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ABSTRACT This paper deals with the analysis of sleep quality, which involves a non-invasive sleep
stage detection method with home deployability. Some physiological signals, such as heart rate, heart rate
variation, and the number of times the subject rolled over, are collected to determine the sleep stage. A fuzzy
inference system is adopted to evaluate the division of sleep stage. Then, a preliminary sleep depth is
calculated. Furthermore, a finite-state machine is developed to detect the sleep stage changes. The difference
between our research and other existing studies is that, first, both the pressure sensors and the heart rate device
are employed; then, the fuzzy inference and a finite-state machine are introduced, which give us a higher
precision than the traditional methods to evaluate the sleep stage. The experimental results show that the
proposed method can well evaluate the sleep quality that is almost consistent with a polysomnography test.
The latter is currently recognized as the best way to measure sleep quality, which, however, requires a variety
of monitoring sensors and has to be performed by the nursing staff in a professional setting. The reported
approach can be used for monitoring sleep quality or sleep disorder screening at home.

INDEX TERMS Sleep analysis, non-invasive, fuzzy inference system, finite state machine.

I. INTRODUCTION
Sleep occupies one-third of our life. Good quality sleep is
vital for physical and psychological health. However, as the
pressure of modern society increases, sleep disorders have
become a growing problem. There are two main methods
used clinically for estimating sleep quality. One is self-
administered sleep questionnaire (Pittsburgh sleep quality
index, PSQI), and the other is Polysomnography (PSG). The
questionnaire is supposed to be filled in by the patient upon
waking up. The results of the questionnaire are considered
to be subjective and inaccurate. Compared with the ques-
tionnaire, the PSG technique is more accurate and reliable.
The patient goes to a sleep center for a PSG test. Under the

supervision of the nursing staff, the electrodes are attached
to the subject’s head, eyes, lower jaw, heart and legs. The
PSG measures the whole night sleep physiological condi-
tions, including Electroencephalogram (EEG), Electroocu-
lography (EOG), Electrocardiography (ECG), Electromyog-
raphy (EMG), Air flow, Blood pressure, Heart rate (HR), etc..
The cost of a PSG test is expensive, and that many subjects
have trouble sleeping due to the multiple sensors, wires,
medical staff being present and unfamiliar room and bed.
It is uncomfortable and requires the assistance of professional
sleep laboratories and nursing staff.

For long-term monitoring, many scholars develop non-
invasive sensing methods for home-care sleep analysis.
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TABLE 1. The comparison of relevant research with our work.

Through extracting physiological signals, such as heart rate,
respiratory rate, and the number of times the subject rolled
over, we can analyze the changes of REM and NREM
phases in a sleep cycle. Existing non-invasive sensingmonitor
methods include microphone, air mattress, intelligent mat-
tress and pressure sensor. The studies in [2]–[4] improve
the microphones to filter the signals of heart rate, rolled
over times and snoring. Shin et al. [5] and Kurihara et al. [7]
establish a sleep analysis model with the help of a pneu-
matic mattress. The study in [6] demonstrates the relationship
between heart rate and turning times based on the work
in [7]. Kurihara and Watanabe develop a new sleep index
system based on intelligent mattresses [8], [9]. Pino et al.
also report their studies with the aid of air mattress [10].
Utilizing photo plethysmography sensors, the relationship
between leg movement and sleep stages is built in [11]. The
photo plethysmography and pressure sensors generate two-
dimension information [12], [13], but the movement of the
human bodies can produce three-dimension images. As the
result, some researchers try to assess sleep quality using near-
infrared video and oximetry information to make up for the
missing dimension [16]–[18]. Other scholars have tried to
study the relationships between brain waves and the models
of sleep stage from a purely theoretical perspective [19], [20].
Table 1 shows list of relevant research with our work. Gre-
yART and PPG are the abbreviation of Grey Adaptive Res-
onance Network and Photo PlethysmoGraphy respectively.
A PPG is an optically obtained plethysmogram, a volumetric
measurement of an organ. A PPG is often obtained by using
a pulse oximeter which illuminates the skin and measures
changes in light absorption.

In this study, two low-cost sensors are combined to make
the method suitable for potential at-home diagnosis. The first
is the pillow pressure sensor where the patient sleeps and
the second is the heart rate device produced by Mi Company.
Most of the above non-invasive sleep monitoring approaches
for home care predicate the different sleep phases through
threshold values. Fixed thresholds are not well suited for
sleep stage determinations for different people. To solve this

FIGURE 1. System architecture.

problem, a fuzzy inference system and a finite state machine
are developed in this paper. The collected physiological
parameters as input signals are fed into the fuzzy inference
system, then a preliminary sleep depth is defuzzified, and
finally a finite state machine is used to detect the stage
changes in future steps. The combination of fuzzy inference
and finite state machine can give us more accurate sleep
stage analysis for different patients. The system architecture
is shown in Figure 1.

The rest of this paper is organized as follows. Section II
describes the theoretical background. The proposed fuzzy
inference and finite state machine approach are presented
in Section III. An application of system is developed in
Section IV. Then, three examples to demonstrate the effec-
tiveness of our approaches are shown in SectionV. SectionVI
concludes the paper.

II. PRELIMINARIES
We review some sleep knowledge in this section. The sleep
stages are divided into rapid eye movement (REM) and non-
rapid eye movement (NREM). The early classification of
sleep stages is mainly based on the R–K method proposed
by Rechtschaffen and Kales in 1968 [1], who split a sleep
cycle into six stages, namely Awake, REM, NREM 1, NREM
2, NREM 3, and NREM 4. This division is based on the
EEG, EOG and EMG measurements. Because NREM 3 and
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FIGURE 2. A full night’s sleep and five sleep cycles [15].

NREM 4 are not much different, the American Academy
of Sleep Medicine [14] redefined a sleep cycle into five
stages in 2007, which are Awake, REM, NREM 1, NREM 2,
and NREM 3. Figure 2 shows a full night’s sleep and five
sleep cycles. During the night’s sleep time, the Awake stage
rarely happens. Even if it occurs, it does not mean that one
is really awake, but pseudo-conscious. In the latest Amer-
ican Academy of Sleep Medicine sleep manual [23], it is
also called arousal. In fact, it is very difficult to detect the
arousal phenomenon, which needs the help of EEG and EMG
(Chin electromyogram). The latest sleep manual shows the
conditions for detecting the Awake state in the sleep time:
‘‘there is an abrupt shift of EEG frequency including α, θ
and/or frequencies greater than 16 Hz (but not Spindles) that
lasts at least 3 seconds, with at least 10 seconds of stable
sleep preceding the change. Scoring of arousal during REM
requires a concurrent increase in submental EMG lasting at
least 1 second’’. Since this study only uses PPG and pressure
sensors, it is impossible to detect theAwake stage. In addition,
the Awake stage has very limited impact on the analysis of
sleep disorders, and thus we incorporate it into the REM
stage. This article considers REM and NREM stages only.

REM can be seen as a period of brain repair. In this
phase, the brain is very active, therefore dreaming often
happens during the REM period, and the dream content
is easier remembered when people wake up. The heart
rate and respiratory rates are as irregular as in the sane
moments, and the eyes move quickly. The brain shows
α, β, θ and Sawtooth waves. The REM phase accounts
for 25% of the total sleep time. If the REM period is
too short or does not occur, the brain cannot repair itself.
Obviously, the REM period is an important index of sleep
quality.

NREM is known as a period of physical repair, which
is mainly divided into three stages: NREM 1 and NREM 2
in shallow sleep and NREM 3 in deep sleep. NREM 1 is
classified as shallow sleep, which is a transition period from
REM to NREM 2. At this phase, the brain shows θ wave,
and the eyeballs have slower movements. The heart rate and
respiratory rate will be faster and more regular than in REM,
and the turning action appears a lot of times. Each NREM 1
period lasts about 5 minutes. NREM 2 is also a shallow sleep,
the eyeballs are no longer moving during this phase, and the
heart rate, respiratory rate and body temperature gradually
drop. Spindle and K complex waves appear at this time.

The NREM 2 stage lasts for 10–15 minutes. NREM 3 is
defined as deep sleep. In this stage, the eyeballs do not move,
and the heart rate, respiration rate and body temperature fur-
ther decrease. The frequency of heartbeat will drop to about
20–30% than awake, and the body barely moves. The brain
shows δ wave. The NREM 3 stage lasts about 30–60 minutes.
More deep sleep always means more rest of the body, thus the
total duration of NREM 3 is another important index of sleep
quality.

Once an ideal sleep cycle starts at REM and ends at
NREM 3, via NREM 1 and NREM 2 on the way, and finally
back to REM. The stages keep cycling all night. There are
about 4–6 cycles a night, 90–120 minutes for each cycle, and
a full night’s sleep lasts about 7.5 hours [1]. Note that in the
real sleep time, sometimes people may cause some confusing
stage changes in different sleep cycles. The characteristics of
each stage are shown in Table 2 [15].

III. A NON-INVASIVE SLEEP ANALYSIS APPROACH
A. INDEXES SETTING
For convenience of description, four indexes are introduced.
One is heart rate, and the others are heart rate variation, body
movement and heart rate difference. All indexes are formally
quantified as follows:

1) HEART RATE (hr)

hr(x) =

∑x
i=−30 heartrate(i)

30
(1)

where heartrate(i) is the current heart rate at i-th time. The
average of 30 samples is taken as a heart rate value. Today’s
ECG and EEG are based on an average of 30 samples as
a parameter. Corresponding descriptions are shown in [23]:
on page 13, Section III, Technical and Digital Specifica-
tions: ‘‘To accommodate older equipment, filter settings in
the range of 30–35 Hz may be used to comply with the
recommendations of 35 Hz. This applies most specifically in
the context of EEG and EOG high filter settings’’; and on
page 19, Section IV, Sleep Staging Rules Part 1: Rules for
Adults: ‘‘Score sleep stages in 30-second, sequential epochs
commencing at the start of the study’’. In order to facilitate
comparison with other research, we also follow the conven-
tions. Higher heart rate usually means lighter sleep depth, and
vice versa.

2) HEART RATE VARIATION (hrv)

hrv(x) =
x∑

j=−10

|hr(j)− hr(j− 1)| (2)

where hr(j) is the j-th time heart rate. If the heart rate is
sampled once per second, i.e., in Eq. (1) the parameter i is
in seconds, then the sampling period of j is at least every
30 seconds. In Eq. (2), heart rate values are sampled ten times;
as a result, it takes at least five minutes to sample one heart
rate variation. The study in [21] suggests that the five minutes
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TABLE 2. The characteristics of each stage [15].

hrv better be applicable for screening the variation in the heart
rate of subjects, which is taken as our standard. This heart
rate variation value is used to observe whether the heart rate
is irregular and drastically changed within a sampling period.

3) BODY MOVEMENT(bm)

bm(x) =
x∑

i=−300

bm(i) (3)

where bm(i) = 1 if the pressure sensor detects a movement in
the current i-th time, else bm(i) = 0. The system records the
number of times the subject rolled over in five minutes as the
body movement index when the parameter i is in seconds.

4) HEART RATE DIFFERENCE (hrd)

hrd(x) =
x∑

j=−10

(hr(j)− hr(j− 1)) (4)

It looks that the index hrd is very similar with the index
hrv. The hrd(x) focuses more on the continuity of heart rate
change, and hrv(x) concerns the severity of change. Gener-
ally, the continuous positive value implies that the patient
sleeps more and more shallowly, and vice versa.

B. FUZZY INFERENCE IN ANALYSIS OF SLEEP PHASES
A fuzzy inference system is presented in this subsection, and
its block diagram is shown in Figure 3. The fuzzy infer-
ence system includes three parts: input membership func-
tion (fuzzifier), output membership function (defuzzifier)
and fuzzy rule library (fuzzy rule base and fuzzy inference
engine). The membership functions are established based on
the knowledge of expert systems and the summary of experi-
mental data. The experimental data are from [22], where there
is a comprehensive website that provides resources about
sleep disorders in patients with different URLs. We have ana-
lyzed approximately 300 subjects information and generated
input and output membership functions. The triangular mem-
bership function stands out from other expression curves:
trapezoidal, gaussian, bell-shaped and sigmoid because of
its practicality. The fuzzy rule base is derived from our
experiments. We employ professional medical equipment

FIGURE 3. Fuzzy inference system.

FIGURE 4. Heart rate membership function.

NicoletOne EEG to collect the subjects’ brain waves. Differ-
ent sleep stages correspond to different brain waves, which is
described in Table 2 early. Based on the subjects’ brain waves,
we identify the current sleep stage, and record the heart rate,
heart rate variation, and body movement at the same time.
Following this way, we summarize the rules in Table 3 from
about 200 experiments. Subsequently, a preliminary sleep
depth conclusion can be reached after the fuzzy calculation.
The indexes defined in Section III-A are sampled within five
minutes as an observation period.

C. INPUT MEMBERSHIP FUNCTIONS
The input membership functions to heart rate, heart rate vari-
ation, and body movement are expressed in Eqs. (5), (6) and
(7), respectively. Because each person’s heart rate is different,
the range of heart rate functions varies with each person’s
heart rate. Therefore, we propose a concept of hrmiddle in
the membership functions, which is calculated by the average
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FIGURE 5. Heart rate variation membership function.

from sleep onset to the first time that we detect the subject’s
heart beats to be 10 less than the average value per minute
(that is also denoted as the first stage of NREM 3). The
function curves are also shown in Figures 4, 5, and 6.

µL1 (x1)

=


1 x1<hrmiddle− 10
(hrmiddle− 10)/10 hrmiddle− 10

≤ x1<hrmiddle
0 x1 ≥ hrmiddle.

(5a)

µM1 (x1)

=



0 x1<hrmiddle− 10
(x1 − hrmiddle+ 10)/10 hrmiddle− 10

≤ x1<hrmiddle
(hrmiddle+ 10− x1)/10 hrmiddle ≤ x1

< hrmiddle+ 10
0 x1 ≥ hrmiddle+ 10.

(5b)

µH1 (x1)

=


0 x1<hrmiddle
(x1 − hrmiddle)/10 hrmiddle ≤ x1

<hrmiddle+ 10
1 x1 ≥ hrmiddle+ 10.

(5c)

µL2 (x2) =


1 x2 < 10
(20− x2)/10 10 ≤ x2 < 20
0 x2 ≥ 20.

(6a)

µML2 (x2) =


0 x2 < 10
(x2 − 10)/10 10 ≤ x2 < 20
(30− x2)/10 20 ≤ x2 < 30
0 x2 ≥ 30.

(6b)

µMH2 (x2) =


0 x2 < 20
(x2 − 20)/10 20 ≤ x2 < 30
(40− x2)/10 30 ≤ x2 < 40
0 x2 ≥ 40.

(6c)

FIGURE 6. Body movement membership function.

µH2 (x2) =


0 x2 < 30
(x2 − 30)/10 30 ≤ x2 < 40
1 x2 ≥ 40.

(6d)

µL3 (x3) =


1 x3 < 1
2− x3 1 ≤ x3 < 2
0 x3 ≥ 2.

(7a)

µM3 (x3) =


0 x3 < 1
x3 − 1 1 ≤ x3 < 2
(4− x3)/2 2 ≤ x3 < 4
0 x3 ≥ 4.

(7b)

µH3 (x3) =


0 x3 < 2
(x3 − 2)/2 2 ≤ x3 < 4
0 x3 ≥ 4.

(7c)

D. FUZZY RULE BASE
A fuzzy rule base is presented in Table 3, which includes
three input parameters, one output sleep stage and 26 rules.
In theory, there are 32 rules can be created. However some
brain wave boundaries are blurry, and they are not very easy
to be recognized by our instruments. We will develop them in
future work with new equipments or processes.

E. OUTPUT MEMBERSHIP FUNCTIONS
The output membership functions are shown in Eq. (8) and
Figure 7. Their appearance makes it possible to calculate the
center gravity of each sleep stage, which is a necessary step
to defuzzifying.

µREM4 (x4) =


1 x4 < 20
(x4 − 20)/20 20 ≤ x4 < 40
0 x4 ≥ 40.

(8a)

µNREM1
4 (x4) =


0 x4 < 20
(x4 − 20)/20 20 ≤ x4 < 40
(60− x4)/20 40 ≤ x4 < 60
0 x4 ≥ 60.

(8b)
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TABLE 3. Fuzzy rule base.

FIGURE 7. Sleep stage membership function.

µNREM2
4 (x4) =


0 x4 < 40
(x4 − 40)/20 40 ≤ x4 < 60
(80− x4)/20 60 ≤ x4 < 80
0 x ≥ 80.

(8c)

µNREM3
4 (x4) =


0 x4 < 60
(x4 − 60)/20 60 ≤ x4 < 80
1 x4 ≥ 80.

(8d)

F. FUZZY INFERENCE ANALYSIS OF SLEEP STAGE
ALGORITHM
We can discover all center point of functions in Figure 7 with
the help of Eq. (9) to defuzzify the gravity of each curve.
Corresponding to different functions REM, NREM 1, NREM
2 and NREM3, the X -coordinate values of these center points

are 15.6, 40, 60, and 84.4, respectively.

g(k) =

∫
x4 · uk4(x4)dx∫
uk4(x4)dx

(9)

where k ∈ {REM ,NREM1,NREM2,NREM3}.
Eq. (10) is further adopted to solve the final weight for each

sleep stage, which helps us understand the sleep stages under
the current input parameters.

µk5 = max
1≤l≤26

[min(µki,l(xi))] (10)

where k ∈ {REM ,NREM1,NREM2,NREM3}, i ∈ {1, 2, 3}
and l is the rule number in Table 3. uki,l(xi) is a value chosen
from ui(xi), i ∈ {1, 2, 3}, and l and k are rule number and
sleep stage corresponded to the current ui(xi) in Table 3,
respectively.

Furthermore, a concept of sleep depth f (z) is defined in Eq.
(11). The sleep depth takes into account the final weight of
each sleep stage, as well as the center gravity value of every
output membership function, thereby obtaining a weighted
average value. Then, Table 4 is used to map the sleep depth to
the corresponding sleep stage. Algorithm 1 shows the details
of each step. Note that the standards in Table 4 are also
obtained from experimental data analysis.

f (z) =

∑
µk5 · g(k)∑
µk5

(11)

where k ∈ {REM ,NREM1,NREM2,NREM3}.
Let us discuss the time complexity of Algorithm 1. All

steps, except for the first step, can be considered to complete
in unit time. Assume that M = 26 (M is the number of all
the rules in Table 3). In the worst case, three input parameters
are solved by Eqs. (5), (6) and (7), and the generated results
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FIGURE 8. Control surfaces of fuzzy inference system. (a) X-axis:hr, Y-axis:hrv, and Z-axis:sleep depth. (b) X-axis:hr, Y-axis:bm, and Z-axis:sleep
depth. (c) X-axis:hrv, Y-axis:bm, and Z-axis:sleep depth.

TABLE 4. The value of f (z) corresponding to different sleep stage.

Algorithm 1 Fuzzy Inference Analysis of Sleep Stage Algo-
rithm
Input: Heart rate (hr), Heart rate Variation (hrv), and Body
Movement (bm)
Output: Sleep stage (REM, NREM 1, NREM 2, NREM 3)
Step 1: According to the input parameters with the data hr,
hrv and bm, the Eqs. (5), (6) and (7) are used to calculate ui
values, (i = 1, 2, 3);
Step 2: Obtain the center gravity of each sleep phase accord-
ing to Eq. (9);
Step 3:Calculate the final weight of each sleep stage by using
Eq. (10);
Step 4: Combining the results of Steps 2 and 3, find a
weighted average sleep depth value with the help of Eq. (11);
Step 5: Based on the value of Step 4, we map the data into
Table 4. Output the corresponding sleep stage, and then the
algorithm stop.

correspond to all terms in the fuzzy rule base. Therefore, its
total cost is O(M ).

Using the Fuzzy Logic Toolbox, the fuzzy control surfaces
are generated by MATLAB. There are three input parameters
in the fuzzy logic designer: hr, hrv, and bm, and one out-
put parameter: sleep depth. The Mamdani-type inference is
applied in the fuzzy logic designer. Figure 8(a), (b) and (c) are
3D images, where their output Z-axis is settled by sleep depth
parameter, and the X-axis and Y-axis are synthesized by two
sets of three input parameters. The control surface in Figure
8 shows the dependency of one of the outputs on any two of
the inputs for the fuzzy inference system.

G. AN ILLUSTRATION OF ALGORITHM
We give an example to explain the algorithm in the follow-
ing. Suppose that we have the following data: Heart rate is

hrmiddle+4, Heart rate Variation is 33, and BodyMovement
is 3.
i). According to the input membership functions, the dif-

ferent ui, i = {1, 2, 3} can be calculated as:
Heart rate: M(0.6), H(0.4)
Heart rate Variation: MH(0.7), H(0.3)
Body Movement: M(0.5), H(0.5)
ii). Based on the values above, Table 5 is generated (ignore

the two columns Rule Weight and Final Weight for now),
which is filtered from Table 3. Furthermore, Eq. (10) is
applied to find the final weight of each sleep stage. Generally,
we find the smallest value as the rule weight of this row
first. For example, in the first line of Table 5, there are
three values: heart rate(0.4), heart rate variation(0.7) and body
movement(0.5).We choose the minimum value 0.4 as the rule
weight of this row. This value is filled in the corresponding
Rule Weight column in Table 5. Among all the rule weights
in the same sleep stage, we pick up the largest one as the
final weight of this stage. For example, the first four lines
in Table 5 all belong to the same REM sleep stage, and their
rule weights are 0.4, 0.3, 0.3 and 0.5, respectively. Obviously,
the value 0.5 is the best choice as the final weight, which is
also recorded in the last column of Table 5.
iii). Through Eq. (9), we know that the center gravities of

REM and NREM 1 are 15.6 and 40, respectively. The sleep

depth is calculated as f (z) =
∑
µk5 ·g(k)∑
µk5
=

15.6×0.5+40×0.5
0.5+0.5 =

27.8.
iv). Compared to Table 4, the sleep depth value 27.8 falls

between 0 and 30. As a result, the current sleep stage may be
REM.

H. FINITE STATE MACHINE IN ANALYSIS OF SLEEP
PHASES
As mentioned in Section II, not every cycle is perfect from
REM to NREM 3 end. Sometimes, stage confusing changes
will occur. Some alterations are allowed if the changes are
caused by the patient’s own physical condition, but some
deviations are not if those irregular stage changes may
be touched by the problem with the collected parameters.
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TABLE 5. The third step of Algorithm 1 applied to Example 1.

FIGURE 9. Finite state machine in analysis of sleep phases.

Section III-B can only make preliminary sleep calculations
according to the input parameters. If we want to make accu-
rate decision, especially in the face of such irregular changes,
the introduction of finite state machines is necessary. The
preliminary sleep stage analysis result, three original input
parameters (hr, hrv and bm) and the heart rate difference (hrd)
are served as the inputs to the finite state machine. Then a
finite state machine further refines the analysis result depend-
ing on state transition rules to reveal the reasonable sleep
stage alterations. The following rule numbers correspond to
the labels next to edges in Figure 9.
State transition rules:
(1) f (z) < 30, hrv > 30, and bm > 3.
(2) 30 < f (z) < 50, hrv > 30, and bm > 3.
(3) f (z) < 30 and hrv < 20.
(4) 30 < f (z) < 50, hrv > 20, and bm > 3.
(5) 30 < f (z) < 50.
(6) 30 < f (z) < 50 and hrv > 20.
(7) 50 < f (z) < 70 and hrd < 10.
(8) 50 < f (z) < 70.
(9) f (z) > 70.
(10) f (z) > 70, hrv < 10, and bm < 3.
(11) f (z) < 30 and hrd > 25.
(12) f (z) < 30.

For example, in the last five minutes, the parameters col-
lected are hr = hrmiddle− 2, hrv = 16, and bm = 1; and the
sleep stage is decided as NREM 2. Now, we obtain four new
parameters: hr = hrmiddle + 4, hrv = 33, bm = 3, and hrd
= 30. As a result, the sleep depth is 27.8 (we have used these

FIGURE 10. The system configuration.

parameters as an illustration of Algorithm 1 in Section III-B),
which is in the REM sleep stage. Apparently, the development
of the sleep situation does not follow the perfect cycle from
the last moment of NREM 2 to the next moment of NREM
3, and there is a slight stage deviation. Check the current
confusing stage change, we observe that this alteration is
permissible in Figure 9 and the four new parameters entered
are also in accordance with rule (11). Consequently, the result
REM stage is accepted. Let us make a counter example. If the
last sleep stage is NREM 1, the current parameters (hr =
hrmiddle − 8, hrv = 13, and bm = 1) are calculated, and
then the sleep stage will be supposed as NREM 3. After
comparing the result with Figure 9, we find that this situation
is impossible, no matter what the heart rate difference is. It
implies that the parameters collected at this time are incorrect,
which may be caused by environmental factors or sensor
failure. Therefore, the NREM 3 prediction is discarded.

IV. APPLICATION
The system configuration is displayed in Figure 10. Some
force sensors are placed under the pillow and a heart rate
monitor is worn on the subject’s hand. When the subject has
falling asleep, the physiological parameters are collected and
transmitted to the server. Each sampling period is 5 minutes.
As soon as the subject is awake, the system will assess the
sleep quality based on the percentage of different sleep stages
throughout the night.

To implement the description in Figure 10, the actual
application scenario is shown on the left part of Figure 11.
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TABLE 6. Comparison of different sleep stage evaluation criteria.

The red circle is the wearing of a Bluetooth heart beat
monitor, the yellow oval dotted line is the pressure-sensing
Arduino chip placed under the pillow, and the green rectangle
is the user interface of system. The top right portion of Figure
11 expresses the details of the parameter collection and trans-
mission. The force sensors connect with 1 M� resistances
and 5 V pin of Arduino chip to form series circuits. Then,
we can predict pressure changes by measuring variations
in pin voltage. A Zigbee network is used to transmit the
body movement parameter back to the server. Subsequently,
a Bluetooth heart beat monitor is adopted to collect the hr,
hrv, and hrd parameters and links with computer through
Bluetooth 4.0 protocol. The user interface of system is pre-
sented in the bottom right part of Figure 11. In the user
interface, the red dotted line box is the setting of system
factors, including the communication port and USB Dongle.
When the user presses the Start System button, the system
begins to collect the subject’s parameters and analyze the
sleep stages, the corresponding sections are shown in the
black and blue dashed boxes of the user interface.

V. EXPERIMENTAL RESULTS
A total of 24 subjects were requested to use the proposed
system for more than 200 sleep analysis experiments. Three
pressure-sensing Arduino chips are placed under the pillow,
as shown in Figure 12, and a Mi model 3 heart rate monitor
is worn on the subject’s wrist. The Mi model 3 heart rate
monitor uses a triaxial acceleration and photoplethysmog-
raphy (PPG) sensors to analyze the heart rate, which can
accurately collect hr, hrv and hrd parameters. To facilitate
the comparison of experiments, we also invite professional
staff to perform PSG tests for the subjects at the same time,
and encourage the subjects to fill up self-administered sleep
questionnaires to record their feelings upon waking up.
Example 1: We apply the experiment on the same subject

employing the proposed method and the one in [8]. All night
sleep data are collected, and the heart rates are sampled
every 30 seconds (epoch). The main purpose is to compare
the difference in determining sleep stage between the fixed
threshold and the fuzzy inference system plus finite state
machine. One of the experiment results is shown in Figure 13

TABLE 7. Sleep information of subject 001.

with two subgraphs: Figure 13(a) employs the way in [8] and
Figure 13(b) utilizes the method in this article. It is clear that
many jitters are generated by the fixed thresholdmethod. Tak-
ing the red oval circle as an example, we select representative
eleven points in this area, and show their physiological signals
in Table 6. This patient has coronary heart disease, and his
average heart rate is 55, which is lower than the normal 70.
If the normal human heart rate is used as the threshold of
the input parameter for sleep determination, some misjudg-
ments will occur. For example, the patient is currently in the
NREM 2 stage, but is considered as in the NREM 1, which
can also be seen at the peak in the red oval circle in Figure
13(a). Comparing the fixed threshold, the proposed method
in this paper can effectively eliminate the jitters, as shown
in Figure 13(b). The sleep stages determined by different
methods are listed in the last two columns of Table 6.
Example 2: The sleep time and percentages of each sleep

stage of subject 001 are shown in Figure 14. It is shown that
the subject has an REM period of about 17%, and the NREM
3 period exceeds 30% overnight, which means that he has
difficulty falling asleep, but the quality of sleep is not bad.
More details are given in Table 7. In the PSG test, all sleep
stages except NREM 3 are regarded as light sleep. The PSG
test values are very close to our conclusions. For instance, its
deep sleep time (NREM 3 stage) is 36.77%, and our result
is 37.07%. Meanwhile, after examining his self-administered
questionnaire, we find that he feels hard to sleep, but he
feels energetic during the day. This is consistent with our
experimental analysis results.

The sleep time and percentages of each sleep stage of sub-
ject 002 are shown in Figure 15 and Table 8. We can clearly
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FIGURE 11. The application of system.

FIGURE 12. Three pressure sensors place under the pillow.

see that the REM period is less than 9%, and the NREM 2 and
NREM 3 periods are 36% and 44%, respectively. That means
he has a good rest in the physical body, but the brain repair
time is not enough. The subject says that he falls asleep
normally, but he often wakes up in a nightmare, and he feels
tired after getting up. The experimental conclusions are also
consistent with the PSG test and his sleep questionnaire.

TABLE 8. Sleep information of subject 002.

Example 3: To illustrate that the proposed approach works
well across different subjects, we list all patients’ information
in Table 9. There are 24 subjects, including 13 males and
11 females. The 24 subjects have different age levels. A total
of more than 200 sleep experiments are performed in our
results. For each subject, we performed sleep measurements
for 10 days continuously, with the least number of subjects
being measured 5 times and the most patients being measured
10 times in the period; the PSG, PSQI, and our method are
adopted in each sleep test. The light sleep includes REM +
NREM 1 + NREM 2 and the deep light sleep represents
NREM 3. We measure the patients’ light sleep time, deep
sleep time, and total sleep time in different ways, and then
average the results of multiple cases. The percentage values
of each column of the PSG and our method are the corre-
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TABLE 9. The sleep data information of 24 subjects.

FIGURE 13. The comparison of sleep stage determining between the
fixed threshold [8] with the proposed fuzzy inference system plus finite
state machine work.

sponding sleep time divided by the total sleep time. If the
PSGmethod is used as a standard, 12 people have severe sleep
disorders (deep sleep time is less than 25% [23]). Two sub-
jects are misjudged by our method, and their ID are 013 and
023. Each sleep stage of them is shown in Table 10, where
the upper row of data for each patient is collected by the PSG
method, and the next row of data is adopted by our method.
It clearly shows that our method basically determines the
sleep stages accurately, no matter the age, gender, insomnia

FIGURE 14. Sleep time and proportion of subject 001.

or not; offsets are within the allowable range, and the overall
accuracy rate reaches 83% ((1 − 2

12 ) × 100%). In contrast,
if we still use the PSG method as the benchmark, adopting
the same population, and applying the Mi band and pressure-
sensing pillow separately, the proportions of subjects who
can be detected severe sleep disorders are only 70.2% and
51.6%, respectively. This also validates our previous assump-
tions that more physiological signals can get a more accurate
decision of sleep analysis, as long as we can organize the sig-
nals together. However, deciding how to effectively integrate
these signals is a challenging task, which deserves in-depth
research.

The proposed method also has its limitations. First, due
to the lack of brain wave collection, it is impossible to
distinguish the Awake stage. Second, many physiologi-
cal parameters, such as respiratory, oxygen saturation, and
oxygen index reduction etc., which are closely related to
sleep quality, cannot be applied in the presented method.
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FIGURE 15. Sleep time and proportion of subject 002.

TABLE 10. A detailed presentation of misjudged data.

Third, the PSG method can split between, moderate, and
severe sleep disorders, which is not possible to fulfill in
the proposed approach. All in all, the way shown in this
article is suitable for perform at home as a supplement to
medicine.

VI. CONCLUSION
In this paper, we present a non-invasive sleep analysis
approach, which can help us to evaluate the overall quality of
sleep. Through the fuzzy inference, we can get a preliminary
sleep depth by optimizing the division of sleep stage. Then,
a finite state machine is proposed to evaluate the sleep stage
alterations. Experimental results show that the sleep analysis
conclusions obtained by the proposed approach are consistent
with the PSG test. In future, more rules will be expanded into
the fuzzy rule base and some dynamic correction parameters
will be introduced in Section III-H when a state change is
denied by the finite state machine. Dynamic parameters can
help us locate the next reasonable state alteration as much as
possible, instead of simply discarding all the collected values.
We will discuss this in the next paper. In the future we will
analyze the sleep phases by using Petri nets and their related
analysis methods [24]–[27].
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