
Received November 25, 2018, accepted December 5, 2018, date of publication December 11, 2018,
date of current version January 4, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2886233

Tree-Search-Based Any-Time Time-Optimal
Path-Constrained Trajectory Planning With
Inadmissible Island Constraints
PEIYAO SHEN 1,2, XUEBO ZHANG 1,2,3, (Senior Member, IEEE),
AND YONGCHUN FANG 1,2, (Senior Member, IEEE)
1Institute of Robotics and Automatic Information System, Nankai University, Tianjin 300071, China
2Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300071, China
3Key Laboratory of Industrial IoT and Networked Control, Ministry of Education, Chongqing University of Posts and
Telecommunications, Chongqing 400065, China

Corresponding author: Xuebo Zhang (zhangxuebo@nankai.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61573195 and Grant U1613210, and in
part by the Open Project of the Key Laboratory of Industrial IoT and Networked Control Ministry of Education under Grant 2018FF07.

ABSTRACT Time-optimal path-constrained trajectory planning is of significant importance for enhancing
the work efficiency of robotic systems. In particular, when inadmissible island constraints are considered,
existing approaches are typically offline. In order to solve the problem online, this paper proposes a heuristic
tree-search-based any-time time-optimal trajectory planning algorithm to achieve incremental computation
of feasible trajectories. In a limited planning period, the proposed algorithm iteratively generates feasible
trajectories, as optimal as possible, until the period terminates. This any-time performance of the proposed
algorithm ensures that feasible trajectories can be obtained in real time and even time-optimal trajectories can
be obtained if the planning period is long enough for searching. Experimental results on active-casters-based
omnidirectional wheeled mobile robots demonstrate the validity of the proposed algorithm.

INDEX TERMS Any-time performance, time optimality, path-constrained trajectory planning, tree search,
trap detection.

I. INTRODUCTION
Trajectory planning aims to generate desired state evolution
profiles for specific tasks of various robotic systems, such
as manipulators [1], industrial biaxial gantries [2], aerial
robots [3], fixed-wheeled mobile robots [4]–[6], omnidi-
rectional wheeled mobile robots (OWMR) [7]–[9], while
guaranteeing physical constraints and optimizing some per-
formance indexes. The work in [10] summarizes four clas-
sical planners including reactive [1], [11], hierarchical [12],
coupled [13], [14] and decoupled [15], [16] strategies.

As a trade-off between optimality and computational com-
plexity, the decoupled strategies [17], [18] are widely used
to divide the planning problem into two stages. In the first
stage, path planning searches a geometric path which guar-
antees obstacle avoidance, curvature constraints [19]–[21],
and so on. In the second stage, path-constrained trajectory
planning transforms a given path in the first stage into an
optimal trajectory satisfying kinematic and dynamic con-
straints. The common optimization objectives include jerk

minimization [22], energy consumption minimization [23],
traveling time minimization [24]–[27], and so on.

In order to enhance work efficiency of robotic sys-
tems, the time-optimal path-constrained trajectory planning
(TOPCTP) has received significant attention. Existing liter-
atures give special attention to two essential properties of
TOPCTP: time optimality and real-time performance. On one
hand, some approaches achieve the real-time performance
at the expense of time optimality [28]. The work in [29]
proposes an online method considering torque constraints.
Under jerk constraints, the proposed method in [30] gen-
erates a near time-optimal trajectory in bounded computa-
tion time. The work in [31] generates feasible trajectories
for mobile manipulators by solving a constrained sequential
linear quadratic optimal control problem in real time. The
work in [32] proposes a real-time approach to obtain a near
time-optimal trajectory of OWMR vehicles with orthogonal
wheels. Recently, the work in [33] presents a general online
planning framework to generate feasible trajectories whose

1040
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0003-1413-1901
https://orcid.org/0000-0001-5308-6539
https://orcid.org/0000-0002-3061-2708


P. Shen et al.: Tree-Search-Based Any-Time TOPCTP With Inadmissible Island Constraints

mathematical function is unknown in advance. Meanwhile,
the work in [34] proposes an online trajectory planner, which
removes the restrictions that upper and lower bounds of accel-
eration are positive and negative.

On the other hand, some approaches ensure the time
optimality, while they cannot achieve the real-time per-
formance [35], [36]. In an offline manner, a time-optimal
trajectory is generated by using bi-directional scan meth-
ods under acceleration and jerk constraints [16]. With the
aid of dynamic programming techniques [37], [38], time-
optimal trajectories are generated on the phase plane (s, ṡ)
with s being path coordinate and ṡ being path velocity.
The work in [18] adopts the projection operator Newton
method [39] to obtain time-optimal trajectories for quadro-
tors. Based on Pontryagin Maximum Principle, the work
in [40], [41] presents a numerical integration (NI) method to
generate time-optimal trajectories which possess a bang-bang
structure of torque inputs. In order to follow the reference
trajectory, the works in [42] and [43] design orbitally stabi-
lizing controllers and model predictive controllers, respec-
tively. Recently, a fast and open source implementation of
this NI method is provided in [44], yet it ignores inadmissible
island constraints in admissible regions. The work [40] first
describes these inadmissible island constraints, which are
caused by friction and copper losses in drive motors and
planning task constraints. They address these inadmissible
island constraints in an offline manner by constructing a
dense directed graph. Accordingly, in the presence of both
bounded velocity and torque, the work in [45] provides fail-
ure conditions of this NI method with detailed proofs. The
works in [46] and [47] introduce a concept of ‘trap region’
to address the failure issue, however, they still cannot ensure
online performance while satisfying inadmissible island con-
straints. The existence of inadmissible islands brings non-
convex admissible region on the plane (s, ṡ), and it increases
computational complexity of TOPCTP.

To achieve online planning with inadmissible island con-
straints, we present a new tree-search-based any-time time-
optimal path-constrained trajectory planning algorithm. It can
generate a feasible solution in real time and it can even
compute the time-optimal trajectories if the planning time is
sufficiently long. Different from existing literatures, the pre-
sented approach first introduces heuristic tree search and
combines it with trap region detection techniques to achieve
any-time performance, which indicates that a planning algo-
rithm does incremental computation to quickly generate fea-
sible trajectories and optimize these trajectories as much as
possible before the end of one planning period. Specially, one
heuristic search tree is built and extended from the starting
point on the (s, ṡ) plane. This extension prefers to select leaf
nodes with the highest heuristic value to generate new tree
edges which avoid inadmissible islands. In the extension,
one feasible trajectory consisting of tree edges is obtained
until the terminal point is reached. Then, the heuristic value
of all existing leaf nodes are recalculated, and the search
tree continues to extend until another feasible trajectory is

generated. These iteratively generated trajectories tend to be
closer to the time-optimal one before the end of one planning
period. In order to shorten the search time of each iteration,
the trap region attached to inadmissible islands is detected to
abandon those unavailable tree edges and nodes. Although
the works in [46] and [47] discover the trap region, we first
propose a detection method of trap regions in the presence
of inadmissible island constraints. Experimental results on
active-casters-based OWMR vehicles verify the validity of
the presented approach.

Compared with existing methods which cannot solve inad-
missible island constraints in real time, the major contribu-
tions of this paper are as follows:
• The proposed approach first introduces heuristic tree
search technique into TOPCTP with inadmissible island
constraints to achieve iterative generation of better and
better trajectories within one planning period, while
existing methods just obtain one solution in offline
mode.

• The proposed approach first detects the trap region
attached to inadmissible islands to enhance the compu-
tation efficiency of tree search, while existing methods
only compute trap regions without considering the pres-
ence of inadmissible island constraints.

• The proposed approach possesses any-time perfor-
mance. Those iteratively generated trajectories tend to
be time-optimal before the end of a planning period.
Thus, one feasible trajectory as optimal as possible is
obtained for a planning task, even in a limited planning
period.

The remainder of this paper is divided into four sections.
Section II gives a detailed description of the TOPCTP prob-
lemwith inadmissible island constraints. Section III proposes
an any-time time-optimal path-constrained trajectory plan-
ning algorithm for this problem. Section IV gives several
experimental results on active-casters-based OWMRvehicles
to validate the presented algorithm. Finally, Section V gives
some conclusions.

II. PROBLEM FORMULATION
A. PROBLEM STATEMENT
In general, a n-dimensional robot pose q in a path-constrained
trajectory planning task is represented as q(s) instead of q(t),
wherein the scalars t, s are time and path coordinate and obey
a nonlinear scaling relation.

In order to guarantee velocity constraints of the robotic
system, an inequality constraint of s, ṡ is given as [45]:

A(s)ṡ+ D(s) ≤ 0, (1)

wherein the scalar ṡ is path velocity. The vectors A(s),D(s)
are obtained by the mathematical expression of joint veloci-
ties of the robotic system.

In order to satisfy acceleration constraints of the robotic
system, an inequality constraint of s, ṡ, s̈ should hold as [45]:

A(s)s̈+ B(s)ṡ2 + C(s) ≤ 0, (2)

VOLUME 7, 2019 1041



P. Shen et al.: Tree-Search-Based Any-Time TOPCTP With Inadmissible Island Constraints

wherein the scalar s̈ is path acceleration. The vectors
B(s),C(s) are obtained by the mathematical expression of
joint accelerations of the robotic system.

With the aid of (2), the inequality of s̈ is obtained as

α(s, ṡ) ≤ s̈ ≤ β(s, ṡ), (3)

where minimum path acceleration α(s, ṡ) and maximum path
acceleration β(s, ṡ) are computed as

α(s, ṡ) = max{
−Bi(s)ṡ2 − Ci(s)

Ai(s)
|Ai(s) < 0},

β(s, ṡ) = min{
−Bi(s)ṡ2 − Ci(s)

Ai(s)
|Ai(s) > 0},

wherein the integer i ∈ [1,m], with m being the dimension
of the vector A(s). The scalars Ai(s),Bi(s),Ci(s) are elements
of vectors A(s),B(s) and C(s), respectively. The detailed
description of (3) can be found in [40] and [45].

FIGURE 1. Tree search: the parameters are set as δ = 2, ρ = se/4,
the circle points are tree nodes, and the solid curves are tree edges. Tree
nodes: the gray points are in the admissible region and orange points are
in the inadmissible region. The scalars ṡ0, ṡe are the starting and terminal
velocities, respectively. Tree edges: the red curves are accelerating
trajectories with β(s, ṡ) and green curves are decelerating trajectories
with α(s, ṡ). The black ellipse is the inadmissible island decided by
planning tasks. The purple dash-dot and cyan dash curves represent the
velocity and acceleration constraints of the robotic system, respectively.

With the aid of (3), the maximum velocity curve (the cyan
dash curve in Fig. 1), is obtained as

MVCA(s) = min{ṡ ≥ 0|α(s, ṡ) = β(s, ṡ)}, s ∈ [0, se], (4)

with the scalar se being the total length of a specified path.
When path velocities are higher than MVCA(s), α(s, ṡ) is
greater than β(s, ṡ), and it indicates that the acceleration
constraint (3) is violated.

With the aid of (1), the maximum velocity curve which
guarantees velocity constraints (the purple dash-dot curve
in Fig. 1), is obtained as

MVCV (s) = min{−Di(s)/Ai(s)|Ai(s) > 0}, (5)

with the integer i ∈ [1,m], the scalar Di(s) being the element
of the vector D(s).

The maximum velocity curve satifying velocity and accel-
eration constraints is computed as

MVC(s) = min(MVCA(s),MVCV (s)), s ∈ [0, se]. (6)

The admissible region on the plane (s, ṡ) is enclosed by the
curve MVC(s) and the lines ṡ = 0, s = 0, s = se. The work
in [40] has reported that there exists the ‘inadmissible island’
in the admissible region, such as the black ellipse in Fig. 1.

1) INADMISSIBLE ISLANDS
They are surrounded by admissible regions satisfying veloc-
ity and acceleration constraints of the robot system. In inad-
missible islands, trajectories violate extra inequality con-
straints of path coordinate, path velocity and path acceler-
ation, caused by friction and copper losses in joints of the
robotic system or the requirement of planning tasks given by
operating personnel. For example, a vehicle collision avoid-
ance task at crossroad requires that a vehicle moving towards
north drives with higher or lower speed than another vehicle
moving towards west to pass through the crossroad safely,
and the requirement is transformed into the plane (s, ṡ) as a
rectangle inadmissible island. The more detailed description
can be found in [40].

In the admissible region, the continuous curve from
(s = 0, ṡ = ṡ0) to (s = se, ṡ = ṡe), which satisfies the
constraints (3) and avoids inadmissible islands, is called the
feasible trajectory

f (s) : s ∈ [0, se]→ f ∈ [0,MVC(s)], (7)

where the scalars ṡ0 and ṡe represent starting and terminal
path velocities, respectively.

The traveling time of (7) is computed as

T =
∫ se

0

1
f (s)

ds. (8)

According to (7) and (8), the time-optimal path-constrained
trajectory planning problem with inadmissible island con-
straints is defined as

min T

s.t. f ∈ F, (9)

where F is the set of feasible trajectories.

B. EXAMPLE ON OWMR
It is noted that the proposed approach could apply to
full-actuated robots, overactuated robots, or nonholonomic
robots. This subsection takes an active-casters-based OWMR
vehicle as an example to show the detailed procedure of
obtaining the problem (9).

As shown in Fig. 2, the PC and DSP-FPGA board are
used to compute the pose and trajectory, while the laser and
encoders are responsible for the robot location and collect-
ing motor speed. The geometric diagram of active-casters-
based OWMR vehicle is shown in Fig. 3. F (XrOrYr ) and
F (XwOwYw) are the robot coordinate system and reference
coordinate system, respectively. The pose of the vehicle is
represented as q = [x y θ ]T, with x ∈ R and y ∈ R being the
position of Or in F (XwOwYw) and θ ∈ S being the vehicle
orientation. The scalars r,R, d are respectively the radius of

1042 VOLUME 7, 2019



P. Shen et al.: Tree-Search-Based Any-Time TOPCTP With Inadmissible Island Constraints

FIGURE 2. NK-OMNI I: An omnidirectional wheeled mobile robot with
two active casters.

FIGURE 3. The OWMR using one red passive caster and two blue active
casters.

casters, the radius of the vehicle frame and the length of the
steering link FiOi, i ∈ [1, 3], wherein Oi is the center point
of the casters. The angles of three casters ηi ∈ S are the
angles fromOrFi toFiOi, i ∈ [1, 3], with anticlockwise being
positive. Each blue active caster is equipped with two motors
to driving and steering velocities independently, while the red
passive caster without motors is used to keep balance.

The dynamically extended model of the vehicle is
described as

ω = J q̇, (10)

a = ω̇, (11)

where ω ∈ R4 represents the driving and steering velocity
of active casters, and a ∈ R4 represents the driving and
steering acceleration of active casters. The matrix J ∈ R4×3

is represented as

J = [J1 J2 J3 J4]T,

J1 =
[
−cos(θ + η1 + 2π/3)

r
−sin(θ + η1 + 2π/3)

r

−Rsin(η1)
r

]T
,

J2 =
[
sin(θ + η1 + 2π/3)

d
−cos(θ + η1 + 2π/3)

d

−d − Rcos(η1)
d

]T
,

J3 =
[
−cos(θ + η2 − 2π/3)

r
−sin(θ + η2 − 2π/3)

r

−Rsin(η2)
r

]T
,

J4 =
[
sin(θ + η2 − 2π/3)

d
−cos(θ + η2 − 2π/3)

d

−d − Rcos(η2)
d

]T
.

Note that the steering velocities in ω are described as

η̇1 = JT2 q̇, (12)

η̇2 = JT4 q̇. (13)

Along specified paths by the first stage of the decoupled
planning, the OWMR vehicle pose is represented as

q(s) : s ∈ [0, se]→ q ∈ R3. (14)

The first and second time derivatives of q are described as

q̇ = qsṡ, (15)

q̈ = qssṡ
2
+ qss̈, (16)

where qs = ∂q/∂s, qss = ∂qs/∂s. In addition, substituting
(15) into (12) and (13) yields that

dη1/ds = JT2qs, (17)
dη2/ds = JT4qs. (18)

Then, along the specified path, the angles η1(s) and η2(s) are
obtained by integrating numerically (17) and (18) from s = 0
to s = se.
Physical constraints on velocity and acceleration of active

casters are given as

−ωmax ≤ ω ≤ ωmax , (19)
−amax ≤ a ≤ amax , (20)

where ωmax , amax ∈ R4 are constant vectors.
In order to guarantee velocity constraints (19), substituting

(10) and (15) into (19) yields the inequality (1), wherein the
vectors A(s),D(s) are described as

A(s) = [(Jqs)
T
− (Jqs)

T]T, (21)

D(s) = [−ωT
max − ω

T
max]

T. (22)

In order to guarantee acceleration constraints (20), substi-
tuting (11), (15) and (16) into (20) yields the inequality (2),
wherein the vectors B(s),C(s) are given as

B(s) = [(Jqss + Jsqs)
T
− (Jqss + Jsqs)

T]T, (23)

C(s) = [−aTmax − a
T
max]

T. (24)

VOLUME 7, 2019 1043



P. Shen et al.: Tree-Search-Based Any-Time TOPCTP With Inadmissible Island Constraints

Note that the matrix Js ∈ R4×3 equals to ∂J/∂s. Finally,
according to (1) and (2), the trajectory planning problem (9)
of OWMRs is obtained as Section II-A.

III. SOLUTION
For this TOPCTP problem (9), with the aid of heuristic
tree search techniques, an any-time time-optimal trajectory
planning algorithm is presented to achieve incremental opti-
mization of feasible trajectories during one planning period.
Trap regions considering inadmissible islands are detected
to shorten the search time. The schematic diagram of the
solution is shown in Fig. 4.

FIGURE 4. The top-left diagram describes the mathematical expression of
the TOPCTP problem with inadmissible island constraints. It is redescribed
as the top-right diagram: Cyan dash and purple dash-dot curves are
resulted from acceleration and velocity constraints respectively, while the
black ellipse stands for inadmissible island constraints. The proposed
algorithm first detects all trap regions (gray regions in the bottom-right
diagram). With the aid of trap regions, the proposed algorithm costs little
time to construct a heuristic search tree between the starting and
terminal points as show in the bottom-left diagram. Feasible trajectories
obtained from the search tree are optimized incrementally during one
planning period. Time-optimal trajectories can be obtained when the
period is long enough for searching.

A. HEURISTIC TREE SEARCH
The core of the tree search is to build a tree from the starting
point (s = 0, ṡ = ṡ0) to the terminal point (s = se, ṡ = ṡe)
on the plane (s, ṡ). The tree nodes are the points on the plane
(s, ṡ) as shown in Fig. 1. The tree edges are the curves which
are obtained by doing forward direction integral with path
acceleration (3) from the tree nodes. The feasible trajectory
consists of tree edges which satisfy constraints (3) and avoid
inadmissible islands.

The node degree δ represents the number of subtrees of a
tree node [48]. Thus, starting from one tree node, δ tree edges
are integrated forward with the following acceleration

s̈i = α(s, ṡ)+
(i− 1)(β(s, ṡ)− α(s, ṡ))

δ − 1
, i ∈ [1, δ], (25)

wherein δ is greater than or equal to 2. The integral length of
tree edges is described as ρ ∈ (0, se). As shown in Fig. 1,
the tree search using δ = 2 and ρ = se/4 generates
one feasible trajectory consisting of decelerating trajectories
(α1, α2) and accelerating trajectories (β3, β4).

In the iteration of the tree search, starting from the point
(0, ṡ0), the tree gradually extends to the point (se, ṡe) and
one feasible trajectory is generated in the admissible region.
In this subsection, the heuristic function is incorporated into
the tree-search procedure to estimate each leaf node.

According to the problem (9), the heuristic function is
defined as

H (s, ṡ) = ṡ+
ε

1+
√
(s− se)2 + (ṡ− ṡe)2

, (26)

wherein the parameter ε is the weight of the second term
in (26), and the range of ε is from zero to a user-specified
positive real number. The tree search selects tree nodes in
descending order ofH (s, ṡ). The leaf node with the maximum
heuristic value has the highest priority to extend forward the
search tree.

FIGURE 5. The tree search with ε = 1 generates one feasible trajectory.
The green solid curves represent decelerating trajectories with α(s, ṡ), and
the red solid curves represent accelerating trajectories with β(s, ṡ). The
gray regions are the trap regions. There are totally 71 gray tree nodes in
tree search.

1) PHYSICAL INTERPRETATION OF ε
• ε > 0: The expansion prefers the tree node which
is closer to the terminal point (se, ṡe). Therefore,
the explored region area decreases as shown in Fig. 5,
and the computation time is reduced to guarantee that
one feasible trajectory is obtained in real time.

• ε = 0: The expansion prefers the tree node with the
maximum path velocity. Thus, the explored region area
increases as shown in Fig. 6, and the generated trajectory
is time-optimal.

From the above analysis, the parameter ε possesses an
important property which affects the traveling time and com-
putation time of the feasible trajectory. With the aid of this
property, the optimal solution of (9) can be obtained before
the end of one planning period. First, the search tree with an
initial ε > 0 extends to generate a feasible trajectory rapidly.
Accordingly, if the planning period ends, then this feasible
trajectory is returned, otherwise the search tree continues the
extension with a smaller ε to generate a feasible solution as
optimal as possible.

1044 VOLUME 7, 2019



P. Shen et al.: Tree-Search-Based Any-Time TOPCTP With Inadmissible Island Constraints

FIGURE 6. The tree search with ε = 0 generates the time-optimal
trajectory. The green solid curves represent decelerating trajectories with
α(s, ṡ), and the red solid curves represent accelerating trajectories with
β(s, ṡ). The gray regions are the trap regions. There are totally 742 gray
tree nodes in tree search.

Remark 1: When the parameter ε is set as a large positive
value, the nearest tree node to the terminal point (se, ṡe) is
chosen to extend the search tree along the given path, and it
indicates that the expansion of the search tree always assigns
appropriate path velocity to untraversed path coordinate of
the given path. Thus, the proposed algorithm can cost very
little computation time to obtain a feasible trajectory along
the given path. �

B. TRAP REGION CONSIDERING INADMISSIBLE ISLANDS
In this subsection, in order to increase efficiency of the
tree search, trap regions considering inadmissible islands are
defined and detected.
Definition 1: A trap region is contained in the admissible

region. Starting from the points in the trap region, the trajec-
tory cannot reach the terminal point (se, ṡe) while satisfying
constraints (3) and avoiding inadmissible islands.

FIGURE 7. The gray regions P1 − P8 are trap regions considering
inadmissible islands. The black ellipses are inadmissible islands. The red
curves are accelerating trajectories with β(s, ṡ) and green curves are
decelerating trajectories with α(s, ṡ). Note that the accelerating βe and
decelerating αe are not contained in P3,P4.

In Fig. 7, the gray regions represent trap regions. Accord-
ing to Definition 1, the corresponding detecting method of
trap regions is given as Algorithm 1. The input argument Q
represents the set of inadmissible islands, such as four black

ellipses in Fig. 7. The output argument P represents the set of
trap regions considering inadmissible islands, such as eight
gray regions in Fig. 7. The called subfunctions are described
as follows:
• RightMostPoints(Q) : This subfunction returns the set of
rightmost points of each inadmissible island boundary.

• DecTraj(g,Q,Dec) : Starting from the point g, one
decelerating trajectory is computed by doing backward
direction integral with α(s, ṡ) until the boundary of the
admissible region or islands inQ is hit. This decelerating
trajectory is added into Dec, and the hitting point is
returned.

• AccTraj(g,Q,Acc) : Starting from the point g, one
accelerating trajectory is computed by doing backward
direction integral with β(s, ṡ) until the boundary of the
admissible region or islands inQ is hit. This accelerating
trajectory is added into Acc, and the hitting point is
returned.

• SearchDecPoint(h) : If the point h is inMVC or the line
ṡ = 0, then starting from h, this subfunction searches
backward along MVC or the line ṡ = 0 the first point
�. If the point h is in the boundary of Q, then starting
from h, this subfunction searches clockwise along the
boundary the first point �. At the point �, the decel-
erating trajectory with α(s, ṡ) backward dives into the
admissible region immediately. Finally, � is returned.

• SearchAccPoint(h) : If the point h is inMVC or the line
ṡ = 0, then starting from h, this subfunction searches
backward alongMVC or the line ṡ = 0 the first point�.
If h is the boundary of Q, then starting from h, this sub-
function searches anticlockwise along the boundary the
first point �. At the point �, the accelerating trajectory
with β(s, ṡ) backward dives into the admissible region
immediately. Finally, � is returned.

• CombineCurves(Q,Dec,Acc) : This subfunction com-
bines decelerating trajectories Dec, accelerating trajec-
toriesAcc, the boundaries ofQ and the admissible region
to enclose and return different trap regions.

Remark 2: In order to understand the proposed TRDA
more clearly, this remark offers an analogy as an explana-
tion. The admissible region is likened to the ground, and the
inadmissible islands are likened to high mountains, then the
trap regions are likened to the shadows of these mountains.
The proposed TRDAfirst searches the corners of the shadows
along high mountains. Starting from these corners, TRDA
computes the boundaries of the shadows with numerical
integration. Finally, these boundaries are combined into the
shadows, namely the trap regions. �

With the aid of Algorithm 1, all trap regions consider-
ing inadmissible islands are detected, and the tree search in
Section III-A avoids these trap regions to decrease computa-
tion time and memory of solving the problem (9).

C. TRAJECTORY PLANNING
In this subsection, an any-time time-optimal path-constrained
trajectory planning algorithm is given in Algorithm 2.

VOLUME 7, 2019 1045



P. Shen et al.: Tree-Search-Based Any-Time TOPCTP With Inadmissible Island Constraints

Algorithm 1 Trap Region Detecting Algorithm (TRDA)
Input: se, ṡe, MVC , Q
Output: P
1: P← NULL
2: G← RightMostPoints(Q)
3: Add (se, ṡe) into G
4: Dec← NULL
5: for all g in G do
6: h← DecTraj(g,Q,Dec)
7: q← SearchDecPoint(h) and Add q into G
8: end for
9: Acc← NULL
10: for all g in G do
11: h← AccTraj(g,Q,Acc)
12: q← SearchAccPoint(h) and Add q into G
13: end for
14: P← CombineCurves(Q,Dec,Acc)
15: return P

Algorithm 2 An Any-Time Time-Optimal Path-Constrained
Trajectory Planning Algorithm
Input: se, ṡ0, ṡe, MVC , 5, Q
Output: f
1: P← TRDA(se, ṡe,MVC,Q)
2: if IsObstructed(ṡ0, ṡe,P,Q) then
3: return Failure
4: end if
5: ϒ,L, S,G, δ, ρ, ε ← InitTreeSearch(se, ṡ0, ṡe)
6: while GetRunTime() < 5 do
7: repeat
8: H ← HeuristicFun(L)
9: L∗← OutMaxLeaf (L,H )
10: V ,E ← ComputeEdgeNode(L∗, δ, ρ)
11: UpdateTree(ϒ,L,V , E,P)
12: until IsSameNode(V ,G) or CrossLastSolution(E, f )
13: f ← ObtainTrajectory (ϒ, S,G)
14: ReduceEpsilon(ε)
15: end while
16: return f

The input arguments 5 and Q are a planning period and
inadmissible islands, respectively. First, the 1st and 2nd lines
achieve the initialization of the tree search in Section III-A
and computation of trap regions in Section III-B, respectively.
Then, toward the target (se, ṡe), the 3rd to 12th lines extend
the search tree using (0, ṡ0) as a root node until the end of5.
In this extension, feasible trajectories are obtained and opti-
mized by reducing the parameter ε in (26). The corresponding
subfunctions are described as follows:
• IsObstructed(ṡ0, ṡe, P, Q): If trap regions P and inadmis-
sible islands Q connect to form a barrier between ṡ0 and
ṡe, then TRUE is returned, or FALSE.

• GetRunTime(): This subfunction returns the elapsed
time of Algorithm 2. The while-loop structure

terminates when the returned value is greater than or
equal to a planning period 5.

• InitTreeSearch(se, ṡ0, ṡe): This subfunction initializes
one tree search from the starting node S = (0, ṡ0)
to the terminal node G = (se, ṡe). Except for S,G,
it also initializes and returns the parameters δ, ρ in (25),
ε in (26), and one new search tree ϒ with S as the root
node, and its leaf node set L = {S}.

• HeuristicFun(L): With the aid of (26), this subfunction
computes and returns the heuristic value of each leaf
node in the set L.

• OutMaxLeaf (L,H ): The leaf node with the maximum
heuristic value is returned and removed from the leaf
nodes L.

• ComputeEdgeNode(L∗, δ, ρ): Starting from the leaf
node L∗, new tree edges are computed by doing forward
direction integral with s̈i, i ∈ [1, δ] in (25), respectively.
The integral length equals to ρ. These new generated tree
edges and nodes are returned.

• UpdateTree(ϒ,L,V , E,P): Tree edges E and nodes V
which are in the admissible region but not in trap regions
P, are added into the search tree ϒ and leaf nodes L.

• IsSameNode(V ,G): This subfunction decides whether
one leaf node in V is same with the terminal node
G = (se, ṡe). If the Euclidean distance between
two nodes is close on the plane (s, ṡ), then TRUE is
returned, or FALSE .

• CrossLastSolution(E, f ): This subfunction decides
whether one tree edge in E intersects the last solution f .
If they intersect, then TRUE is returned, or FALSE .

• ObtainTrajectory (ϒ, S,G): This subfunction traverses
tree edges in ϒ from the terminal node G to the starting
node S. Those traversed edges constitute one optimal
trajectory in ϒ , and it is returned.

• ReduceEpsilon(ε): This subfunction reduces the param-
eter ε in (26) until zero.

With the aid of the heuristic tree search and trap regions,
this algorithm iteratively generates feasible trajectories as
optimal as possible during one planning period5. When the
heuristic parameter ε is reduced to zero before the end of the
planning period, a time-optimal trajectory is obtained for (9).
Remark 3: Note that the proposed algorithm constructs

tree edges and tree nodes to explore the admissible region
under the maximum velocity curve in (6). When the tree
connects the starting and terminal velocities, one feasible
trajectory is obtained. If the parameter ε in (26) is set as
a large value, the generation of the feasible trajectory costs
very little computation time as described in Remark 1. Then,
the proposed algorithm reduces ε and constructs more tree
edges and tree nodes to explore the admissible region near the
maximum velocity curve. It indicates that the proposed algo-
rithm needs more computation time. When new tree edges
intersect the previously generated trajectory, the proposed
algorithm generates another faster trajectory. If the param-
eter ε is reduced to zero, the proposed algorithm explores
the highest path velocity in the admissible region to output

1046 VOLUME 7, 2019



P. Shen et al.: Tree-Search-Based Any-Time TOPCTP With Inadmissible Island Constraints

FIGURE 8. Experimental paths: The red solid curve is the given path, and
the blue dash-dot curve is the real path obtained from the laser
equipment.

time-optimal trajectories. As the parameter ε gradually
decreases to zero, the number of nodes and edges will
increase larger and larger, and thus the proposed algorithm
needs a relatively longer planning period to obtain time-
optimal trajectories by incremental tree searching.

IV. EXPERIMENTAL RESULTS
In order to verify the proposed algorithm, this section pro-
vides two experimental cases on OWMRs. The first case
is used to show the any-time time-optimal planning perfor-
mance, that is, along a specified path, the proposed algorithm
iteratively generates feasible trajectories as optimal as possi-
ble during one planning period, even a time-optimal solution.
The second case is used to show that the proposed algorithm
may be applied in transportation systems [50], [51] or ware-
house logistics for collision avoidance at crossroad.

A. FIRST CASE
In this subsection, the any-time performance and time opti-
mality of the proposed algorithm are demonstrated on an
OWMR as shown in Fig. 2. Along the given cubic Bézier path
in Fig. 8, the position of the OWMR is described as:

x = (1− λ)3x0 + 3(1− λ)2λx1 + 3(λ2 − λ3)x2 + λ3x3,

y = (1− λ)3y0 + 3(1− λ)2λy1 + 3(λ2 − λ3)y2 + λ3y3,

wherein the scalar λ ∈ [0, 1] is the path parameter, and the
points (xi, yi) are path control points. The scalars λ and s
obey a nonlinear scaling relation. The OWMR orientation is
represented as θ (s) = πs/se, s ∈ [0, se]. Each component
of velocity constraints ωmax in (19) is set as 8.8 [rad/s], and
each component of acceleration constraints amax in (20) is set
as 4 [rad/s2]. The starting and terminal path velocities are set
as ṡ0 = ṡe = 0.

In this case, a planning period is set as 0.050 [s], which
indicates that the proposed algorithm must terminate at the
end of the planning period. In addition, there exist three
rectangle inadmissible islands on the plane (s, ṡ), which
are specified by operating personnel as shown in Fig. 9.

FIGURE 9. The proposed algorithm detects trap regions considering
inadmissible islands, and iteratively generates feasible trajectories, which
tend to be time-optimal with the smaller parameter ε in (26).

These inadmissible islands require that the OWMR moves
with high/low speed along the corresponding parts of the
given path. Starting from the begin of the planning period,
the proposed Algorithm 2 first calls Algorithm 1 to detect
trap regions considering inadmissible islands in 0.001 [s].
Then, the proposed Algorithm 2 iteratively generates four
feasible trajectories in (7). These trajectories tend to be time-
optimal with the parameter ε reducing to zero. The first
feasible trajectory (the blue solid curve) with ε = 1 is found
out in 0.011 [s]. Then, the proposed algorithm reduces the
parameter ε to 0.1, and it costs 0.009 [s] to obtain the second
feasible trajectory by updating the first feasible trajectory
with the blue dash curve. Sequentially, the parameter ε is
reduced into 0.01, and the third feasible trajectory is obtained
by updating the second feasible trajectory with the blue dash-
dot curve in 0.013 [s]. Finally, the parameter ε is reduced into
zero, and a time-optimal (the fourth) trajectory is obtained
by updating the third feasible trajectory with the blue solid
curve with the star marker in 0.012 [s]. In the above iteration,
the proposed algorithm totally costs 0.046 [s] to generate a
time-optimal trajectory for the problem (9), therefore the any-
time performance of the proposed algorithm is demonstrated.

With the aid of a tracking trajectory controller with velocity
saturation constraints [49], the OWMR vehicle tracks this
time-optimal trajectory. The tracking errors for x, y, θ go to
zero as shown in Fig. 10. The velocity and acceleration of
active casters are shown in Fig. 11 and Fig. 12. It indicates
that both velocity and acceleration constraints are satisfied.
Moreover, there always exists one of active casters whose
velocity touches the velocity boundary or acceleration bound-
ary. Thus, Fig. 11 and Fig. 12 demonstrate the time optimality
of the obtained trajectory with ε = 0 from the proposed
algorithm.

B. SECOND CASE
This subsection aims to verify that the proposed algorithm
is capable of handling inadmissible islands, which should be

VOLUME 7, 2019 1047



P. Shen et al.: Tree-Search-Based Any-Time TOPCTP With Inadmissible Island Constraints

FIGURE 10. The tracking errors for x, y, θ .

FIGURE 11. The velocities of active casters: The dark dash lines represent
the velocity constraints ωmax and other solid lines represent driving and
steering velocities of active casters.

FIGURE 12. The accelerations of active casters: The dark dash lines
represent the acceleration constraints amax and other solid lines
represent driving and steering accelerations of active casters.

considered in collision avoidance at crossroads. As shown
in Fig. 13, OWMR and unicycle vehicles pass through the
same crossroad along different straight roads. The unicycle
vehicle moves at a constant speed 0.5 [m/s]. For the OWMR

FIGURE 13. OWMR and unicycle vehicles move along straight roads to
pass through the same crossroad. The solid circles represent the starting
position of OWMR and unicycle vehicles. The shadow circles represent
the terminal position of OWMR and unicycle vehicles.

FIGURE 14. The feasible trajectories obtained iteratively in the proposed
algorithm tend to be time-optimal with the smaller parameter ε in (26).

vehicle, each component of velocity constraints ωmax in (19)
is set as 6.84 [rad/s], and each component of acceleration
constraints amax in (20) is set as 6.84 [rad/s2].

In order to avoid collision with the unicycle at the cross-
road, one inadmissible island (the black rectangle in Fig. 14)
is set at the road of OWMR. This inadmissible island is
similar to the deceleration area before the crossroad, which
requires that the OWMR vehicle decelerates to make the
unicycle vehicle preferentially pass through the crossroad.
First, Algorithm 1 costs 0.001 [s] to detect trap regions
considering this inadmissible island as shown in Fig. 14.
Then, the proposed Algorithm 2 computes iteratively four
feasible trajectories in (7). Moreover, those trajectories tend
to be time-optimal with the smaller ε in (26). With ε = 1,
the first feasible trajectory (blue solid curve) is obtained
in 0.009 [s]. The parameter ε is reduced into 0.1, and then
the second feasible trajectory is obtained by updating the
first trajectory with the blue dash curve in 0.012 [s]. Then,
the third feasible trajectory with ε = 0.01 is obtained by

1048 VOLUME 7, 2019



P. Shen et al.: Tree-Search-Based Any-Time TOPCTP With Inadmissible Island Constraints

FIGURE 15. Snapshots of the OWMR following the time-optimal trajectory obtained by the proposed algorithm.

updating the second trajectory with the blue dash-dot curve
in 0.011 [s]. Finally, a time-optimal trajectory with ε = 0 is
obtained by updating the third trajectory with the blue solid
curve with the star marker in 0.012 [s]. In the above iteration,
the proposed algorithm costs 0.045 [s] to compute the time-
optimal trajectory with ε = 0. The motion planning period of
OWMR is also set as 0.050 [s], thus the proposed algorithm
outputs the time-optimal trajectory before the end of the plan-
ning period. The snapshot in Fig. 15 shows that the OWMR
vehicle successfully avoids collision at the crossroad with the
unicycle vehicle by following the time-optimal trajectory.

V. DISCUSSION
The main contributions and advantages of the proposed algo-
rithm are discussed as follows:
• The introduction of heuristic tree search techniques
first achieves the online processing of inadmissible
island constraints. The heuristic technique constructs the
search tree between starting and terminal velocities to
explore the admissible region and avoid inadmissible
islands. As described in Remark 1, when the parameter
ε in (26) is set as a large positive number, the proposed
algorithm generates the first feasible trajectory quickly.
The experimental results also show that the proposed
algorithm only costs about 0.01s to generate the first
feasible trajectory.

• The detection of trap regions greatly reduces the tree
search time. The definition indicates that the trajectories
falling into trap regions cannot reach the terminal veloc-
ity. Thus, it is unavailing for the tree search to explore
trap regions. With searching these trap regions, the com-
putation efficiency of tree search is largely increased.

• The incremental computation of feasible trajectories
brings any-time performance which indicates that those
iteratively generated trajectories tend to be closer and
closer to the time-optimal one before the end of
a planning period. The experimental results verify

the any-time performance of the proposed algorithm.
In a planning period of 0.05s, the proposed algorithm
iteratively generates four feasible trajectories. In the
iteration, the tree search continually explores the admis-
sible region near the maximum velocity curve. When
new tree edges intersect previously generated feasible
trajectories, one faster feasible trajectory is obtained as
an output candidate. If the planning task is badly need of
one solution, the proposed algorithm returns the output
candidate immediately to ensure that robotic systems
work reliably.

VI. CONCLUSIONS
In this paper, a novel tree-search-based any-time time-
optimal path-constrained trajectory planning algorithm has
been proposed in the presence of inadmissible island con-
straints. The online construction of heuristic search trees
brings feasible trajectories satisfying inadmissible island
constraints. Moreover, the detection of trap regions greatly
reduces the size of the search tree. With the aid of these two
techniques, the proposed algorithm costs very little compu-
tation time to return one initial feasible trajectory along the
given path. Then, the proposed algorithm continues doing tree
search to achieve incremental optimization of traveling time
of feasible trajectories before the end of a planning period.
The incremental optimization brings any-time performance
which indicates that those iteratively generated trajectories
tend to be time-optimal during one planning period. Exper-
imental results on OWMRs have demonstrated that under
inadmissible island constraints, the proposed algorithm could
generate an initial feasible trajectory for about 0.01s, and
it could even generate the time-optimal trajectories in one
planning period of 0.05s.

In the future, we will analyze and prove the completeness
property of the proposed algorithm. For complete planning
algorithms, feasible trajectories are returned if a planning

VOLUME 7, 2019 1049



P. Shen et al.: Tree-Search-Based Any-Time TOPCTP With Inadmissible Island Constraints

problem is solvable, otherwise a failure is returned in finite
time. In addition, the proposed algorithm may be applied
to multiple robot systems to avoid collision as shown
in Section IV-B.

REFERENCES
[1] O. Khatib, ‘‘Real-time obstacle avoidance for manipulators and mobile

robots,’’ Int. J. Robot. Res., vol. 5, no. 1, pp. 90–98, 1986.
[2] M. Yuan, Z. Chen, B. Yao, and X. Zhu, ‘‘Time optimal contouring con-

trol of industrial biaxial gantry: A high-efficient analytical solution of
trajectory planning,’’ IEEE/ASME Trans. Mechatronics, vol. 22, no. 1,
pp. 247–257, Feb. 2017.

[3] J. Kim and J. P. Ostrowski, ‘‘Motion planning a aerial robot using rapidly-
exploring random trees with dynamic constraints,’’ inProc. IEEE Int. Conf.
Robot. Autom., Sep. 2003, pp. 2200–2205.

[4] J. Liao, Z. Chen, and B. Yao, ‘‘Model-based coordinated control of four-
wheel independently driven skid steer mobile robot with wheel/ground
interaction and wheel dynamics,’’ IEEE Trans. Ind. Informat., vol. 14,
no. 9, pp. 1–10, Sep. 2018, doi: 10.1109/TII.2018.2869573.

[5] Y. Kim and B. K. Kim, ‘‘Time-optimal trajectory planning based on
dynamics for differential-wheeled mobile robots with a geometric corri-
dor,’’ IEEE Trans. Ind. Electron., vol. 64, no. 7, pp. 5502–5512, Jul. 2017.

[6] L. Chen, Y. Shan, W. Tian, B. Li, and D. Cao, ‘‘A fast and efficient double-
tree RRT*-like sampling-based planner applying on mobile robotic vehi-
cles,’’ IEEE/ASME Trans. Mechatronics, vol. 23, no. 6, pp. 2568–2578,
Dec. 2018, doi: 10.1109/TMECH.2018.2821767.

[7] R. Holmberg and O. Khatib, ‘‘Development and control of a holonomic
mobile robot for mobile manipulation tasks,’’ Int. J. Robot. Res., vol. 19,
no. 11, pp. 1066–1074, 2000.

[8] M. Wada, Y. Inoue, and T. Hirama, ‘‘A new active-caster drive system
with a dual-ball transmission for omnidirectional mobile robots,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2012, pp. 2525–2532.

[9] P. Shen, Y. Fang, and X. Zhang, ‘‘Trajectory planning of omnidirectional
mobile robots with active casters:Multi-motor coordination and singularity
avoidance,’’ in Proc. IEEE Int. Conf. Cyber Technol. Automat., Control
Intell. Syst., Jun. 2015, pp. 151–156.

[10] J. J. M. Lunenburg, S. A. M. Coenen, G. J. L. Naus, M. J. G. van deMolen-
graft, and M. Steinbuch, ‘‘Motion planning for mobile robots: A method
for the selection of a combination of motion-planning algorithms,’’ IEEE
Robot. Autom. Mag., vol. 23, no. 4, pp. 107–117, Dec. 2016.

[11] P. Fiorini and Z. Shiller, ‘‘Motion planning in dynamic environ-
ments using velocity obstacles,’’ Int. J. Robot. Res., vol. 17, no. 7,
pp. 760–772, 1998.

[12] E.Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige, ‘‘The
office marathon: Robust navigation in an indoor office environment,’’ in
Proc. IEEE Int. Conf. Robot. Autom., May 2010, pp. 300–307.

[13] B. Donald, P. Xavier, J. Canny, and J. Reif, ‘‘Kinodynamic motion plan-
ning,’’ J. ACM, vol. 40, no. 5, pp. 1048–1066, 1993.

[14] T. Fraichard, ‘‘Trajectory planning in a dynamic workspace: A ’state-time
space’ approach,’’ Adv. Robot., vol. 13, no. 1, pp. 75–94, 1998.

[15] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
‘‘STOMP: Stochastic trajectory optimization for motion planning,’’ in
Proc. IEEE Int. Conf. Robot. Autom., May 2011, pp. 4569–4574.

[16] J. Dong, P. M. Ferreira, and J. A. Stori, ‘‘Feed-rate optimization with jerk
constraints for generating minimum-time trajectories,’’ Int. J. Mach. Tools
Manuf., vol. 47, nos. 12–13, pp. 1941–1955, 2007.

[17] W. Van Loock, G. Pipeleers, M. Diehl, J. De Schutter, and J. Swevers,
‘‘Optimal path following for differentially flat robotic systems through
a geometric problem formulation,’’ IEEE Trans. Robot., vol. 30, no. 4,
pp. 980–985, Aug. 2014.

[18] S. Spedicato and G. Notarstefano, ‘‘Minimum-time trajectory generation
for quadrotors in constrained environments,’’ IEEE Trans. Control Syst.
Technol., vol. 26, no. 4, pp. 1335–1344, Jul. 2018.

[19] L. E. Kavraki, P. Svestka, J.-C. Latombe, andM.H.Overmars, ‘‘Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces,’’
IEEE Trans. Robot. Automat., vol. 12, no. 4, pp. 566–580, Aug. 1996.

[20] M. Likhachev and D. Ferguson, ‘‘Planning long dynamically feasible
maneuvers for autonomous vehicles,’’ Int. J. Robot. Res., vol. 28, no. 8,
pp. 933–945, 2009.

[21] M. Elbanhawi and M. Simic, ‘‘Sampling-based robot motion planning:
A review,’’ IEEE Access, vol. 2, pp. 56–77, 2014.

[22] C. G. Lo Bianco, ‘‘Minimum-jerk velocity planning for mobile robot appli-
cations,’’ IEEE Trans. Robot., vol. 29, no. 5, pp. 1317–1326, Oct. 2013.

[23] Y. Zhao and P. Tsiotras, ‘‘Speed profile optimization for optimal path
tracking,’’ in Proc. Amer. Control Conf., Jun. 2013, pp. 1171–1176.

[24] F. Bourbonnais, P. Bigras, and I. A. Bonev, ‘‘Minimum-time trajec-
tory planning and control of a pick-and-place five-bar parallel robot,’’
IEEE/ASME Trans. Mechatronics, vol. 20, no. 2, pp. 740–749, Apr. 2015.

[25] Y. Zhang et al., ‘‘Hybrid trajectory planning for autonomous driving in
highly constrained environments,’’ IEEE Access, vol. 6, pp. 32800–32819,
2018.

[26] P. Shen, X. Zhang, and Y. Fang, ‘‘Complete and time-optimal path-
constrained trajectory planning with torque and velocity constraints: The-
ory and applications,’’ IEEE/ASME Trans. Mechatronics, vol. 23, no. 2,
pp. 735–746, Apr. 2018.

[27] X. Zhang, Y. Fang, and N. Sun, ‘‘Minimum-time trajectory planning for
underactuated overhead crane systems with state and control constraints,’’
IEEE Trans. Ind. Electron., vol. 61, no. 12, pp. 6915–6925, Dec. 2014.

[28] X. Li, Z. Sun, D. Cao, Z. He, and Q. Zhu, ‘‘Real-time trajectory planning
for autonomous urban driving: Framework, algorithms, and verifications,’’
IEEE/ASME Trans. Mechatronics, vol. 21, no. 2, pp. 740–753, Apr. 2016.

[29] O. Dahl and L. Nielsen, ‘‘Stability analysis of an online algorithm for
torque limited path following,’’ in Proc. IEEE Int. Conf. Robot. Autom.,
May 1990, pp. 1216–1222.

[30] T. Kroger, A. Tomiczek, and F. M. Wahl, ‘‘Towards on-line trajectory
computation,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct. 2006,
pp. 736–741.

[31] M. Giftthaler, F. Farshidian, T. Sandy, L. Stadelmann, and J. Buchli, ‘‘Effi-
cient kinematic planning for mobile manipulators with non-holonomic
constraints using optimal control,’’ in Proc. IEEE Int. Conf. Robot. Autom.,
May/Jun. 2017, pp. 3411–3417.

[32] T. Kalmár-Nagy, R. D’Andrea, and P. Ganguly, ‘‘Near-optimal dynamic
trajectory generation and control of an omnidirectional vehicle,’’ Robot.
Auton. Syst., vol. 46, no. 1, pp. 47–64, 2004.

[33] M. Yuan, Z. Chen, B. Yao, and J. Hu, ‘‘A general online trajectory plan-
ning framework in the case of desired function unknown in advance,’’
IEEE Trans. Ind. Informat., vol. 14, no. 10, pp. 1–10, Oct. 2018, doi:
10.1109/TII.2018.2869823.

[34] M. Yuan, Z. Chen, B. Yao, and J. Hu, ‘‘An improved online trajectory plan-
ner with stability-guaranteed critical test curve algorithm for generalized
parametric constraints,’’ IEEE/ASME Trans. Mechatron., vol. 23, no. 5,
pp. 2459–2469, Oct. 2018.

[35] S. Kucuk, ‘‘Optimal trajectory generation algorithm for serial and parallel
manipulators,’’Robot. Comput.-Integr. Manuf., vol. 48, no. 1, pp. 219–232,
Dec. 2017.

[36] H. Liu, X. Lai, and W. Wu, ‘‘Time-optimal and jerk-continuous trajec-
tory planning for robot manipulators with kinematic constraints,’’ Robot.
Comput.-Integr. Manuf., vol. 29, no. 2, pp. 309–317, 2013.

[37] F. Pfeiffer and R. Johanni, ‘‘A concept for manipulator trajectory plan-
ning,’’ IEEE Trans. Robot. Autom., vol. LRA-3, no. 2, pp. 115–123,
Apr. 1987.

[38] A. Obradović, J. Vuković, N. Mladenović and Z. Mitrović, ‘‘Time optimal
motions of mechanical system with a prescribed trajectory,’’ Meccanica,
vol. 46, no. 4, pp. 803–816, 2011.

[39] J. Hauser, ‘‘A projection operator approach to the optimization of trajectory
functionals,’’ IFAC World Congr., vol. 35, no. 1, pp. 377–382, 2002.

[40] K. G. Shin and N. D. McKay, ‘‘Minimum-time control of robotic manip-
ulators with geometric path constraints,’’ IEEE Trans. Autom. Control,
vol. AC-30, no. 6, pp. 531–541, Jun. 1985.

[41] J. E. Bobrow, S. Dubowsky, and J. S. Gibson, ‘‘Time-optimal control of
robotic manipulators along specified paths,’’ Int. J. Robot. Res., vol. 4,
no. 3, pp. 3–17, Sep. 1985.

[42] S. S. Pchelkin et al., ‘‘On orbital stabilization for industrial manipula-
tors: Case study in evaluating performances of modified PD+ and inverse
dynamics controllers,’’ IEEE Trans. Control Syst. Technol., vol. 25, no. 1,
pp. 101–117, Jan. 2017.

[43] T. Faulwasser, T. Weber, P. Zometa, and R. Findeisen, ‘‘Implementation of
nonlinear model predictive path-following control for an industrial robot,’’
IEEE Trans. Control Syst. Tech., vol. 25, no. 4, pp. 1505–1511, Jul. 2017.

[44] Q.-C. Pham, ‘‘A general, fast, and robust implementation of the time-
optimal path parameterization algorithm,’’ IEEE Trans. Robot., vol. 30,
no. 6, pp. 1533–1540, Dec. 2014.

[45] P. Shen, X. Zhang, and Y. Fang, ‘‘Essential properties of numerical integra-
tion for time-optimal path-constrained trajectory planning,’’ IEEE Robot.
Autom. Lett., vol. 2, no. 2, pp. 888–895, Apr. 2017.

1050 VOLUME 7, 2019

http://dx.doi.org/10.1109/TII.2018.2869573
http://dx.doi.org/10.1109/TMECH.2018.2821767
http://dx.doi.org/10.1109/TII.2018.2869823


P. Shen et al.: Tree-Search-Based Any-Time TOPCTP With Inadmissible Island Constraints

[46] L. Žlajpah, ‘‘On time optimal path control of manipulators with bounded
joint velocities and torques,’’ in Proc. IEEE Int. Conf. Robot. Autom.,
Apr. 1996, pp. 1572–1577.

[47] F. Lamiraux and J.-P. Laumond, ‘‘From paths to trajectories for multi-body
mobile robots,’’ in Proc. 5th Int. Symp. Exp. Robot., 1998, pp. 301–309.

[48] D. Knuth, The Art of Computer Programming: Fundamental Algorithms.
Reading, MA, USA: Addison-Wesley, 1997.

[49] Y. Zhang, X. Zhang, Y. Fang, and P. Shen, ‘‘Dead reckoning and tracking
control of omnidirectional mobile robots with active caster wheels,’’Robot,
vol. 37, no. 3, pp. 361–368, 2015.

[50] Y. Li, C. Tang, S. Peeta, and Y. Wang, ‘‘Nonlinear consensus-based con-
nected vehicle platoon control incorporating car-following interactions and
heterogeneous time delays,’’ IEEE Trans. Intell. Transp. Syst., vol. 19,
no. 9, pp. 1–11, Sep. 2018, doi: 10.1109/TITS.2018.2865546.

[51] Y. Li et al., ‘‘Nonlane-discipline-based car-following model for electric
vehicles in transportation- cyber-physical systems,’’ IEEE Trans. Intell.
Transp. Syst., vol. 19, no. 1, pp. 38–47, Jan. 2018.

PEIYAO SHEN received the B.S. degree in intel-
ligence science and technology from Xidian Uni-
versity, Xi’an, China, in 2014. He is currently
pursuing the Ph.D. degree with the Institute of
Robotics and Automatic Information Systems,
Nankai University, Tianjin, China.

His research interest includes motion planning
of omnidirectional wheeled mobile robots.

XUEBO ZHANG (M’12–SM’17) received the
B.Eng. degree in automation from Tianjin Univer-
sity, Tianjin, China, in 2002, and the Ph.D. degree
in control theory and control engineering from
Nankai University, Nankai, China, in 2011.

He is currently an Associate Professor with the
Institute of Robotics and Automatic Information
System and is alsowith the Tianjin Key Laboratory
of Intelligent Robotics, Nankai University. His
research interests include mobile robotics, motion

planning, and visual serving.
He served as the Organization Chair of IEEE-CYBER 2018, the General

Co-Chair of IEEE-CYBER 2017, and will serve as the Program Chair of
IEEE RCAR 2019. He is an Associate Editor of the ASME Journal of
Dynamic Systems, Measurement, and Control.

YONGCHUN FANG (S’00–M’02–SM’08) recei-
ved the B.S. andM.S. degrees in control theory and
applications from Zhejiang University, Hangzhou,
China, in 1996 and 1999, respectively, and the
Ph.D. degree in electrical engineering from Clem-
son University, Clemson, SC, USA, in 2002.

From 2002 to 2003, he was a Post-Doctoral
Fellow with the Sibley School of Mechanical
and Aerospace Engineering, Cornell University,
Ithaca, NY, USA. He is currently a Professor

with the Institute of Robotics and Automatic Information Systems, Nankai
University, Tianjin, China. His research interests include nonlinear con-
trol, visual serving, control of underactuated systems, and AFM-based
nano-systems.

Dr. Fang is an Associate Editor of the ASME Journal of Dynamic Sys-
tems, Measurement, and Control and the Journal of Control Theory and
Applications.

VOLUME 7, 2019 1051

http://dx.doi.org/10.1109/TITS.2018.2865546

	INTRODUCTION
	PROBLEM FORMULATION
	PROBLEM STATEMENT
	INADMISSIBLE ISLANDS

	EXAMPLE ON OWMR

	SOLUTION
	HEURISTIC TREE SEARCH
	PHYSICAL INTERPRETATION OF 

	TRAP REGION CONSIDERING INADMISSIBLE ISLANDS
	TRAJECTORY PLANNING

	EXPERIMENTAL RESULTS
	FIRST CASE
	SECOND CASE

	DISCUSSION
	CONCLUSIONS
	REFERENCES
	Biographies
	PEIYAO SHEN
	XUEBO ZHANG
	YONGCHUN FANG


