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ABSTRACT The last decade has witnessed unmanned aerial vehicles (UAVs) emerging as a powerful
platform for various industrial and civilian applications. However, refrained by limited battery capacities,
the hovering time of UAVs is still limited, impeding them from achieving remote tasks, such as wide area
inspection. To deal with such long-range applications, a common sense solution is to employ vehicles to
transport, launch, and recycle UAVs. Efficient routing and scheduling for UAVs and vehicles can greatly
reduce time consumption and financial expenses incurred in long-range inspection. Nevertheless, prior works
in vehicle-assisted UAV inspection considered only one UAV, and was incapable of concurrently serving
multiple targets distributed in an area. Leveraging multiple UAVs to serve multiple targets in parallel can
significantly enhance efficiency and expand service areas. Therefore, in this paper, we propose a novel
hybrid genetic algorithm (HGA), which supports the cooperation of one vehicle and multiple drones for
wide area inspection applications. HGA allows multiple UAVs to launch and recycle in different locations,
minimizing time wastage for both the vehicle and UAVs. Performance evaluation is presented to demonstrate
the effectiveness and efficiency of our algorithm when compared with existing solutions.

INDEX TERMS Unmanned aerial vehicle, inspection, routing, scheduling.

I. INTRODUCTION
The enabling Internet-of-Things technology has encouraged
many innovative sensing platforms and applications [1], [2].
One emerging yet powerful IoT sensing platform is the
UnmannedAerial Vehicle (UAV). UAV,which develops in the
direction of unmanned attendance and intelligence, is light in
weight, is small in size, is low cost, and is capable of oper-
ating autonomously. With these qualities, UAV has become
one of the inevitable trends of the modern sensing appli-
cations, including sensing [3]–[5], forest fire spotting [6],
pollution monitoring [7], navigation [8], [9], communication
relays [10], [11], vehicle networks [12]–[14], cargo delivery
[15]–[17], and so on.

These applications customarily require UAVs to visit many
different locations in a wide area to collect sensing data.
However, due to constrained battery capacities, the maximum
service range of the UAVs is strictly limited. To cater for
various remote sensing tasks in a wide area, a vehicle is

often employed to serve as a carrier and energy supplier to
enlarge the range of service provided [18], which is shown
in Fig. 1. Although such cooperative paradigm is widely
adopted in industry, it brings new challenges on the related
path planning and scheduling issues in academia. The main
problem to be addressed is how to design optimal routes for
the UAVs and the vehicle to achieve the minimum total finish
time.

The vehicle-drone cooperation problem has drawn signif-
icant attention in literature over recent years. Nevertheless,
most of the existing work mainly focused on vehicle-drone
cooperative parcel delivery, wherein both vehicles and UAVs
are responsible of delivering parcels to customers [15]–[17].
These works cannot be directly applied to the vehicle-drone
cooperative sensing problem, where the vehicle only serves
as a carrier of UAVs while the UAVs ought to serve the
customers. Only a few studies have focused on vehicle-drone
cooperative sensing problem [4], [5], [19]–[21]. Most of the
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FIGURE 1. Examples of UAV sensing applications.

above work consider only one UAV whereas we incorporate
multiple UAVs in wide area inspection to promote the par-
allelism and efficiency. In addition, different from the above
work, this paper proposes to adopt a hybrid genetic algorithm
framework [22] to solve the problem. Fig. 2 depicts a scenario
where multiple UAVs collaborate with a carrier to serve the
customers.

In this case, this paper investigates a novel and challenging
problem, referred to as joint routing and scheduling problem
for wide-area vehicle-drone cooperative inspection. The rout-
ing model is similar to Two-Echelon Vehicle Routing Prob-
lems (2E-VRP) [23], which customarily minimized route
lengths. However, 2E-VRP neglected scheduling issues in our
problem. With both routing and scheduling issues involved,
our problem is much more complicated than 2E-VRP. First,
we have to determine proper locations where the vehicle stops
and launches the UAVs. Such locations are referred to as
‘‘parking spots’’ hereinafter. The selection of parking spots
can be formalized as a Facility Location Problem (FLP) [24].
Second, we should carefully plan paths for both the vehicle
andmultiple drones. Planning routes for UAVs and the carrier
can be abstracted as a Vehicle Routing Problem (VRP) [25].
Third, we need to balance the scheduling of tours to multiple
drones. Assigning routes for UAVs, in fact, is a Bin Packing
Problem (BPP) [26], [27]. Accordingly, the problem investi-
gated in this paper is a combinatorial optimization problem,
where each sub-problem is NP-Hard.

By and large, we aim to achieve an overall optimization
on parking spot selection, path planning, and tour assignment
such that the total finish time is minimized. Nevertheless,
these aspects are tightly-coupled as the performance of each
aspect directly depends on the others. Therefore, an effi-
cient joint design on parking spot selection, routing, and
scheduling design is highly desirable. Notice that 2E-VRP
is a generalization of VRP while VRP is a generalization of
Traveling Salesman Problem (TSP) [28], [29]. In other words,
the problem studied in this paper is much more difficult than
2E-VRP, which is much harder than VRP and TSP. Therefore,
the problem investigated is quite challenging.

To this end, we propose a novel Hybrid Genetic Algo-
rithm (HGA), which consists of a series of algorithms.
The proposed algorithm is well-designed such that it avoids
falling into the local optimal solutions. In addition, it per-
fectly balances the complexity of the algorithm and the
performance. Our main contributions are multi-fold. First,
we propose a Minimum Visit Cost Crossover (MVCC) algo-
rithm that selects gene fragments based on the visiting cost
of each parking spot. Second, we include a procedure called
Population Management in HGA, which ensures a better
distribution in population to avoid premature convergence.
Third, we design a three-hierarchical search algorithm to
improve the quality of offsprings and raise the possibility of
retrieving a better solution. Experiment results have validated
the remarkable performance of the HGA.

The rest of this paper is organized as follows: Section II
discusses related work; Section III states problem formula-
tion and notations; Section IV presents the overview of the
proposed algorithm, and Section V discusses each step of
the algorithm in detail; Section VI presents a performance
evaluation, and section VII concludes this paper.

II. RELATED WORK
A significant amount of existing research on UAV-based
service systems have been reported in the literature.
Motlagh et al. [10] surveyed low-altitude UAV-based service
systems in a wide area, with an emphasis on the communi-
cation between a fleet of UAVs. According to [3] and [6],
it comes to the conclusion that UAVs have gained remarkable
performance in various monitoring and sensing applications
and have earned considerable amount of attention in recent
years.

The routing problem for vehicle-drone cooperative sens-
ing problem is quite similar to the 2E-VRP [23] problem.
2E-VRP aims to obtain a set of primary and secondary
routes in a two-echelon distribution system, in order to sat-
isfy the demands of all customers and reduce the system
cost. A few recent studies investigate the 2E-VRP problem.
Luo et al. [20] proposed two heuristics to solve the problem:
the first heuristic builds an entire tour for all customers
and splits it by routes; the second constructs the ground
carrier tour and assigns UAV flights to the tour. Savuran
and Karakaya [19] proposed a route optimization method
for a carrier-launched UAV system based on the Genetic
Algorithm [30]. Manyam et al. [21] proposed a mixed integer
linear programming formulation and presented a branch-and-
cut method to solve the routing problem. Notice that in the
above work only one UAV is taken into account in all the
existing work, which suffers from inefficiency as the number
of targets increases.

Only few papers [4], [5] consider utilizing multiple UAVs
to support wide-area inspection. Hu et al. [4] proposed to
utilize a vehicle carrying multiple UAVs to perform sensing
tasks over a target area. Another work [5] also studied a
vehicle-assisted UAV inspection problem. In [5], multiple
UAVs are allowed to be launched and recycled from the
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FIGURE 2. Illustration of the scenario where UAVs serve the customers with a carrier.

vehicle in different locations, minimizing time wastage for
both the vehicle and UAVs. In this paper, we also employ
multiple UAVs such that the customers shall be served simul-
taneously, thereby significantly enhancing inspection effi-
ciency. In addition, different from all of the above work, this
paper proposes to adopt a novel hybrid genetic algorithm
framework to solve the problem.

In recent years, UAV-based parcel delivery has attracted
considerable research attention. Murray and Chu [15] stud-
ied a so-called Flying Sidekick Traveling Salesman Prob-
lem (FSTSP) for drone-assisted parcel delivery problem and
presented a series of simple heuristics. Ferrandez et al. [16]
presented an algorithm that first finds the optimal launch
locations using the K-means clustering algorithm [31] and
then decides the carrier route based on the Genetic Algo-
rithm. Campbell et al. [32] formed and optimized the models
for drone delivery in collaboration with a truck. Another
work [17] derived a number of worst-case results on VRP
with drones, i.e., the maximum savings that can be obtained
from using drones. It may be noticed that all the studies
are concentrated on the routing for vehicle-drone cooperative
parcel delivery problem, where both vehicles and drones visit
customers to deliver parcels. Such work can’t be directly
applied for to the vehicle-drone cooperative sensing problem
investigated in this paper, where drones visit customers for
data collection while the vehicle only serves as a mobile
platform for drone launching/recycling.

The design of the algorithm proposed in this paper is
partly motivated by [22], which proposed a hybrid genetic
algorithm framework for solving VRP. Notice that VRP is
a sub-problem of our problem. The intuition behind [22] is
that good solutions may be derived by crossover from parent
solutions. Olivera and Viera [33] addressed a Vehicle Rout-
ing Problem with Multiple Trips (VRPMT), which is also a
sub-problem of our problem. Cheikh et al. [34] proposed a
mutable neighborhood search algorithm for VRPMT, through
which encouraging solutions are obtained. They considered
a scenario where one carrier is allowed to perform multiple
trips while the duration of routes assigned to the same carrier

is finite. However, the algorithm proposed in our paper not
only applies HGA as its framework, but also adopts a set
of local search operations for parking spot selection, route
planning, and route assignment.

III. PROBLEM FORMULATION
In this paper, the joint routing and scheduling problem for
vehicle-drone cooperative inspection is investigated. Due to
the limited battery capacity, a single UAV can only visit cus-
tomers within a small range during one flight. Accordingly,
a carrier vehicle is employed to transport, launch, and recycle
the UAVs for the sake of expanding the service area. It is
assumed that there lies a road network in the target area.
Several parking spots on the road are selected and sequen-
tially visited by a carrier with multiple UAVs for wide-area
inspection. At each selected parking spot, UAVs are launched
to visit the nearby customers according to the planned routes.
Each UAV may perform multiple routes at one parking spot
since its battery can be replaced on the carrier. When the
UAVs finish their tasks, the carrier shall leave for the next
selected parking spot. The process is repeated till all the
customers have been served in the target area.

The problem can be decomposed: First, the selection of
parking spots can be formalized as a Facility Location Prob-
lem (FLP). Also, planning routes for UAVs and the carrier
can be abstracted as a VRP. Third, assigning routes for
UAVs, in fact, is a Bin Packing Problem (BPP). Accordingly,
the problem investigated in this paper is a combinatorial
optimization problem, where each sub-problem is NP-Hard.
We formulate the sub-problems as follows.

For simplicity, the following assumptions are made:

• The coordinates of each customer are known to us.
• The road network lying in the target region is modeled
as a connected graph in our paper.

• Both the carrier and the UAVs travel at constant speeds,
which are denoted as scarrier and suav, respectively.

• The time taken by the UAV to serve a customer is
negligible.
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• There are sufficient UAV batteries on the carrier and the
time taken by replacing a UAV’s battery is negligible.

• Constrained by limited battery capacities, the hovering
distance of each UAV is finite, which is denoted as d
hereinafter.

Let G = (V ,E) be a graph where V is the vertex set and
E is the edge set. V is divided into two subsets: N and D. Let
N = {n1, n2, . . . , nNc} be the set of customers that need to
be served. Let D = {d0, d1, d2, . . . , dDc} represent the set of
candidate parking spots where d0 is distinguished as the base
where the carrier leaves at the beginning. A cost matrix A =
(av1v2 ) is defined on E , representing the distance between the
vertex v1 and vertex v2. A carrier carrying m identical UAVs,
denoted as U = {u1, u2, . . . , um}, leaves from the base to
serve the customers.

First, some parking spots need to be selected from the
set of candidate parking spots (i.e., D) to form the carrier’s
route. In real applications, we usually take samples along
the road network which lies in the region to serve as the
candidate parking spots. For each candidate parking spot, let
x(dj) denote whether the candidate parking spot dj is selected
(x(dj) = 1) or not (x(dj) = 0). Many aspects need to be taken
into account jointly when selecting proper parking spots,
such as the distribution of customers around each candidate
parking spot, the distance to the customers, etc. Apparently,
such problem can be categorized as a FLP.

Second, for each selected parking spot, the routes for each
UAV need to be determined. Each UAV route contains a
parking spot and at least one customer, which is denoted as
ri = {dx , ny, . . .} where dx ∈ D and ny ∈ N . Correspond-
ingly, the total length of a UAV route ri is defined as follows:

l(ri) = a
r1i r
|ri|
i

|ri|−1∑
x=1

arxi r
x+1
i

(1)

where rxi denotes the x − th element of ri and |ri| represents
the size of ri. To build the routes for each UAV at a selected
parking spot dj, three problems need to solved. The first
issue is to select the customers that are to be served at dj.
Such operation is referred to as assigning customers to dj
hereinafter. The second issue is to build the feasible UAV
routes that cover all the customers assigned to dj. For each
UAV route ri, let x(ri, dj) represent whether the route ri is
supposed to be finished at the parking spot dj (x(ri, dj) =
1) or not (x(ri, dj) = 0). Last but not least, reasonably
schedule the UAVs to finish the routes. Clearly, it can be
formalized as a Vehicle Routing Problem with Multiple Trips
(VRPMT), which is a variant of classical VRP. In this paper,
we use y(ri, uk ) to denote whether the route ri is assigned
to the UAV uk (y(ri, uk ) = 1) or not (y(ri, uk ) = 0). Let
R = {r1, r2, . . . , rnr } be the set of routes in a solution. The
total distance that UAV uj travels at the parking spot dj is
defined as follows:

l(uk , dj) =
∑
ri∈R

x(ri, dj)y(ri, uk )l(ri) (2)

Third, the sequence to visit each selected parking spot need
to be determined. Although we have obtained the selected
parking spots and the UAV routes at each parking spot,
the sequence for the carrier to visit them may have great
influence on the total time consumption. Notice that the
starting point of the carrier’s route shall always be the base
d0. Indubitably, it is a classical Traveling Salesman Prob-
lem (TSP). Let r0 = {d0, dj, . . .} denote the route for the
carrier. Correspondingly, the total length of the carrier’s route
is defined as follows:

lcarrier = a
r10 r
|r0|
0
+

|r0|−1∑
x=1

arx0 r
x+1
0

(3)

where rx0 denotes the x − th element of r0 and |r0| represents
the size of the r0.
The goal pursued in our paper is to minimize the total

time consumption, denoted as C(s), while satisfying several
requirements:

min C(s) =
lcarrier
scarrier

+

∑
dj∈D x(dj) max(l(uk , dj))

suav
(4)

s.t. m ≥ 1 (5)

0 ≤ l(ri) ≤ d ∀ri ∈ R (6)∑
ri∈R

|ri| − 1 = Nc (7)

Constraint 6 states that at least one UAV is employed to
collaborate with the carrier. Constraint 7 guarantees that the
length of a route cannot exceed the limit of hovering distance
of a UAV. Constraint (7) ensures that all customers are served.
Finally, we list the notation and terminology in Table 1.

TABLE 1. Notation and terminology.

IV. THE OVERVIEW OF HGA
In this paper, a novel algorithm named improved Hybrid
Genetic Algorithm (HGA) is proposed. As indicated by its
name, the design ofHGA is partiallymotivated by theGenetic
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Algorithm (GA). It is based on the idea that a better solution
can be obtained by combining the ‘‘valuable’’ parts of other
solutions.

A. THE STRUCTURE OF HGA
The population M containing multiple feasible solutions is
maintained by HGA. In general, HGA works by iteratively
selecting two parent solutions fromM and retrieving a better
child solution by a crossover operation. At every iteration,
HGA executes four steps to generate a feasible solution.
First, it selects two parent solutions from M using Binary
Tournament algorithm. It then constructs an offspring solu-
tion utilizing a so-called MVCC algorithm, which shall be
specified hereinafter. Next, it optimizes the offspring solution
with the help of Local Search algorithm. Finally, update the
population M . We present its pseudo codes in Algorithm 1
while the flowchart of HGA is shown in Fig. 3.

B. SOLUTION REPRESENTATION
To better present our proposed algorithm, the representation
of a feasible solution is introduced in this section. A feasible
solution S contains two parts: r0 = {d0, d1, . . .} and R =
{Rd0 ,Rd1 , . . .} where r0 stands for the route for the carrier
and R stands for the set of UAV routes, corresponding to
each selected parking spot in r0. Let Rdi = {R

u1
di , . . . ,R

um
di }

represent the set of UAV routes at the parking spot di where
Rukdi denotes the set of UAV routes for the UAV uk at di. Each
UAV route is denoted as ri = {dx , ny, . . .} where dx ∈ D and
ny ∈ N . Notice that at most one parking spot and at least one
customer are included in each UAV route.

V. THE DESIGN OF HGA
A. POPULATION INITIALIZATION
HGA first initializes the population M with a popula-
tion_initialization procedure, as shown in Algorithm 2. The
procedure constructs several feasible solutions in a greedy
manner and adds them into the population M . To generate
a solution, the procedure executes three steps. First, it selects
qualified parking spots using parking_spot_selection proce-
dure. Then, it constructs feasibleUAV routes for each selected

Algorithm 1 Overview of HGA
1: Initialize the population M
2: for i = 0→ ITmax do
3: (a) Binary Tournament algorithm is applied to select

two parent P1 and P2 from the population M
4: (b) MVCC algorithm is used to get an offspring C
5: (c) Educate offspring C using the Local Search algo-

rithm to obtain the optimized solution S
6: (d) Update the populationM with PopulationManage-

ment procedure
7: end for
8: Return the solution S with the minimum C(s) in M

parking spot via Sweep algorithm. Finally, it schedules the
UAVs to perform the tasks via UAV_scheduling procedure.

Algorithm 2 population_initialization
1: M ← ∅
2: for i = 0→ ITsize do
3: r0← call parking_spot_selection procedure
4: R ← construct UAV routes for each selected parking

spot via Sweep algorithm
5: S ← call UAV_scheduling procedure
6: add S to the population M
7: end for
8: Return M

1) PARKING SPOT SELECTION
The parking_spot_selection procedure is shown in
Algorithm 3, which selects the parking spots greedily. For
each customer ni, if the distance from it to a parking spot dj
is less than d , we say that dj is covered by ni and vice versa.
The procedure first selects the customer with the minimum
µni value, which is defined as follows:

µni =
|CDni |
|D|

(8)

where CDni denotes the set of candidate parking spots cov-
ered by ni. Then it probabilistically selects the parking spot

FIGURE 3. Flowchart of HGA.
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Algorithm 3 parking_spot_selection
1: r0← {d0}
2: Ntemp← N
3: while Ntemp 6= ∅ do
4: select ni from Ntemp with the minimum µni
5: select dj from CDni based on p(dj)
6: if dj /∈ r0 then
7: r0← r0 ∪ {dj}
8: end if
9: Ntemp← Ntemp \ {ni}
10: end while
11: run 2-opt algorithm on r0
12: Return r0

from CDni with the probability function given as follows:

p(dj) =
|CNdj |

N
(9)

where CNdj represents the set of customers covered by dj.
At last, it determines the sequence of visiting the selected
parking spots via 2-opt algorithm, which is a simple yet
efficient algorithm for solving TSP.

2) UAV ROUTES CONSTRUCTION
For each customer, we assign it to its nearest selected parking
spots in r0. Then Sweep algorithm is utilized to construct
feasible UAV routes.

3) UAV SCHEDULING
UAV_scheduling procedure is used to reasonably assign the
routes to the UAVs such that the time consumption is min-
imized, as shown in Algorithm 4. For each selected parking
spot dj, the procedure iterates to assign the routes to the UAVs
evenly. At every iteration, we select ri with the greatest length
among all unassigned routes in Rdj . The route ri is assigned
to the UAV uj with the least amount of tasks.

Algorithm 4 UAV_scheduling
1: for dj ∈ r0 do
2: while Rdj 6= ∅ do
3: select ri with the maximum l(ri) from Rdj ;
4: select uk with the minimum

∑
ri∈R

uk
dj
l(ri) from U ;

5: set y(ri, uk ) to be 1;
6: Rukdj = Rukdj ∪ {ri}
7: Rdj = Rdj \ {ri}
8: end while
9: end for

B. PARENT SELECTION AND CROSSOVER
Since the population has been initialized, HGA then iter-
atively selects two solutions P1 and P2 as the parents to
produce a child solution. In our paper, Binary Tournament
algorithm is adopted to select two solutions from the popula-
tion, since it is rather simple yet efficient.

After the parents are selected, a Minimum Visit Cost
Crossover (MVCC) algorithm is proposed to construct a child
solution with the qualified gene fragments from the parents,
as shown in Algorithm 5.MVCC tends to give high priority to
those parking spots with theminimum cost, which are defined
as follows:

θdj = α

∑
ri∈Rdj

l(ri)

Ndj
+ β

1
Ndj

(10)

whereNdj represents the number of customers assigned to the
parking spot dj. The first part of θdj represents the average
distance between the dj and its assigned customers while
the second part is the reciprocal of Ndj . Accordingly, higher
probability of being selected is assigned to the parking spot
which owns more nearby customers.

Algorithm 5 MVCC

1: rC0 ← ∅
2: RC ← ∅
3: Nserved ← ∅
4: θmedian← Median{θP2d0 , θ

P2
d1
, . . .}

5: for dP1i ∈ r
P1
0 do

6: if θP1di < θmedian then
7: rC0 ← rC0 cup{dP1i }
8: RC ← RC ∪ Rdi
9: add the customers of Rdi into Nserved
10: end if
11: end for
12: for dP2i ∈ r

P2
0 do

13: if RP2di contains unserved customers then
14: rC0 ← rC0 ∪ {d

P2
i }

15: Delete the customers in Nserved from RP2di
16: RC ← RC ∪ RP2di
17: add the customers of RP2di into Nserved
18: end if
19: end for
20: C ← {rC0 ,R

C
}

21: Return C

Since MVCC involves more than one solution, a super-
script is added on each notation so as to distinguish them,
as shown in Algorithm 5. For instance, rP10 represents the
route for the carrier in the parent solution P1. MVCC first
calculates the median of the parking spot cost of the parent
solution P2, which is denoted as θmedian. Then it searches the
parent solution P1 to discover the parking spot whose cost
is less than θmedian, such that the obtained child solution is
improved. At last, it scans through the parent solution P2
to include those unserved customers in the child solution.
Notice that Nserved containing those customers who have
been served is maintained by MVCC to avoid duplicate cus-
tomers in child solution. An example of MVCC is shown
in Fig. 4.
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FIGURE 4. Illustration of MVCC.

C. EDUCATION
The dominant gene fragments of the parent solutions P1 and
P2 can be passed on to the offspring C via MVCC. For
further optimization, the Local Search algorithm is adopted to
improve the offspring solution. It contains three procedures:
parking_spot_local_search procedure, route_local_search
procedure and customer_local_search procedure, which aim
to optimize the selection of parking spots, merge the short
routes and optimize the access order of customers within each
UAV route, respectively.

1) PARKING SPOT LOCAL SEARCH
The parking_spot_local_search procedure adopts two kinds
of operations on each selected parking spot: remove and
replace, so as to optimize the solution. As shown in
Algorithm 6, the procedure first removes the selected parking

Algorithm 6 parking_spot_local_search
1: for dj ∈ r0 do
2: if |Rdj | ≤ Mnum then
3: reassign the routes in Rdj to Neigh(dj)
4: end if
5: end for
6: for dj ∈ r0 do
7: for di ∈ Neigh(dj) do
8: Replace di with dj
9: if C(sdi ) > C(sdj ) then
10: r0← r0 \ {di}
11: r0← r0 ∪ {dj}
12: end if
13: end for
14: end for

spot with few assigned routes and reallocated the routes
to its neighboring parking spots. Given a parking spot, its
neighboring parking spots Neigh(dj) is defined as follows:

Neigh(dj) = {dx |adxdj < d} (11)

The procedure then replaces each selected parking spot with
its neighboring parking spots, trying to find a solution with
less cost. Notice that Mnum is a tunable parameter that
need to be determined after conducting a large number of
experiments.

2) ROUTE LOCAL SEARCH
The main purpose of route_local_search procedure is to
merge the routes which are too short. As shown in
Algorithm 7, the procedure first picks out all the short routes,
namely the routes whose length is less thanDIS.DIS is also a
tunable parameter. Then it tries to merge the short route with

Algorithm 7 route_local_search
1: Rshort ← ∅
2: for ri ∈ R do
3: if l(ri) ≤ DIS then
4: Rshort = Rshort ∪ {ri}
5: end if
6: end for
7: for ri ∈ Rshort do
8: for rj ∈ Neigh(ri) do
9: rnew← merge route ri and rj
10: if l(rnew) < d then
11: Rshort = Rshort \ {ri}
12: end if
13: end for
14: end for
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FIGURE 5. Results with varying number of customers (changing density). (a) Time cost. (b) Distance cost.

FIGURE 6. Results with varying number of customers (fixed density). (a) Time cost. (b) Distance cost.

its neighboring routes. Given a route, its neighboring routes
Neigh(ri) is defined as follows:

Neigh(ri) = {rx |max(aninx ) < d, ni ∈ ri, nx ∈ rx} (12)

It may occur that there are no suitable routes to merge with
in Neigh(ri). If this is the case, the procedure simply ignores
such route.

3) CUSTOMER LOCAL SEARCH
The customer_local_search procedure is used to optimize
the access order of customers within each UAV route. Two
kinds of operations are conducted upon each UAV route ri:
Exchange and Replace. The Exchange operation exchanges
the order between two customers of ri. TheReplace operation
exchanges one customer of ri with its neighboring routes.
If either one of the operation improves the current solution,
such operation is confirmed.

D. POPULATION MANAGEMENT
Every time we intend to add a solution into the populationM ,
Population Management procedure is invoked to manage the

population in two aspects: population diversity and popula-
tion size.

1) POPULATION DIVERSITY MANAGEMENT
To avoid useless computation, any two solutions in the pop-
ulation M should be distinct. Thus, a strict condition for the
population M is proposed:

∀P1,P2 ∈ M ,P1 6= P2, | C(P1)− C(P2) |> 1 (13)

where P1, P2 are two solutions of the population M and
C(P1), C(P2) are the cost of P1 and P2, respectively. There-
fore, every time a solution si is added into the population M ,
we compare si with each solution sj in M by calculating
C(si) − C(sj). If it is greater than 1, it means si and sj are
well spaced. Otherwise, it is necessary to compare them via
each selected parking spot and its assigned routes.

2) POPULATION SIZE MANAGEMENT
To speed up the calculation, the size of M is set as Msize.
If the size of M is greater than Msize after inserting the new

VOLUME 7, 2019 1825



K. Peng et al.: Wide-Area Vehicle-Drone Cooperative Sensing: Opportunities and Approaches

solutions, we remove |M | −Msize solutions with the greatest
C(s) values from the memory to avoid overflow.

VI. COMPUTATIONAL EXPERIMENTS
A significant amount of experiments have been conducted
to assess the performance of HGA. To evaluate the effi-
ciency of HGA,we compare it with three baseline algorithms:
a greedy algorithm (Greedy), AMP (a relaxed version of
AMP [33]), and the Lin-Kernighan Heuristic (LKH) [35].
LKH is an effective heuristic algorithm for solving classi-
cal TSP. We adapt LKH to our problem by assuming that
the carrier serves all the customers, without the employ-
ment of UAVs. Greedy, a heuristic for solving VRP, first
plans the route for UAVs and then assigns the routes to
its nearest parking spot. AMP is an efficient algorithm for
solving VRPMT. It is assumed that the UAVs are allowed
to travel unlimited distance when applying AMP to our
problem.

Two performance metrics are of particular interest to us.
The first is the time cost of a solution. It is defined by the
total amount of time taken by the carrier to leave from the
base, launchUAVs to serve all the customers, and return to the
base. Indubitably, less value of the time consumption means
higher efficiency. The second metric is the distance cost of
a solution, including the distance that the carrier travels and
that of the UAVs travel. Likewise, less distance cost indicates
a less costly system.

In our configuration,Nc customers are randomly generated
within a l units × l units region, with 1 unit representing
1 kilometer in reality. A carrier with 5 identical UAVs are
employed to serve the customers in the target region. Each
UAV is capable of traveling 1 unit per flight. The speed of the
carrier and each UAV are set as 5m/s and 3m/s, respectively.
First, we fix l to be 100 and only vary Nc in the range
[150, 450]. With Nc increasing, the density of customers in
the target region increases as well. The corresponding results
are represented graphically in Fig. 5. Second, we not only
vary Nc in the range [150, 450], but also range l from 100 to
500 such that the density of the customers is fixed. The results
are presented in Fig. 6.

FIGURE 7. Time cost with varying number of iterations.

Details shown in Figs. 5 - 6 present the efficiency of
our proposed algorithm HGA. It can be observed from
Figs. 5(a) - 6(a) that HGA outperforms any other algorithms
significantly, in terms of the time consumption. For both case,
HGA requires least amount of time and reasonable amount
of traveling distance. When applied to our problem, LKH
performs impressively well. It gains best performance with
respect to the distance cost.

Lastly, we study the impact of the number of iterations
on the performance of HGA. We fix Nc to be 300 and l to
be 200 and vary the number of iterations. The correspond-
ing result in Fig. 7 shows that as the number of iterations
grows, the results converge and we finally obtain superior
results.

VII. CONCLUSIONS
This paper has investigated a combinatorial optimization
problem and proposed a novel improved Hybrid Genetic
Algorithm (HGA) to solve it. HGA is able to achieve an excel-
lent trade-off between the complexity of the algorithm and the
performance. In addition, we have proposed aMinimumVisit
Cost Crossover (MVCC) algorithm to generate an offspring
solution with less cost. Population Management procedure
is utilized to manage the population, such that a better solu-
tion is more likely to be constructed. Furthermore, we have
designed a three-hierarchical search algorithm to improve
the solution. At last, the results of a significant amount of
experiments we conducted have validated the efficiency and
effectiveness of HGA.
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