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ABSTRACT Three-dimensional (3D) point clouds are important for many applications, including object
tracking and 3D scene reconstruction. Point clouds are usually obtained from laser scanners, but their
high cost impedes the widespread adoption of this technology. We propose a method to generate the 3D
point cloud corresponding to a single red–green–blue (RGB) image. The method retrieves high-quality
3D data from two-dimensional (2D) images captured by conventional cameras, which are generally less
expensive. The proposed method comprises two stages. First, a generative adversarial network generates a
depth image estimation from a single RGB image. Then, the 3D point cloud is calculated from the depth
image. The estimation relies on the parameters of the depth camera employed to generate the training data.
The experimental results verify that the proposed method provides high-quality 3D point clouds from single
2D images. Moreover, the method does not require a PC with outstanding computational resources, further
reducing implementation costs, as only a moderate-capacity graphics processing unit can efficiently handle
the calculations.

INDEX TERMS Artificial intelligence, image processing, sensors, machine learning, neural networks.

I. INTRODUCTION
Three-dimensional (3D) point clouds are widely used in a
variety of applications such as object tracking [1]–[4] and
3D scene reconstruction of both indoor [5], [6] and out-
door [7]–[14] environments. In the latter, 3D point clouds
along with two-dimensional (2D) textures allow to recon-
struct photorealistic 3D scenes. Point clouds are usually
obtained from laser scanners, but their cost is sometimes
prohibitive. Therefore, we aim to obtain the 3D point cloud
from a single red–green–blue (RGB) image captured from an
inexpensive 2D camera. Several methods are available to esti-
mate 3D data from 2D images [15]–[18]. Nevertheless, these
methods present disadvantages, as discussed in section 2.

Generative adversarial networks (GANs) [19]–[24],
inspired by the Darwin’s theory of evolution, are being
extensively studied in artificial intelligence. A GAN model
contains two networks, namely, generator and discriminator.
The generator creates candidates that are evaluated by the
discriminator, and these networks compete to increase the
error rate of each other. After several training iterations,
the competition outcome retrieves high-quality synthetic

candidates. Based on GANs, we aim to develop a system
that automatically generates a 3D point cloud from a single
RGB image. Specifically, a GAN model generates a depth
representation from the RGB image, and the estimated repre-
sentation is used to create the corresponding 3D point cloud.
We employed Kinect datasets for training and testing the
proposed method.

The remainder of this paper is organized as follows.
Section 2 provides an overview of the literature related to
3D point cloud generation, depth image generation, and some
applications of GANs. Section 3 details the proposed point-
cloud generation method. In Section 4, we provide experi-
mental results and evaluations. Finally, we draw conclusions
and propose directions of future work in section 5.

II. RELATED WORK
Galabov et al. [15] and Swarna Priya et al. [16] present
methods for generating a 3D scene from multiple 2D images.
In these methods, the extracted features across several 2D
images captured from different views of a scene are used
to estimate the corresponding 3D data, retrieving accurate
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results. However, these methods cannot be applied to a single
2D image. Lee et al. [17] proposed a 3D scene generator from
a single RGB image by extracting a list of line segments from
an indoor image, and then generating a scene interpretation
from the line segments. However, this method is not accu-
rate if the environment has many small objects with vari-
ous shapes. Abdulqawi and Mansor [18] presented a similar
study to the one we propose by estimating a dense point
cloud from a single 2D image. Nevertheless, their method
is suitable only for single objects, thus impeding estimation
of 3D scenes, which generally contain multiple objects. The
method we propose aims to overcome these disadvantages by
employing a new approach for research on the transformation
of 2D into 3D data.

GANs were introduced by Goodfellow et al. [19] in 2014.
The GAN model comprises two competing neural networks,
and after training, both networks become ‘‘experts’’ in gen-
erating and discriminating images. This method retrieves
synthetic images that look, at least superficially, authentic
to human observers. This ability has turned GANs into a
hot research topic in artificial intelligence, with thousands
of publications available worldwide[20]–[24]. For instance,
Wu et al. [20] present a GAN method to generate 3D objects
from vectors without requiring a reference image or object
by using voxels for representation. However, the method can
generate only individual objects with low resolution, thus
being not suitable for reconstructing 3D scenes of indoor and
outdoor environments.

The method we propose requires the transformation
of data from an RGB image into depth information.
In addition, as we used Kinect datasets, the transforma-
tion must handle images with resolution of 640 × 480
pixels. Zhu et al. [21], Isola et al. [22], Radford et al. [23],
and Wang et al. [24] proposed several image-to-image con-
version methods aiming to automatically map an image
from one group into one from other groups and vice versa.
Although theseGAN-basedmodels are similar to ourmethod,
the results in [21]–[23] are only suitable for low-resolution
images (up to 256×256 pixels), as higher resolution retrieves
repeated parts and blurry areas. Therefore, using these meth-
ods for 3D point cloud estimation from depth images would
introduce excessive noise.

Wang et al. [24] overcame this issue by proposing high-
resolution synthetic image generation, in a method called
pix2pixHD, from label maps and instance maps. The method
can handle an image resolution of 2048× 1024 pixels, being
suitable for our objective. In fact, as we need to generate
highly accurate depth images for estimating point clouds,
pix2pixHD would be a good choice. However, pix2pixHD
requires a high-performance PCwith at least a 12GB of video
random access memory (VRAM) of graphics processing unit
(GPU) for implementing the standard model, whereas the full
model demands a 24 GB of VRAM. Therefore, pix2pixHD
cannot be directly implemented on a PCwith regular capacity.
Hence, we customized a method based on pix2pixHD to
efficiently run on a PC having a 4 GB GPU, as detailed in

FIGURE 1. Diagram of proposed 3D point cloud generation.

section 3. Finally, to estimate the 3D point cloud from the
depth image, we employed the camera model proposed by
Zhang et al. [25].
In [26]–[31], a variety of deep neural networks to cre-

ate depth images and 3D scenes from single RGB images
are presented. We compared these methods to our pro-
posed method to evaluate its performance on the NYU-Depth
V2 dataset [32]. Moreover, we tested the proposed method on
the TUM’s RGB-D SLAM Dataset and Benchmark [33].

III. THREE-DIMENSIONAL POINT CLOUD
RECONSTRUCTION
The proposed method generates a 3D point cloud from a
single RGB image in two stages, as illustrated in Figure 1.
First, a depth image is created via the generator of a GAN,
whose input is a 2D digital image, obtained after training.
Second, we estimate the corresponding 3D point cloud from
the generated depth image. At this stage, we also consider the
2D image as input to gather color information for the point
cloud. Each stage of the proposed method is detailed below.

A. GAN FOR TRANSFORMING RGB IMAGE INTO
DEPTH IMAGE
To transform an RGB image into the corresponding depth
image, we customized pix2pixHD proposed in [24]. In turn,
pix2pixHD relies on the conditional GAN proposed by
Isola et al. [22] to generate photorealistic images from
semantic label maps and instance maps. As we aim to gen-
erate depth images, which is a completely different objective,
we cannot apply pix2pixHD directly. Instead, we modi-
fied pix2pixHD to satisfy two goals, namely, create high-
quality synthetic depth images from RGB ones and minimize
the hardware requirements to efficiently run the proposed
method on a limited GPU. The proposed model is illustrated
in Figure 2 and contains two networks. Generator G learns
to map 2D image X with random noise vector Z into depth
image Y ,G : {X ,Z } → Y . The generator is trained to
produce depth images that cannot be distinguished from
the ground truth using adversarial discriminator D, which
is trained to detect the synthetic depth images created by
generator G.

In our GANmodel, we employed a single global generator
for the pix2pixHDmodel. GeneratorG includes three compo-
nents: one convolutional front-end, one set of residual blocks,
and one transposed convolutional back-end. In addition, we
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FIGURE 2. GAN model for generating depth image from 2D image.

decomposed discriminatorD into two sub-discriminators,D1
and D2. Discriminator D1 works with the full-resolution syn-
thetic images retrieved by the generator, whereas D2 works
with half-scale synthetic images. Hence, discriminator D1
provides a global view of the depth image to guide generator
G to create globally consistent images, whereas discriminator
D2 directs generator G to create sharp and accurate images.
Moreover, D2 prevents G from retrieving repeated patterns
on the synthetic depth images. Both discriminators have the
same structure employed in [24].

The objective function of our conditional GAN model is
based on that from pix2pixHD. We propose to model the
conditional distribution of depth images given the input RGB
images via the following minimax game:

min
G

max
D1D2

∑
k=1,2

L1 (G,Dk)

+ µ ∑
k=1,2

L2 (G,Dk)


(1)

where L1 and L2 are loss functions defined in formulas (2)
and (3), respectively, with L1 corresponding to the objective
function of the conditional GAN in [22] and L2 defining a
feature matching loss function, µ weighs feature matching
loss, and Dk denotes the sub-discriminator. In formula (3),
D(i)
k is the ith-layer feature extractor of discriminator Dk ,

and T and Ni represent the number of layers in discrim-
inator Dk and number of elements per layer, respectively.
In [22] and [24], the L1 distance is preferred over the L2
distance as it reduces blurring, and therefore we selected the
L1 distance in formula (3). Overall, G tries to minimize the

FIGURE 3. Coordinate systems and characteristics of camera model.

objective against adversarial D that tries to maximize it.

L1 (G,Dk) = EX,Y [logDk (X, Y)]

+EX,Z[log(1− Dk(X,G(X, Z)))] (2)

L2 (G,Dk) = EX,Y
∑
i=1..T

1
N i

×

(∥∥∥D(i)
k (X, Y)− D(i)

k (X,G (X, Z))
∥∥∥
1

)
(3)

After each iteration, we fine-tune networks G and D =
{D1,D2} and train the model until both G and D become
experts. After training, we use generator G to retrieve depth
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FIGURE 4. Outcomes from the proposed method on the TUM’s RGB-D SLAM Dataset and Benchmark. (a) Input RGB images; (b) 3D point clouds
generated by the proposed method; (c) 3D point clouds generated by ground-truth depth images.

images from single RGB images to finally create the 3D point
clouds as detailed in the sequel.

B. CONVERSION OF DEPTH IMAGE INTO
3D POINT CLOUD
We estimate the 3D point cloud from a depth image
based on the camera calibration technique proposed by
Zhang et al. [25], who showed that each camera has intrinsic
parameters that enable estimation. Figure 3 illustrates the
coordinate systems of a camera model. Point Q on the plane
can be easily obtained from point P in the space through a
perspective projection. Conversely, we cannot exactly deter-
mine point P in space if only pointQ on the plane is available,
because Q → P is not a one-to-one mapping. However,
if the intrinsic parameters of the capturing camera and depth
at location Q are available, it is possible to exactly determine
point P in space. Based on the camera calibration technique
and the characteristics of Kinect sensor, we were able to
convert depth images into the corresponding 3D point clouds.
The intrinsic parameters of a depth camera are fu, fv, cu, and

cv, where fu and fv are the focal lengths of the camera along
the u and v axes, respectively, and cu and cv represent the
principal point. In Figure 3, (cu, cv) is the center of the image
plane. In the experiments, these parameters should be selected
according to the employed depth camera which we use for
training phase in section 3.1.

The relationship between point P(px , py, pz) in 3D space
and point Q(qu, qv) on the corresponding 2D depth image is
given by formula (4). The inverse transformation results in
formula (5) to convert a pixel at location (qu, qv) in the depth
image into 3D point (px , py, pz). In formula (5), parameter d
is the depth of location (qu, qv) with respect to the camera and
s is a scale factor. For determining the coordinates of point P
in space, we need to first calculate the z-axis value of point P,
pz, bymultiplying depth d by scale factor s, and then calculate
px and py using their corresponding equations in formula (5).

 qu
qv
1

 =
 f u 0

0 f v
0 0

cu 0
cv 0
1 0
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FIGURE 5. Outcomes from the proposed method on the NYU-Depth V2 dataset. (a) Input RGB images; (b) 3D point clouds generated by the
proposed method; (c) 3D point clouds generated by ground-truth depth images.


px
py
pz
1

 =
 f upx + cupz
f vpy + cvpz

pz

 =

f upx
pz
+ cu

f vpy
pz
+ cv

1

 (4)


px =

pz(qu − cu)
f u

py =
pz(qv − cv)

f v
pz = d × s

(5)

IV. EXPERIMENTS AND RESULTS
We implemented experiments to verify the proposed method
both in qualitative and quantitative terms. Moreover, sev-
eral state-of-the-art methods were used for comparison to
demonstrate the effectiveness and high performance of our
approach.

A. EXPERIMENTAL SETUP
For the experiments, we employed datasets obtained from
Kinect sensors. Specifically, we used the NYU-Depth

V2 dataset [32] and the TUM’s RGB-D SLAM Dataset
and Benchmark [33]. Both datasets are popular and were
employed in many research to compare own performance.
The NYU dataset includes 1449 pairs of RGB and depth
images, from which 795 pairs were used for training and
654 pairs for testing. The TUM dataset includes 2500 pairs
of RGB-D images, from which 2300 were used for train-
ing and 200 for testing. In our method, the quality of the
resulting 3D point clouds depends on the depth estimation
results. Therefore, we constructed a set of ground-truth depth
images to quantitatively evaluate the method. In addition,
we compared the performance of our method against others
on the NYU dataset. To evaluate quality, we employed four
commonly used performance measures, namely, average rel-
ative error (REL), root-mean-square error (RMSE), average
log10 error, and accuracy with thresholds, given by formulas
(6) to (9), respectively.

REL =
1
N

∑
P

|dGTP − dP |
dGTP

(6)
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FIGURE 6. Depth images generated by the proposed and comparison methods on the NYU-Depth V2 dataset. (a) Input RGB images; (b) depth images
using the method in [26]; (c) depth images using the method in [31]; (d) depth images using the proposed method; (e) ground-truth depth images.

RMSE =

√
1
N

∑
P
(dGTP − dP)

2
(7)

L10E =
1
N

∑
P
|log10dGTP − log10dP | (8)

ACCδ =
Nδ
N

(9)

max

(
dGTP
dP

,
dP
dGTP

)
< δ (10)

In the formulas above, dGTP is the ground-truth depth value,
dP is the estimated depth value at pixel P, N is number of
pixels in the evaluated images, and Nδ is the number of pixels
in the evaluated images satisfying condition (10).

The experiments were performed on a PC equipped with
a Nvidia GTX 970 4 GB GPU. For running the GAN
model, we used the Ubuntu 16.04 operating system, Cuda
8.0, and CuDNN 5.1. In addition, we employed PyTorch for
deep learning library and the Python programming language.

We also used minibatch stochastic gradient descent with
learning rate 0.0002, momentum parameters β1 = 0.5 and
β2 = 0.999, parameter µ = 10 based on the model in [24],
and 32 generator and discriminator filters in the first convolu-
tional layer. The training times for the NYU-DepthV2 dataset
and the TUM’s RGB-D SLAMDataset and Benchmark were
approximately one and three days, respectively. The Kinect
sensor parameters were fu = 535.4, fv = 539.2, cu = 320.1,
and cv = 247.6. Implementing the method with other depth
sensors can require different parameter values.

B. EXPERIMENTAL RESULTS
All experiments produced suitable results on both datasets.
Figures 4 and 5 show some reconstructed images from the
TUM and NYU datasets, respectively. On both datasets,
the depth images were accurately estimated from the corre-
sponding RGB images. The colored 3D point clouds were
obtained from the depth and RGB images. In both figures,
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FIGURE 7. Depth images on the TUM’s RGB-D SLAM Dataset and Benchmark. (a) Input RGB images; (b) synthesized depth images by the proposed
method; (c) ground-truth depth images.

the left, middle, and right columns show the input RGB
images, the colored 3D point clouds estimated using the
proposed method, and the colored 3D point clouds obtained
from ground-truth depth images, respectively. We considered
the point clouds on the right columns as ground truth for
quantitative evaluation. The resulting 3D point clouds suggest
that the proposed method can generate data similar to the
ground truth.

To quantitatively evaluate the proposed method, we ana-
lyzed both the generated 3D point clouds and depth images.
The quality of the depth images is the most important for out-
put data, as we did not have ground-truth 3D data available.
Still, for a comprehensive evaluation, we first analyzed the
depth images and then the corresponding 3D point clouds by
considering the point clouds generated from the ground-truth
depth images.

To determine the estimation accuracy of depth images,
we compared our results with the depth ground-truth data
by calculating both the error and accuracy measures. The
evaluation results on the NYU-Depth V2 dataset are listed
in Table 1 and include those for the comparison methods.

The accuracy was determined at thresholds of 1.25, 1.252

and 1.253. Table 2 lists the evaluation results for the pro-
posed method on the TUM’s RGB-D SLAM Dataset and
Benchmark. Overall, the quality of the proposed method is
better on the TUM than on the NYU dataset, especially for
accuracy at threshold of 1.25, where the TUM retrieves 19%
more accurate results than the NYU dataset. This improved
accuracy may derive from the larger training data of the TUM
dataset and the more varied scenes available on the NYU
dataset. Some examples to compare the proposed and other
evaluated methods are shown in Figure 6. Comparing the
figures and measures in Table 1 shows that the proposed
method provides a better reconstruction quality than the other
evaluated methods. Figure 7 shows depth images synthesized
by the proposed method on the TUM dataset. These images
(middle column of the figure) are very similar to the cor-
responding ground-truth depth images (right column of the
figure).

Figure 8 shows performance results of the synthetic 3D
point clouds obtained from the proposed method. The blue
and red lines show the rate of the test images with RMSE
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TABLE 1. Evaluation of the proposed and comparison methods on the NYU-depth V2 dataset.

TABLE 2. Evaluation of the proposed method on the TUM’S RGB-D slam dataset and benchmark.

FIGURE 8. Rate of test images with RMSE < r on NYU-Depth V2 Dataset
(blue line) and TUM’s RGB-D SLAM Dataset and Benchmark (red line).

below threshold r on the NYU and TUM datasets, respec-
tively. The line of the TUM dataset converges to 1 faster
than that of the NYU dataset. Overall, the average RMSE
on the NYU dataset is 0.585 and that on the TUM dataset
is 0.420. Consequently, the proposed method applied on the
TUM dataset provides better accuracy than applying it on the
NYU dataset. These results are consistent with the quality of
the synthetic depth images.

V. DISCUSSION
The experimental results demonstrated that we could generate
a high-quality point cloud from a single RGB image. The
proposed method can be applied to the diverse kinds of appli-
cations such as autonomous robots and remote-controlled
systems. For examples, object tracking and 3D scene recon-
struction from the point clouds can be performed. In the
applications, an expensive laser sensor can be replaced by
a low-cost 2D camera, hence the overheads are significantly
decreased. In future work, we will modify our GANmodel to
improve depth estimation and consequently the quality of the
resulting 3D point clouds.

VI. CONCLUSIONS
We propose a method to transform a single RGB image of
a scene into the corresponding 3D point cloud. As GANs
are powerful and flexible tools for generating synthetic data,
we implemented a two-stage GAN-based method to generate
depth images that are then used to reconstruct point clouds.
Experimental results indicate that the proposed method can
effectively create a high-quality point cloud from a single
RGB image. The comparison of the proposedmethod to state-
of-the-art reconstruction methods shows that our method
achieves the best performance by considering visual assess-
ment and quantitative analyses. In addition, our method does
not have high PC hardware requirements including high-
end GPUs. In fact, we verified the efficient execution of
the proposed method on a common PC with a 4 GB GPU.
In future work, we will modify the GAN model to improve
depth estimation and consequently the quality of the resulting
3D point clouds.
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