-
of-the-art algorithms.

INDEX TERMS Noise level estimation, deep learning, convolution neural network, extreme learning
machine, dropout.

I. INTRODUCTION
Image noise level estimation (NLE) is an important tech-
nique in computer image processing because of its huge
importance in object detection [1], [2], denoising [3], [4],
and super-resolution [5] and it has been studied for several
decades [6], [7]. Normal single image denoising methods
typically need pre-known arguments of the noise distribu-
tion model [8], [9], which has a huge impact on the per-
formance of the denoising algorithm, so NLE becomes a
key point. Typical NLE approaches proposed in recent years
can be roughly divided into filter-based, patch-based and
model-based.

As the earliest group of NLE approaches, filter-based tech-
niques apply filters in transform domain or spatial domain,
and then the noise level of a single image is obtained by
exploiting the difference between filtered image and the
original image.

For transform domain, Khmag Asem’s work pointed out
that undecimated wavelet-based image reconstruction for
denoising methods may bring pseudo-Gibbs phenomena and
it solved this issue by the cycle spinning technique [10].

Pyatykh et al. [11] presented principal component analy-
sis (PCA) method for noise level estimation, in which the
noise level was calculated by variance from covariance
matrix of image block with least eigen value. In 2013,
Liu and Lin [12] proposed a singular value decomposi-
tion (SVD) based algorithm, which reduced the signal impact
on NLE problems by taking tail singular values of an image
into account. C. Varon proposed a model selection based
on distance distributions by using the incomplete Cholesky
factorization to solve large-scale kernel principal components
analysis problem (kPCA) [13].

For spatial domain, the method proposed in [14] used
3 × 3 mean and median filters to obtain the image signal
and subtracted it from the noisy image to estimate the noise
variance from the local variances of the obtained map. The
method mentioned in Rank’s work [15] first suppressed the
effects of the original image signal by filtering the noisy
image using difference operators, then all local variances
were obtained from the suppressed image and their histogram
was computed, the noise variance was finally estimated
by statistically evaluating the histogram of local variances.
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In a similar procedure, the method proposed by Corner and
his team [16] applied Laplacian and gradient masks to the
noisy image to find image edges, then it subtracted the
edge map from the filtered image and calculated local vari-
ances from the obtained image, as the final step, it took the
maximum noise variance as the estimated one.

In patch-based methods, an image was divided into small
blocks or patches and the noise variance are then evalu-
ated from homogeneous blocks which contain the lowest
variances. Hence, noise estimation performance depends on
the input image and the noise level. In other words, these
methods may overestimate low noise levels or underestimate
the higher ones. To tackle this problem, recent patch-based
methods apply principal component analysis (PCA) to the
low-rank patches of images and image textures. Methods
described in [17]–[22] follow this general idea: by select-
ing the patches which are considered to be homogeneous
patches, signal influence on noise in these patches can be
regarded as negligible, then noise distribution parameters
can be estimated. For the case of additive white Gaussian
noise (AWGN), the selection of homogeneous patches sig-
nificantly affects the accuracy of noise variance estimation.
Tai and Yang [21] tackled this issue by using Sobel filter to
find structure edges separating homogeneous patches. How-
ever, this edge detection method doesn’t work very well
with fine-structures and actually sensitive to noise model and
level. The method of [19] adaptively combines a filter-based
approach with a patch-based scheme to update estimated
noise variance

Model-based methods studied the statistical characteristics
of data in the pixel domain or the transform domain of
an image and described the image by an appropriate sta-
tistical model. In [23] and [24], the image data was first
transformed into a low-dimensional representation by using
subspace learning algorithms, the noise could then be effec-
tively approximated and reduced in the projection space.
Work described in [25] was based on the assumption that
wavelet coefficients in the diagonal sub-band are dominated
by noise, but the estimation results achieved by this approach
were usually higher than ground-truths because coefficients
in diagonal sub-band were dominated not only by noise but
also by image details.

Although most work about noise level estimation target
on Gaussian model, which is signal-independent, there is
still an important case, Rice noise, which is a more realis-
tic signal-dependent noise model in medical images, being
studied for a few years. A work proposed by Lauwers Lieve
trying to tackle estimation problem of Rice distribution using
Bayesian approach [17]. In the same year, Maitra Ranjan
and his team proposed a method to estimate the noise under
the mixed model of Rice distributions with common noise
parameter [20]. In 2013, Liu et al. [22] tried to solve NLE
problem of SAR images, the model used in this paper
was Rayleigh distribution, which is a specialized case of
Rice noise. Peng and Zhao [26] extended their work into
more complex Cauchy-Rayleigh mixture model using the

expectation-maximization(EM) algorithm. In the next year,
Zanetti et al. [27] used a restricted version of EM to fit into
NLE problem under the Rayleigh-Rice mixture noise model.
With the model getting more and more complex, the mathe-
matical analysis also gets more complex and it’s much harder
to deal with NLE problems. So another methodology comes
into play, the machine learning methods, which learn from
big samples of pre-given images and noise levels to estimate
the noise level of unknown images.

With recent development in machine learning technology,
lots of almost-not-solvable problems are now studied. As for
NLE problems, many denoising techniques were performed
by the artificial neural network, which could produce high-
quality results with fast real-time operation [28]–[30]. In [28],
the evolutionary algorithm was introduced into NLE prob-
lems with accurate and stable results. Work described in [31]
introduced a multi-layer perceptron based noise level esti-
mation method using SVD as its network’s input, demon-
strating the ability of neural networks to estimate noise. But
this method could only be applied to Gaussian noise and it
only used singular values as the network’s input, which led
to unacceptable information loss and poor performance for
images with fine features. To tackle these issues, techniques
described in [32]–[34] used convolution network and showed
promising results, while they still suffered from the over-
fitting problem. The dropout layer introduced into network
structure was a simple but efficient tool used to reduce over-
fitting but coming with drawbacks: 2-3 times longer training
time [35], [36]. L. Wan proposed a generalized framework
called ‘‘DropoutConnect’’ for large fully-connected neural
network [37] Another algorithm used to avoid over-fitting is
the ELM algorithm, which had shown its effectiveness and
time-saving [38]–[40].

As talked above, mathematical analysis based method
including patch and model-based NLE algorithms severely
rely on the similarity between image patches or accurate
statistical model of image noise. These conditions often can’t
be achieved in real life because real-life images are not
always simple textures and image noise produced by real-
life cameras don’t exactly follow the assumed distribution.
Machine learning based methods don’t rely on strict mathe-
matical analysis but on the training data, if the training data
doesn’t have too much diversity or of small-scale, it will
suffer the over-fitting problem. In order to take advantage
of not relying on specific noise model but reduce over-
fitting, we build a deep neural network with both convolu-
tion and dropout layers(dropout layer resides between the
output node and a fully-connected layer), which extract and
process features from noisy images to get more accurate and
stable results. The method we used for network training is
also composed of two parts, the first part is evolutionary
genetic algorithm, which is used to train convolution kernels
of the convolution layer, the second part is the Extended-
ELM algorithm, which is based on the basic ELM algo-
rithm but can apply to the proposed network with dropout
layer.
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The remain part of this paper is organized as follows:
Section II describes the noise model; The design of network’s
structure is introduced in Section III; The proposed training
algorithm is presented in Section IV; Comparative experi-
ments are done and results compared with other state-of-art
methods are shown in Section V; We discuss the data we
collect in Section VI; conclusions are given in Section VII.

II. NOISE MODEL
For every pixel x in an M × N image, luminance of this
pixel z(x) can be considered as a random variable. Especially
in magnetic resonance images, pixel data follow the Rice
distribution,

z(x) ∼ Rice(ν, σ ) (1)

where x ∈ [0,M − 1] × [0,N − 1] ⊂ Z2. The probability
density function(PDF) of Rice distribution can be written as

p(z) =
z
σ 2 e
−
z2+ν2

2σ2 I0(
zν
σ 2 ) (2)

where v and σ are parameters of PDF and I0 =
∞∑
m=0

(x/2)2m

m!0(m+1) .

Noticing that pixels don’t follow the same distribution
because the distribution argument varies with pixel location,
which is, in fact, a function of the noiseless value of the given
pixel.

The mean µ and variance s of this random variable can be
written as

µ = σ

√
π

2
L(−

ν2

2σ 2 ) (3)

s2 = 2σ 2
+ ν2 −

πσ 2

2
L2(−

ν2

2σ 2 ) (4)

where L(x) = e
x
2 [(1− x)I0(− x

2 )− xI1(−
x
2 )].

As formula (3) and (4) show, the variance is dependent on
noiseless data, which makes traditional PCA or SVD based
methods hard to use. In this paper, we try to build a deep
neural network to get the parameter σ from one single given
image.

FIGURE 1. Convolution neural network structure.

III. NEURAL NETWORK STRUCTURE DESIGN
The proposed network is composed of a convolution network
followed by a fully-connected network with dropout layer.
The convolution part is plotted in Fig 1, the fully-connected
parted is plotted in Fig 2.

As shown in Fig 1, the input image is convoluted to extract
features, the number and size of features we get depend on

FIGURE 2. Fully-connected network with dropout.

the size of input images, number of kernels used, size of
kernels and the stride, here we use 20 kernels of size 12 × 12,
with stride equals to 2. Here we only use one convolution
layer because more layers lead to more computation time
but don’t give much observable improvement. The pooled
features are then flattened and then applied by ReLU as
activation function:

ReLU (x) =

{
0, x < 0
x, x ≥ 0

(5)

Here we don’t use the more common sigmoid function
to avoid vanishing gradient problem during the training
progress. The result is fed into the fully-connected network,
as shown in Fig 2. Depending on the image size of the dataset
used for training, the number of input neurons can vary. The
input layer is fully connected to the dense layer shown in
Fig 2 as blue color, this layer can be set to use any number of
neurons, here we set it to 32 for 128× 128 images. The dense
layer is followed by a dropout layer, in which each neuron
only has a probability(less than 1) to connect to a neuron
of the former dense layer. For 128 × 128 images, we use
16 neurons for this layer. The detailed analysis of this dropout
layer will be discussed in section IV.

IV. TRAINING ALGORITHMS
A. EVOLUTIONARY GENETIC ALGORITHM
Consider a convolution neural network with H ×L input size
with N number of k × k kernels, then for each input image
Xj ∈ RH×L the output of the convolution(and pooling) layer
can be written as:

Yj = N (Xj,K ) = Flatten(Xj ∗ K1,Xj ∗ K2, · · · ,Xj ∗ KN )

(6)

where Ki ∈ Rk×k (i = 1, 2, · · · ,N ) are the kernels used for
convolution. Flatten is a function that fatten two-dimension
images into one-dimension vectors row by row.

Suppose we have M images as training input, then j =
1, 2, · · · ,M

The goal of the training algorithm is to minimize this
function by the parameter K .

K = min
K

E(X ,Y ) = min
K

M∑
j=1

(N (Xj,K )− Yj)2 (7)
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For the training of the convolution part of our network,
we use the evolutionary genetic algorithm. Genetic algo-
rithms simulate the process of biological evolution of chro-
mosomes. Chromosomes here means possible values of the
network parameter. As we are using this algorithm for convo-
lution network, chromosome values represent the convolution
kernel values used for the convolution operation on images.
Firstly, randomly initializeC number of possibleW (flattened
all the kernel values as the chromosome) and setPs, r as selec-
tion and mutation rate, which will be used in the algorithm,
we train the kernels of the convolution layer by the following
steps:
Step 1: Set iter to 0.
Step 2: For every possible W , calculate a fitness fg for it

using:

fg = −
M∑
j=1

(N (EXj,W )− Eyj)2 (8)

where λ is a positive argument for tweaking our algorithm.
Step 3: The selection process. Choose (1− Ps)× Nc chro-

mosomes with the biggest fitness value, these chromosomes
will be used as next generation without any change. For every
two of the rest chromosomes −→z and

−→
z′ , we do a crossover

using:

z̃i = aizi + (1− ai)z′i (9)

z̃′i = aiz′i + (1− ai)zi (10)

where ai are random numbers in [0,1] (crossover rates are
random).
Step 4: The mutation process. For each chromosome, ele-

ments of it will has a small probability to slightly change its
value, that is z̃i = zi + 0.05zi(2r − 1), where r is a random
number in [0,1] and generated once for every element of each
chromosome.
Step 5: increase iter by 1.
Step 6: If iter get to the maximum iteration count, then

the chromosome with the greatest fitness value within current
generation is used as the final argument of the fully-connected
network, else we repeat from step2.

B. ASSUMPTION OF ELM ALGORITHM
After the genetic approach mentioned above, ELM algo-
rithms are used for training of the fully-connected
part, dropout technology is used to overcome the slow-
computation and trapped in local minima problem [13].

Let us denote by {xi, ci}i=1,...,N a set of N vectors xi ∈
RD and the corresponding class labels ci ∈ {1, . . . ,C}
that can be used to train a single layer feed-forward neural
network(SLFN) network consisting of D input (equal to the
dimensionality of xi), L hidden and C output (equal to the
number of classes involved in the classification problem)
neurons. The number L of hidden layer neurons is much
larger than C , i.e., L � C . In ELM-based approaches,
the network input weights Win ∈ RD×L and the hidden layer
bias values b ∈ RL are randomly chosen, while the network

output weights Wout ∈ RL×C are analytically calculated,
as subsequently described.

Let us denote by vj, wk , wkj the j-th column of Win, the
k-th row of Wout and the j-th element of wk , respectively.
Given an activation function f for the network hidden layer
and using a linear activation function for the network output
layer, the response oi = [oi1, . . . , oiC ]T of the network
corresponding to xi is calculated by:

oik =
L∑
j=1

wkj f (νj, bj, xi) (11)

By storing the network hidden layer outputs φi ∈ RL

corresponding to all the training vectors xi, i = 1, . . . ,N in
a matrix 8 = [φ1, . . . , φN ], the network response for all the
training dataO ∈ RC×N can be expressed in a matrix form as:

O = W T
out8 (12)

where

8 =

 f (v1, b1, x1) · · · f (v1, b1, xN )
...

. . .
...

f (vL , bL , x1) · · · f (vL , bL , xN )


C. REGULARIZED EXTREME LEARNING MACHINE
A regularized version of the ELM algorithm(RELM) that
allows small training errors and tries to minimize the norm of
the network output weights Wout has been proposed in [41].

In RELM, the training problem is modeled as a constrained
minimization problem of Wout :

Wout = min
Wout

JRELM (13)

where JRELM = 0.5‖Wout‖
2
F + 0.5c

∑N
i=1 ‖ξi‖

2
2.

Constrained by

W T
outφi = ti − ξi, i = 1, . . . ,N , (14)

where ξi ∈ RC is the error vector corresponding to xi and c is
a parameter denoting the importance of the training error in
the optimization problem, satisfying c > 0.

By substituting (14) into (13), we can get this formula:

Wout = (88T
+

1
c
I )−18T T (15)

where I ∈ RL×L is the identity matrix and T = [t1, . . . , tN ]
is the target matrix composed of target training vectors.

D. DROPOUT-ELM ALGORITHM
Now we try to introduce Hinton’s Dropout-ELM algo-
rithm [35].

In Dropout-ELM, the training problem can be considered
as a minimization problem, which is the Wout to satisfy the
following minimize model:

J1 = {0.5tr(W T
outSWout )+ 0.5c

N∑
i=1

‖ξi‖
2
2} (16)
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where S ∈ RL×L is a matrix describing the relationship of
the training data that are subject to minimization. Here this
matrix S describes the within-class scatter of the training data
representation in the ELM space.

Wout = min
Wout

J1 (17)

constrained by:

W T
outφi = ti − ξi, i = 1, . . . ,N , (18)

W T
outφi = W T

outφi,t , i = 1, . . . ,N , t = 1, . . . ,NT (19)

where φi,t expresses the hidden layer output for the training
vector xi, after applying Dropout for the training epoch t .

Let’s set φ̃i,t = φi − φi,t , this constrain can be written as
W T
out (φi − φi,t ) = 0, so we can directly calculate ˜φi,t by

φ̃i,t = m̃i,t ◦ φi (20)

where m̃i,t ∈ RL is a binary mask vector with each element
being equal to 1 with probability (1− p) and equal to 0 with
probability p.
By substituting (18) into J1 with respect to (19), we get

J1,D = 0.5tr(W T
outSWout )+ 0.5c‖W T

out8− T‖
2
F

+
λ

2NT

NT∑
t=1

‖W T
out8̃‖

2
F (21)

where 8̃t = [φ̃1,t , . . . , φ̃N ,t ] and λ is a parameter denoting
the importance of the Dropout regularizer in the optimization
problem, satisfying λ > 0. By deter themin point of J1,D with
respect to Wout , the network output weights are written as:

Wout = (88T
+

1
c
S +

λ

c
R1)−18T T (22)

where R1 = 1
NT

NT∑
t=1

8̃t8̃
T
t .

Consider the extreme case that training process has enough
(e.g. NT > 100) steps, we consider NT as NT →∞, then R1
will converge to its expection:

R1 = E[
1
NT

NT∑
t=1

8̃t8̃
T
t ] (23)

Let p = [(1− p) , · · · , (1− p)]T ∈ RL denoting a vector
having elements expressing the probability that the j-th ele-
ment of φi will not survive, then R1 can be written as:

R1 = (88T ) ◦ P (24)

where P = [(ppT ) ◦ (11T − I )] + [(p1T ) ◦ I ] and 1 ∈ RL

is the vector of 1. Noting that since R1 ∈ RL×L , overall
computational complexity of O(L3). Finally, by combining
(24) and (22) Wout can be given by following formula:

Wout =

([
88T

]
◦

[
I +

λ

c
P
]
+

1
c
S
)−1

8T T (25)

E. PROPOSED EXTENDED-ELM ALGORITHM
The proposed training algorithm is called Extended-ELM,
which is a more complex optimization problem. Compared
to dropout-ELM, the expression J2 and Wout argument to be
minimalized here actually stay the same, but constriction is
changed in Extended-ELM. Let’s re-write them:

J2 = {0.5tr(W T
outSWout )+ 0.5c

N∑
i=1

‖ξi‖
2
2} (26)

Our goal is to get the Wout

Wout = min
Wout

J2 (27)

Our Wout is constrained by (28) and (29), notice that (29)
is different from (19).

W T
outφi = ti − ξi, i = 1, . . . ,N , (28)

W T
outφi = (Mi,t ◦Wout )Tφi, i = 1, . . . ,N , t = 1, . . . ,NT

(29)

Like we did in last section, we substitute (28) in J2 and
taking the equivalent dual problem with respect to (29),
we obtain:

J2,D = 0.5tr(W T
outSWout )+ 0.5c‖Wout − T‖2F

+
λ

2NT

NT∑
t=1

∑
i=1

N‖(Mi,t ◦Wout )Tφi‖22 (30)

When we have enough training steps(NT →∞), we have

1
NT

NT∑
t=1

(Mi,t ◦Wout )(Mi,t ◦Wout )T = (WoutWout ) ◦ P (31)

By (31), we have

J2,D = 0.5tr(W T
outSWout )+ 0.5c‖Wout − T‖2F

+
λ

2

NT∑
t=1

tr(DφiPDφiWoutW T
out ) (32)

where Dφi = diag(φi).
By determining the saddle point of J2,D with respect

to Wout , the network output weights are given by:

Wout = (88T
+

1
c
S +

λ

c
R2)−18T T (33)

where R2 =
∑N

i=1 tr(DφiPDφiWout ).
After we get the network output weightsWout , the response

of a given input vector xl ∈ RD is given by:

ol = Woutφl (34)

where φl is the hidden layer for xl .
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V. EXPERIMENT AND RESULT ANALYSIS
A. NETWORK TRAINING PROCESS
The proposed neural network is built and initialized randomly
inMATLABR2017b, learning process is conducted by paral-
lel computing system using 4 cores of Intel Core i7-6700 and
8GB memory on Windows 7(No GPU is involved). Learning
base rate is constantly set to 0.1 to reduce computational
cost.

Due to the large scale of training dataset, images are not
sent to the network as a whole big matrix but sent batch by
batch. A batch is fed into the network to get rough parameters
of network, after this, we use the roughly trained network to
train the next batch to improve the arguments of the network,
so that we can reduce the computation cost of the training
process.

In order to enforce the relation between batches, we take
4 ∼ 5% images from the previous batch from the previous
batch into the current batch. The training process is composed
of the genetic evolution algorithm for the convolution part
and then the proposed Extended-ELM algorithm [35] for
optimizing the arguments of our network.

B. DATASETS USED FOR TRAINING
The proposed method was trained using USPTex(surface
textures, 128 × 128 pixel size) [42], STL-10(real-life object
pictures, 96×96 pixel size) [43] and AVIRIS(huge-size aerial
pictures, all images reshaped to 512 × 512 pixel size) [44]
datasets and tested on them. Each of the datasets is composed
of a larger training subset and a smaller testing subset. Train-
ing data are generated by adding Rice noise with random
noise level(σ = 5 ∼ 30, continuously random) to every
image of the training subset to form repeat-ability.

For USPTex dataset, it contains 191 textures, each ships
with 12 varieties with different luminance and slightly differ-
ent position offset (2292 images in total). We set 500 images
aside as testing dataset for validation and do our training on
the else.

For AVRIS dataset, it contains many texture details and is
very useful to test ourNLE algorithm on application scenarios
like pattern recognition or super-resolution reconstruction
because of its relatively big size. It contains 10000 images,
and we use 7500 of them for training and the rest for testing.

For STL-10 dataset, it’s taken from real-life pictures and
unlike commonly used CIFAR-10, large enough in size to
show a more realistic and objective result of NLE methods.
It comeswith 8000 images in the training set and 5000 images
in the testing set.

Some sample images from training datasets and their noisy
version with different noise level are shown in Fig 3.

C. TRAINING CURVES AND VALIDATION TEST
Diagram of the training process of the training accuracy and
loss function with iteration number is plotted in Fig 4 with
orange dotted line representing accuracy and blue solid line
representing the loss function.

FIGURE 3. Fully-connected network with dropout.

FIGURE 4. Diagram of network training process.

FIGURE 5. Example of feature extraction.

This cable car image is fed into the trained network as an
example to show extracted features by different layers of our
proposed neural network, as shown in Fig 5 below.

We did some comparative experiments with four patch-
or model-based methods, which are LiuWei’s image sin-
gular value based analysis method SVD [12], C.Varon’s
kernel principal component analysis method kPCA [13],
Shin’s adaptive Gaussian filtering based method AGF [19],
Tai’s adaptive edge detection approach AED [21], Aditya’s
LR algorithm [45] and Mostafa’s DCT-DWT [46] method.

To verify the performance of those comparative methods
and our proposed method, we use the performance metrics
defined as following. Since we are solving a NLE problem,
we add Rice noise with σ = 5 ∼ 30 to each image in the
original dataset, each image in the dataset will be repeatedly
used for r times, so we will have r different levels of noise for
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the same image, which is meant to provide more reliability of
our method. After doing this, we getW different images with
different noise levels out of a dataset, then we can define the
mean and standard deviation of the noise level errors as the
following:

µerr =
1

W × H

W∑
w=1

H∑
h=1

err(w, h), (35)

σerr =

√√√√ 1
W × H

W∑
w=1

H∑
h=1

(err (w, h)− µerr )2, (36)

where err(w, h) = σ − σest
The µerr and σerr can be used to evaluate the accuracy and

stability of a certain noise level estimation method. We also
calculate9err =

√
µ2
err + σ

2
err as the overall measurement of

an NLE algorithm.
To see the performance of NLE algorithms more meticu-

lously and accurately, we also compare peak signal-to-noise
ratio (PSNR) error function based metrics between NLE
algorithms, which are defined as:

µpsnr =
1

W × H

W∑
w=1

H∑
h=1

psnr(w, h) (37)

σpsnr =

√√√√ 1
W × H

W∑
w=1

H∑
h=1

(
psnr (w, h)− µpsnr

)2 (38)

9psnr =

√
µ2
psnr + σ

2
psnr (39)

where psnr(w, h) = 10×
(
lg 255

2

σ 2
− lg 255

2

σ 2est

)
.

TABLE 1. Test result on USPTex dataset.

We record these performance metrics in Table 1-3. Bold
font emphasis the best result among the tested methods.

TABLE 2. Test result on AVIRIS dataset.

TABLE 3. Test result on STL-10 dataset.

VI. DISCUSSION
As we can see from the results above, the following conclu-
sions can be summarized:

In terms of noise level estimation algorithm accuracy,
which is measured by the µerr and µpsnr evaluation indi-
cators, direct difference between real noise level and esti-
mated value are used instead of absolute difference to show
the difference between under-estimation and over-estimation,
thus some data in the result tables is negative, indicating the
under-estimation. We can see that average estimation errors
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generally decrease along with the increase of noise level.
Let’s take STL-10 dataset as example, our proposed method
successfully decrease the µerr by 3.7%(σ = 5), 9.0%(σ =
10), 10.4%(σ = 15), 3.8%(σ = 20), 3.8%(σ = 25),
35.6%(σ = 30) compared to the second-best method, and
it also decrease µpsnr by 0.14%(σ = 5), 0.58%(σ = 10)
2.1%(σ = 15), 9.6%(σ = 25), 4.1%(σ = 30) compared
to the second-best method. We also notice that in AVIRIS
and USPTex datasets, there’re rare cases that the proposed
method is not always the best, even by those cases, the pro-
posed method still has the second-best result. For images
with relatively high noise level, LR [45] and DCT-DWT [46]
provide comparable second-best results while they almost
always over-estimate.

Regarding the stability of NLE methods, which is mea-
sured mainly by the σerr and σpsnr metrics, the proposed
method shows its advantage in almost all cases. As seen from
Table 1, in the USPTex dataset, the proposedmethod decrease
σerr by 0.41%(σ = 5), 1.8%(σ = 10), 1.7%(σ = 15),
0.90%(σ = 20), 0.86%(σ = 25), 5.2%(σ = 30) compared
to the second-best method. The σpsnr shown in the same table
also decrease by 1.7%(σ = 5), 8.1%(σ = 10), 0.41%(σ =
15), 1.8%(σ = 20), 0.53%(σ = 25), 4.6%(σ = 30)
compared to the second-best method. This result shows the
great stability of our proposed method, which is an important
demanding in auto continuous image processing, which may
need to deal with images with wide range of noise levels. Rare
cases mainly appear in AVIRIS and STL-10 datasets at low
noise level cases, however in which our proposed method is
still offering competitive data.

The test data of AVIRIS dataset, included in Table 2,
9err and 9psnr are showing the overall general good qual-
ity of the proposed method. Our proposed method decrease
9err by 1.3%(σ = 5), 3.6%(σ = 10), 3.7%(σ = 15),
3.4%(σ = 20), 1.5%(σ = 25), 3.8%(σ = 30), also 9psnr
by 10.5%(σ = 5), 1.9%(σ = 10), 1.5%(σ = 15), 2.2%(σ =
20), 1.8%(σ = 25), 5.8%(σ = 30) compared to the second-
best method. The 9err and 9psnr also show the best result
of the proposed method, even in relatively smaller image
datasets like USPTex or STL-10, based on the size of images
in AVIRIS dataset(larger than 512 × 512), we conclude that
the overall performance of the proposed method is superior in
average for images of different sizes, and prove the proposed
method’s ability to deal with large size images from real-life.

VII. CONCLUSION
In this paper, we proposed a network with both convolu-
tion and fully-connected layers. The artificial neural network
proposed in this paper use convolution layer to extract fea-
tures from the input image, after pooling, feature images are
flattened as input to a fully-connected network(with dropout
layer). We use the evolutionary genetic algorithm to train
the kernels of our convolution network, and then proposed
the Extended-ELM method. This proposed method is based
on Hinton’s Dropout-ELM [35], but build a more accurate
minimization model, then solve this model by taking dropout

layer into account. The proposed neural network was tested
by three datasets(USPTex, AVIRIS and STL-10), the training
process is plotted with the accuracy and loss function with
training steps. Experimental result is compared with several
recent works, showing that the proposed artificial neural
network has the ability of image noise level estimation with
Rice noise of wide noise level range. Compared to patch-
or model-based methods, our comparative result has shown
the proposed neural network structure and proposed training
algorithm have higher estimation accuracy, stability with both
low and high noise level, and good overall quality.
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