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ABSTRACT Over people’s lifetimes, the prevalence of shoulder pain exceeds 70%. In particular, 70% of
shoulder pain is caused by the rotator cuff lesions that are located in the supraspinatus area. The automatic and
quantitative segmentation of the supraspinatus area can provide a more-objective and accurate assessment
of the rotator cuff lesions. In this paper, 108 shoulder ultrasound images comprised the image database to
evaluate the proposed segmentationmethod, and amultilayer self-shrinking snake (S3), based on amultilayer
segmentation framework, was used to achieve optimal segmentation. Using a rough initial contour that
enclosed the supraspinatus area, the modified snake was shrunken with an iteration procedure according
to the boundary conditions that included the elasticity, curvature, gradient, and distance. In the performance
evaluation, S3 achieved an F-measure of 0.85. The success of S3 could provide more-objective location
information to physicians diagnosing rotator cuff lesions.

INDEX TERMS Ultrasound, shoulder pain, rotator cuff, segmentation, supraspinatus segmentation, snake.

I. INTRODUCTION
The lifetime prevalence of shoulder complaints is 70% [1].
Shoulder pain may lead to an inability to work and carry out
activities of daily living, which is a burden to both patients
and society. Each year, health authorities in the United States
spend $7 billion for shoulder pain, which is also responsible
for 13% of sick leave [2]. Among the causes of shoulder
pain, rotator cuff lesions account for up to 70% [3], [4].
Neer’s classification summarizes rotator cuff lesions into
three phases [5]: inflammatory responses (localized swelling
and bleeding), calcification and fibrosis, and full- or partial-
thickness tears.

Populations suffering from rotator cuff lesions have shoul-
der pain and difficulties gripping due to limited forward
elevation, and weak abduction and external rotation. Tears,
the most-severe lesions, have a prevalence rate of 20.7% and
worsen previous limitations. The prevalence rate of tears is
expected to increase due to the current aging of societies
worldwide.

Clinically, the severity of rotator cuff lesions affects
the effectiveness of commonly used clinical tests, and
physical examinations are considered unreliable in diag-
nosing rotator cuff lesions [6]. Also, inter-observer vari-
abilities exist between physicians, which makes it difficult
to reach a consensus [7]. A proper assessment relies on
imaging modalities such as ultrasound (US), but magnetic
resonance imaging (MRI) is more practical [8]. Shoulder
US was suggested to be an effective tool for detecting
rotator cuff lesions [9]–[11] and full-thickness tears. The
performance achieved by experienced musculoskeletal radi-
ologists or shoulder orthopedic surgeons is comparable to
that with MRI [11], [12]. However, lower accuracy is likely
obtained when diagnosed by general radiologists or US tech-
nicians [13]. Inter-operator variability should be reduced to
strengthen the role of US in clinical use.

The difficulties of the supraspinatus segmentation due to
the low contrast and speckle noises in the US images which
lead to unobvious boundary and incomplete region of target.
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Suppressing the effect caused by speckle noises is critical
to obtain complete supraspinatus boundaries. In recent stud-
ies, Gupta et al. [14] proposed an approach to determine
the orientation of the supraspinatus area in US images by
curvelet transformation. The curvelet transformation approx-
imated the shape of supraspinatus area with a roughly smooth
curve. Jabbar et al. [15] used a convolutional neural net-
work (CNN) to segment supraspinatus areas. CNN relies on
definite labeling to do supervised learning but the boundaries
of supraspinatus areas in US are blurred. The high uncer-
tainty may affect the segmentation accuracy. The result can
be compared to the study of Kim et al. [16] which used
MRI for automatic supraspinatus segmentation. With high
resolution and less noises, MRI segmentation achieved better
results. To make US become more promising in clinical use,
the challenging of supraspinatus segmentation in US should
be addressed.

Quantitative analyses are increasingly needed to pro-
vide objective accordance to reduce variability among oper-
ators. Thus, this study proposes a quantitative method
for supraspinatus segmentation from shoulder US images.
Fig. 1 illustrates that numerous line segments can appear in
rotator cuff lesions in original shoulder US images.

FIGURE 1. Supraspinatus areas shown on shoulder ultrasound. The red
lines in (c) and (d) are manually delineated boundaries of supraspinatus
areas in (a) and (b), respectively.

Manually delineating supraspinatus areas is time consum-
ing and induces substantial inter- and intra-operator variabil-
ity. To obtain a balance between accuracy and efficiency,
a semiautomatic supraspinatus segmentation procedure using
amultilayer self-shrinking snake (S3) was developed. In com-
parison, the level-set method is commonly used in tumor
segmentation [17]. However, there are numerous positions
for defining seeds, by users, which can lead to operator-
dependence. Another issue is that a growing contour from
positions inside the target area may cause leakage at the

unclear boundary close to the background. The proposed S3

uses an objective region of interest (ROI) as an initial contour
that is then shrunken to the target area, thereby avoiding this
problem. When using the S3, anatomical structures on shoul-
der US images need to be further clarified. Analyzing tissues
enclosed in the segmented area can provide more-reliable
diagnostic information for physicians.

II. MATERIALS AND METHODS
A. US ACQUISITION
This study was approved by the institutional review board
of New Taipei City Hospital (New Taipei City, Taiwan), and
informed consent was waived because it was a retrospec-
tive study. In total, 108 shoulder US images were obtained
from January 2011 to February 2014. An Aloka alpha-6 US
scanner (Hitachi-Aloka Medical, Tokyo, Japan) with a linear
array probe (width: 36 mm) ranging 5∼13 MHz was used
for the examination. Scanner settings were consistent for
all patients. A standard sitting position and a routine proce-
dure were followed. The acquired images were transformed
from Digital Imaging and Communications in Medicine to
BMP format and stored as 8-bit files that ranged 0∼255.
A shoulder orthopedic surgeon was in charge of delineating
the supraspinatus areas as the gold standard to evaluate the
segmentation method.

B. MULTILAYER S3

The main idea of the proposed segmentation method, the S3,
is a modified form of a snake [18]–[20] with an initial contour
defined as a bounding box to enclose the supraspinatus area.
As it evolves, the initial contour automatically shrinks to the
desired boundary in multiple layers of iterations. As shown
in Fig. 2, the flowchart of the S3 illustrates the serial steps
and corresponding middle images.

S3 is a multi-layer self-shrinking iteration that combines
noise reduction, shape description, and classification tech-
niques to establish an architecture to deal with the inherent
noisy appearance of US images. To our knowledge, this is
the first study to systematically deal with speckle noise. For
contour convergence, a newly developed distance force is
combined with the other three conventional forces, i.e., the
elasticity, curvature, and gradient, to fit the edges. The dis-
tance force is especially useful for determining whether an
edge gradient exists between the speckle noise and back-
ground tissues.

After preprocessing for noise suppression, the first layer
using a Hough transformation [21] followed by the S3 was
performed to obtain dominant boundaries inside the initial
contour. The Hough transformation extracts meaningful line
segments according to characteristics of the supraspinatus
boundaries, such as the angle and lengths of horizontal and
vertical lines. The next layers further optimize the boundaries
usingOtsu’s method [22] and the S3. Otsu’s method considers
the echogenic composition inside the detected boundaries
which can become a useful criterion, since the supraspinatus
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FIGURE 2. The automatic segmentation rotator cuff framework.

area has a clear edge between internal hyperechogenic tis-
sues and external hypoechogenic tissues. The S3, the core
of boundary detection, was formulated using the elasticity,
curvature, gradient, and distance.

C. PRE-PROCESSING
Speckle noise inherent in US images has a granular
appearance with intensity variations in gray levels. Sup-
pressing the effect caused by speckle noise is critical to
obtain complete supraspinatus boundaries. While conven-
tional noise-removing filters, including mean and median
filters, can locally reduce the noise, the boundaries are more
or less simultaneously blurred. In the experiment, anisotropic
diffusion [23] was used to improve the image quality while
preserving important boundary information (Fig. 3b). The
formula is listed below:

∂

∂t
I (x, y, t) = div [c (‖∇I‖) · ∇I ]; (1)

where div indicates a divergence function for the gradient
operator ∇, and || · || is the magnitude. I (x,y,0) is the initial
image with x and y as coordinates, and t is the iteration
step. c(||∇I ||) is the diffusion function that monotonically
decreases by means of the gradient magnitude.

D. MULTILAYER OPTIMIZATION
As previously mentioned, segmentation was optimized using
a multilayer approach. The first layer was composed of a
Hough transformation [21] and the S3. The Hough transfor-
mation is powerful in detecting straight lines to preserve the
characteristic and structural information of the supraspinatus.
In our observations, supraspinatus boundaries had longer
horizontal and shorter vertical line segments which became
target lines in the Hough transformation. Using the definition
below, the original US image was transformed into a domain

FIGURE 3. An example of the segmentation procedure. (a) The original
ultrasound image. (b) After anisotropic diffusion smoothing. (c) Line
characteristics of the rotator cuff boundary. (d) The Hough transformation
result after Otsu’s binarization. (e) Supraspinatus area extraction
according to echogenicity. (f) The remaining maximum region fed to the
next layer.

of line segments with different angles:

I (x, y)⇒ R = x cos(θ )+ y sin(θ ). (2)

The lines of interest (Fig. 3c) were within the defined angle
range of−60◦ to 60◦ , the lengths exceeded 40 pixels, and the
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gap was 40 pixels between lines. In the first layer, rough but
satisfactory initial boundaries were obtained. Taking n as the
total number of iterations, the other n-1th layers composing
Otsu’s method [22] and the S3 were continuously applied to
fine-tune the boundaries. Otsu’s method can automatically
separate echogenicities of tissues enclosed by the boundaries
into two groups as follows:

µa =

t∑
i=0

h(i)× i

t∑
i=0

h(i)
, (3)

µb =

255∑
i=t+1

h(i)× i

255∑
i=t+1

h(i)

, (4)

σa(t) =
t∑
i=0

(µa − i)2 × h(i), (5)

σb(t) =
255∑
i=t+1

(µb − i)2 × h(i), and (6)

T = argmin
t
(σa(t)+ σb(t)); (7)

where h(i) is the number of intensity i, and T is the threshold
of Otsu’s method. Tissues were separated into two groups,
a and b, according to their echogenicities.
Due to the fact that there was a clear edge between internal

hyperechogenic tissues and external hypoechogenic tissues in
the supraspinatus area, the result in Fig. 3e can be obtained.
Leaving the dominant region while removing surrounding
noise, Fig. 3f shows another initial but more-accurate bound-
ary to the subsequent S3. Iterations were continuously exe-
cuted until the difference between the nth and n-1th layers was
< 20 pixels.

E. SELF-SHRINKING SNAKE (S3)
The S3 performed in each layer is the fundamental basis of
the proposed segmentation method. It is a modified form of
a snake guided by constraint terms and target information
using control points on the initial boundary that are shrunken
to the target supraspinatus. During the evolution, how the S3

shrinks depends on the balance of four forces: the elasticity,
curvature, gradient, and distance. Combining the four forces
together determines the linked edges between control points
on the evolving boundary to achieve the S3:
For all N pixels, pi, in the initial ROI, p is the set of control

points, where i = 1. . .N , and N depends on the size of the
initial ROI.

S3(pi) = argMIN
v

(Ela+ Cur + Gra+ Dist),

v ⊂ neighbors of pi (8)

In Eq. (8), each control point, pi, finds the mini-
mum of the energy function, S3, to move the control

point, pi, to the new position, and the decision rule is
according to the neighbors of pi at v: {(x − 1, y − 1),
(x, y− 1), (x+ 1, y− 1), (x− 1, y), (x+ 1, y), (x− 1, y+ 1),
(x, y + 1), (x + 1, y + 1)} by a 3 × 3 mask, which has the
minimum energy of S3. v is the set of candidate pixels in the
maskwhich p is moving to. Same definition of v is in Eq. (10),
(11), (13) and (14).
• Elasticity:

d̄ =

‖pN − p1‖ +
N−1∑
j=1

∥∥pj+1 − pj∥∥
N

, (9)

Ela =
∣∣d̄ − ‖v− pi−1‖∣∣ , (10)

• Curvature:

Cur = ‖(pi+1 − v)+ (pi−1 − v)‖2 , (11)

• Gradient:

g(x, y) =
√
(I (x+1, y)−I (x, y))2+(I (x, y+1)−I (x, y))2,

(12)

Gra = max _gradient − g(v(x, y)), (13)

and
• Distance:

Dist = Closest(‖v− T arget‖); (14)

where elasticity defines the gap between all of the control
points that can be used to restrict the contour shrinkage. d̄ is
the average distance between pairs of p in each iteration.
Curvature limits the bending conditions of the curve. For
example, a larger value indicates a curvier line, and a smaller
value indicates an approximate straight line. Gradient is the
difference between function g and the maximum gradient
in the image denoted by max_gradient in Eq. (13); g is the
difference between adjacent pixels in both the horizontal
and vertical directions. High gray-scale variations around
the boundary result in high gradients. A newly developed
distance force was proposed for the energy function. Dis-
tance is the shortest distance between the control points and
the target region. The distance force is especially useful for
determiningwhether the edge gradient exists between speckle
noise and background tissues, and the output region of each
layer after the Hough or Otsu method denoted by Target in
Eq. (14). In equations (9∼14), parameter p is the control
point set, and N is the number of control points, so pi is
index i of control point p. I (x, y) means the intensity value
of the coordinate x and y on the image. However, control
point pi also has information on coordinates x and y, and
similarly is related to I (x, y). A control point is moved
to the next position which has the minimum argument of
the four forces in the eight connected neighbors (a 3 × 3
mask). A flowchart of S3 is shown in Fig. 4. If two control
points are too close to each other, these two are replaced by
a single new control point between them. On the other hand,
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a new control point is inserted between two distant points.
This manipulation takes both efficiency and smoothness into
consideration.

We followed the modified snake, i.e., the greedy algo-
rithm by Williams and Shah, rather than the original snake,
i.e., Snake: Active Contour Model of Kass et al. [18] and
Williams and Shah [19], [20]. The difference is that the
greedy algorithm makes locally minimum optimal choices,
and the final solution is the globally optimal result for the
target contour. In our multilayer process, each iteration deter-
mines the minimum sum of the four forces including Ela,
Cur, Gra, and Dist in Eq. (8) to optimize boundary detection.
The iteration in Fig. 4 is a necessary procedure used to sup-
press speckle noise in US images. Speckle noise appears as
extremely high or low intensities in the range of 0∼255 in US
images. Differentiating the difference of the true boundary
and speckle noise is not deterministic and should be refined
in the iteration for accuracy.

FIGURE 4. Flowchart of the self-shrinking snake (S3).

III. EXPERIMENTAL RESULTS
In total, 108 shoulder US images were used to evaluate the
proposed segmentation method. Taking the manual delin-
eation of an orthopedist as the gold standard, the performance
of the S3 was verified. The accuracy, precision, recall, and
F-measure were the performance metrics used in the eval-
uation. ‘Accuracy’ estimates how much area was detected
without involving unnecessary background tissues. ‘Preci-
sion’ is also called the positive predictive value, and ‘recall’
is the sensitivity measuring the relevance. The ‘F-measure’
can be used to represent the relationship between precision
and recall. Definitions of these performance metrics are as

follows:

Accuracy =
S3 ∩ STD
S3 ∪ STD

, (15)

Precision =
TP

TP+ FP
, (16)

Recall =
TP

TP+ FN
, and (17)

F-measure =
2× (precision× recall)
precision+ recall

; (18)

TABLE 1. Statistics of performance indices for supraspinatus
segmentation.

where S3 is the segmentation result, and STD (standard)
is the gold standard. TABLE 1 shows distributions of the
performance indices. Fig. 5 shows two examples with suc-
cessful segmentation results and box plots of four perfor-
mance indices. On average, the accuracy, recall, precision,
and F-measure were respectively 0.75, 0.89, 0.83, and 0.85.
The proposed method could advantageously handle images
with noise. Taking the results in

FIGURE 5. Two examples (a and b) with successful segmentation results
and box plots (c) of four performance indices.

Fig. 6 as an example, the multilayer S3was noise resistant.
F-measure values of the two examples in
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FIGURE 6. Two supraspinatus ultrasound images with substantial noise
that were successfully segmented.

FIGURE 7. Two ultrasound images with unsatisfactory segmentation and
low contrast.

Fig. 6 were 0.86 and 0.92, respectively.This advantage is
especially useful in segmenting regions in US images.

Fig. 7 shows two low-contrast examples, which would
normally lead to failure of accurate segmentation.

IV. DISCUSSION
This study proposed a multilayer shrinking snake procedure,
the multilayer S3, to segment the supraspinatus on shoulder
US images. A simple bounding box enclosing the supraspina-
tus area was defined as the initial contour. During evolution,
the initial contour was automatically shrunken to the desired
boundary with multiple layers of iterations. The F-measure
was used in the experiment to evaluate the performance
of the proposed segmentation method [24]. The resulting
F-measure at 0.85 indicated that the segmentation method
was satisfactory. From Fig. 6, the S3was demonstrated to be
noise resistant.

In the evaluation, several commonly used segmentation
methods, including level-set, fast marching, and the original
snake, were compared in the experiment. Level-set is capable
of segmenting medical images, but different positions of the
initial seeds greatly affect the results [17] as shown in Fig. 8a.
The supraspinatus area is composed of heterogeneous tissues,
and it is a challenge to define initial seeds. Fast marching is
similar to region growing, which evolves the seeds to the tar-
get boundaries [17] as shown in Fig. 8b. Also, different loca-
tions of the initial seeds result in inconsistent segmentation.
The original snake, as shown in Fig. 8c, using the initial con-
tour without the fine-tuning process as shown in S3 resulted
in poor segmentation. TABLE 2 shows that F-measures of the
level-set, fast marching, and original snake were< 0.73, 0.36,
and 0.70, respectively. These results indicate that they were
not customized to resolve segmentation in noisy situations.

FIGURE 8. Supraspinatus segmentation results by various existing
methods. (a) Level-set, (b) fast marching, and (c) the original snake.

TABLE 2. Performance comparisons of different segmentation
approaches.

In other recent studies, Gupta et al. [14] proposed an
approach to determine the orientation of the supraspinatus
area in US images by curvelet transformation. A polynomial
interpolation was also used as post-processing to smooth
the boundary but more or less included background tissues.
Jabbar et al. [15] used a convolutional neural network (CNN)
to segment supraspinatus areas with a close accuracy of 80%
to our result. The CNN works upon high-quality labeling in
supervised learning. The inherent speckle noise in US images
can lead to uncertainty in determining boundaries thereby
affecting CNN segmentation, and in addition, the compu-
tation cost is substantial. For the resistance of variability,
Fig. 9 shows that even when applying different initial ROI
sizes to the target supraspinatus, similar segmentations can
be obtained.

A limitation of the multilayer S3 is that a semiautomatic
ROI definition of the initial contour is needed. A bounding
box enclosing the supraspinatus boundaries should be clearly
defined by the user. If the boundary is unclear, the low con-
trast can also cause segmentation to fail. In a future study,
more anatomical information about the supraspinatus bound-
aries would be helpful for fully automating the segmentation
process, such as a textural analysis of the surrounding fat
and bone. However, whether the extra computation would be
efficient for clinical use will have to be evaluated.
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FIGURE 9. Segmentation comparisons from different initial regions of
interest (ROIs). (a) Original image, (b) ground truth image;
(c), (e) and (g) are initial ROIs with different sizes and positions.
(d), (f), and (h) are results of (c), (e), and (g).

Other future work is to detect potential rotator cuff lesions
and lesion classifications [25] in the supraspinatus region
segmented by the multilayer S3. Based on accurate segmen-
tation, computer-aided lesion detection and diagnosis may
be more useful since the location information provided by
the segmented supraspinatus is more reliable. Quantitative
intensity and textural features would thus be extracted to
establish models with reduced variabilities.

V. CONCLUSIONS
This study proposed a S3, a multi-layer self-shrinking iter-
ation combining noise reduction, shape description, and
classification techniques to establish an architecture to deal

with the inherent noisy appearance of US images. The per-
formance achieved an F-measure of 0.85. The accuracy can
providemore-objective location information to physicians for
diagnosing rotator cuff lesions.

In practice, when operating US on a patient’s shoulder,
general radiologists or US technicians can first define a rough
area in which they are interested; then the S3can automati-
cally refine the detected supraspinatus area in real-time. With
the rapid calculation and display on the monitor, the existence
and locations of rotator cuff lesions can be better estimated.
The accuracy of the diagnosis would be helpful for subse-
quent treatment decisions.

Potential future work would be to use the CNN to segment
supraspinatus areas. Jabbar et al. [15] established a CNN,
but it resulted in a worse performance than this study. The
cause may have been speckle noise. Region-wise, rather than
pixel-wise, object detection and segmentationmay be another
solution.
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