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ABSTRACT This paper presents the multiobjective optimization aspects of three thermal devices and two
thermodynamic cycles. The thermal devices considered are two-stage thermoelectric cooler, heat pump,
and a plate-fin heat exchanger. The thermodynamic cycles considered are transcritical CO2 cycle and the
irreversible Carnot power cycle. A posteriori is proposed, and it is applied for the multiobjective optimization
of the selected thermal devices and cycles to obtain the sets of nondominated alternative solutions. The results
of computational experiments obtained by the MO-SAMP Jaya algorithm are found to be better than those
obtained by the latest reported optimization algorithms.

INDEX TERMS Carnot cycle, heat pump, Jaya algorithm, multiobjective optimization, plate-fin heat
exchanger, thermoelectric cooler, transcritical cycle.

I. INTRODUCTION
Solving the complex optimization problems in the limited
time is an indispensable issue in the field of engineering
optimization. Due to the complexity of the problems, the con-
ventional methods become tedious and time-consuming
and these approaches do not guarantee the achievement
of the optimal solution. Therefore, metaheuristic based
computational methods (also called advanced optimization
algorithms) are developed. These methods are capable of
achieving the global or near global optimum solution with
less information about the problems.

Some of the well-known advanced optimization algorithms
are: genetic algorithm (GA) and its variants (real coded GA,
parallel GA, hybrid interval GA, etc.), simulated annealing
(SA) algorithm, tabu search (TS), ant colony optimization
(ACO), particle swarm optimization (PSO) and its variants
(e.g. niching PSO, culture-based PSO, aging theory inspired
PSO, etc.), differential evolution (DE) and its variants (e.g.
DE with multi-population ensemble, DE with self-adapting
control parameter, DE with optimal external archive etc.),
nondominated sorting genetic algorithm (NSGA) and its vari-
ants, etc.

In the last decade several metaheuristic algorithms are
proposed. Some prominent algorithms are: artificial bee

colony (ABC) algorithm, imperialist competitive algorithm
(ICA), firefly algorithm (FFA), gravitational search algorithm
(GSA), bat algorithm (BA), cuckoo search (CS), teaching-
learning-based optimization (TLBO) algorithm, differential
search algorithm, colliding bodies optimization algorithm,
grey wolf optimization algorithm, ant lion optimization algo-
rithm, cat swarm optimization algorithm, etc. [1]–[3].

The advanced optimization algorithms have their ownmer-
its but they require tuning of their specific parameters. For
example, GA needs a proper setting of crossover probability,
mutation probability, selection operator, etc.; NSGA needs
crossover probability, mutation probability, SBX parameter,
mutation parameter, etc.; SA algorithm needs initial anneal-
ing temperature and cooling schedule. PSO needs inertia
weight and social and cognitive parameters. Similarly, ICA,
DE and other algorithms (except TLBO algorithm) have
respective specific parameters to be set for effective execu-
tion. These parameters are called algorithm-specific param-
eters and need to be controlled in addition to the common
control parameters of number of iterations and population
size. All population-based algorithms need to tune the com-
mon control parameters but the algorithm-specific parameters
are specific to the particular algorithm and these are also to
be tuned as mentioned above.
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The performance of the optimization algorithms is much
affected by the algorithm-specific parameters. Increase in
the computational cost or tending towards the local opti-
mal solution is caused by the improper tuning of these
parameters. Hence, to overcome the problem of tuning of
algorithm-specific parameters, TLBO algorithm was pro-
posed which is an algorithm-specific parameter less algo-
rithm [3], [4]. Keeping in the view of the good performance
of the TLBO algorithm, another algorithm-specific parameter
less algorithm has been recently proposed and it is named as
Jaya algorithm [5].

The thermal system design process consists of many
objecvtives based on the application requirements and these
objectives are: heat transfer rate, cooling capacity, coeffi-
cient of performance, thermal resistance, pressure ampli-
tude, effectiveness, pressure drop, etc. The total cost of the
system should be minimized while achieving the desired
objectives within the specified limits of the constraints.
A number of design variables and objective functions are
involved in the design optimization of a thermal system.
Therefore, it would be beneficial to apply optimization
techniques to individual components or intermediate sys-
tems than to a whole system. For example, in a thermal
power plant, individual optimization of heat pump, heat
pipe and cooling tower are computationally and mathemat-
ically simpler as compared to optimization of the entire
system [6].

For the design optimization of thermal systems and devices
some advanced optimization techniques have been applied
such as GA, multiobjective GA (MOGA), PSO, ABC, differ-
ential evaluations (DE), Grenade explosion method (GEM),
niched pareto genetic algorithm (NPGA) and teaching-
learning-based optimization (TLBO) algorithm for the opti-
mization of different objectives [7]. These algorithms have
shown their excellent performance in a number of design
optimization problems. However, these algorithms require
algorithm-specific parameters (except TLBO algorithm) to be
tuned.

Recently, an algorithm-specific parameter-less algorithm
called Jaya algorithm has been developed [5]. The Jaya algo-
rithm is simple in concept and is reported to give better results
as compared to the other optimization algorithms. In this
paper a posteriori multiobjective version of Jaya algorithm
named as multiobjective self-adaptive muti-population Jaya
algorithm is developed and this is applied for the design
optimization of selected thermal devices and basic thermal
cycles. The selected thermal devices include two-stage ther-
moelectric cooler (TEC), two-stage irreversible heat pump
(HP), plate-fin heat exchanger (PFHE) and selected basic
thermal cycles include transcritical cycle and irreversible
Carnot power cycle. The key feature ofMO-SAMP Jaya algo-
rithm is that it can provide a set of nondominated solutions in
a single simulation run.

The objectives of this research work are as follows:
a) To develop a posteriori multiobjective version of the

self-adaptive multipopulation Jaya algorithm.

b) To apply the posteriori multiobjective version of the
Jaya algorithm to the design optimization of selected
thermal devices such TEC, two-stage irreversible HP,
PFHE and two basic thermal cycles known as trans-
critical cycle and irreversible Carnot power cycle and
to compare the results with those of the other advanced
optimization algorithms.

The next section presents the details of working of MO
SAMP-Jaya algorithm which is developed and used in this
research papers for the design optimization of selected ther-
mal devices and basic thermal cycles.

II. PROPOSED MO-SAMP JAYA ALGORITHM
In the Jaya algorithm, the candidate solutions in every itera-
tion are updated in accordance with (1) [5]:

A′q,r,i = Aq,r,i + r1 ∗ (Aq,best,i − |Aq,r,i|)

− r2 ∗ (Aq,worst,i−|Aq,r,i|) (1)

where, Aq,r,i is the value of the qth variable for the r th

candidate for the ith iteration, and A′q,r,i is the modified value
of the same. Aq,best,i and Aq,worst,i is value of qth variable
corresponding to the best and worst solutions respectively in
the entire population during the ith iteration. The modified
solutions will be accepted if found better than the previous
solution(s) otherwise old solution(s) will be kept. For more
details of working of the Jaya algorithm the readers may refer
to [7]. The proposed MO-SAMP Jaya algorithm is a pos-
teriori multiobjective optimization version of self-adaptive
multi-population Jaya algorithm [8] which is a modified ver-
sion of Jaya algorithm. The detailed working of MO-SAMP
Jaya algorithm is shown in Fig. 1.

There are basically two approaches to solve a multiobjec-
tive optimization problem and these are: a priori approach
and a posteriori approach. In a priori approach, multiob-
jective optimization problem is transformed into a single
objective optimization problem by assigning an appropriate
weight to each objective. This ultimately leads to a unique
optimum solution. In the a priori approach, the preferences of
the decision maker are asked and the best solution according
to the given preferences is found. The preferences of the deci-
sion maker are in the form of weights assigned to the objec-
tive functions. The weights may be assigned through any
method like direct assignment, eigenvectormethod [9], empty
method, minimal information method, etc. Once the weights
are decided by the decision maker, the multiple objectives
are combined into a scalar objective via the weight vector.
However, if the objective functions are simply weighted and
added to produce a single fitness, the function with the largest
range would dominate the evolution. A poor input value for
the objective with the larger range makes the overall value
much worse than a poor value for the objective with smaller
range. To avoid this, all objective functions are normalized
to have same range. For example, if f1(x) and f2(x) are the
two objective functions to be minimized, then the combined
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objective function can be written as,

min f (x) = {w1

[(
f1(x)
f ∗1

)]
+ w2

[(
f2(x)
f ∗2

)]
(2)

where, f (x) is the combined objective function and f ∗1 is the
minimum value of the objective function f1(x) when solved
it independently without considering f2(x) (i.e. solving the
multiobjective problem as a single objective problem and
considering only f1(x) and ignoring f2(x)). And f ∗2 is the
minimum value of the objective function f2(x) when solved
it independently without considering f1(x) (i.e. solving the
multiobjective problem as a single objective problem consid-
ering only f2(x) and ignoring f1(x)).w1 andw2 are the weights
assigned by the decision maker to the objective functions
f1(x)) and f2(x) respectively.
Suppose f1(x) and f2(x) are not of the same type (i.e.

minimization or maximization) but one is a minimization
function (say f1(x)) and the other is a maximization function
(say f2(x)). In that case, (2) is written as (3) and f ∗2 is the
maximum value of the objective function f2(x) when solved
it independently without considering f1(x).

min f (x) = {w1

[(
f1(x)
f ∗1

)]
− w2

[(
f2(x)
f ∗2

)]
} (3)

In general, the combined objective function can include
any number of objectives and the summation of all weights
is equal to 1. The solution obtained by this process depends
largely on the weights assigned to the objective functions.
This approach does not provide a set of Pareto points. Further-
more, in order to assign weights to each objective the process
planner is required to precisely know the order of importance
of each objective in advance which may be difficult when the
scenario is volatile or involves uncertainty. This drawback
of a priori approach is eliminated in a posteriori approach,
wherein it is not required to assign the weights to the objective
functions prior to the simulation run.
A posteriori approach provides multiple tradeoff (Pareto-

optimal) solutions for a multiobjective optimization problem
in a single simulation run. The designer or process planner
can then select one solution from the set of Pareto-optimal
solutions based on the requirement or order of importance
of objectives. On the other hand, as a priori approach pro-
vides only a single solution at the end of one simulation
run, in order to achieve multiple trade-off solutions using
a priori approach the algorithm has to be run multiple times
with different combination of weights. Thus, a posteriori
approach is very suitable for solving multiobjective optimiza-
tion problems wherein taking into account frequent change in
customer desires is of paramount importance and determining
the weights to be assigned to the objectives in advance is
difficult. Evolutionary algorithms are popular approaches for
generating the Pareto optimal solutions to a multiobjective
optimization problem. Currently, most evolutionary multiob-
jective optimization algorithms apply Pareto-based ranking
schemes [10]. Evolutionary algorithms such as the Nondom-
inated Sorting Genetic Algorithm-II (NSGA-II) and Strength

Pareto Evolutionary Algorithm 2 (SPEA-2) have become
standard approaches. The main advantage of evolutionary
algorithms, when applied to solve multiobjective optimiza-
tion problems, is the fact that they typically generate sets of
solutions, allowing computation of an approximation of the
entire Pareto front. The main disadvantage of evolutionary
algorithms is their lower speed and the Pareto optimality of
the solutions cannot be guaranteed. It is only known that
none of the generated solutions dominates the others. Fur-
thermore, these algorithms require the tuning of respective
algorithm-specific parameters.

In this paper MO-SAMP Jaya algorithm is proposed which
does not have any algorithm-specific parameters to tune.
The step by step working of MO-SAMP Jaya algorithms is
defined as follows:
Step 1: Set the design variables (d), population size (P) and

stopping condition.
Step 2: Calculate the value of fitness function for the initial

populations.
Step 3: Group the entire population into m number of sub-

populations based on the non dominance rank and crowding
distance of solutions.

The solution with the highest rank (rank=1) is selected as
the best solution. The solution with the lowest rank is selected
as the worst solution. In case, there exists more than one
solution with the same rank in a population or subpopulation
then the solution with the highest value of crowding distance
is selected as the best solution and vice versa. This ensures
that the best solution is selected from the sparse region of the
search space.
Step 4: Update solutions of each group as per (1).
Step 5: All the modified solutions of subpopulation are

merged into single population.
Step 6: Initial/previous solutions and modified solution

are merged into single population which is equals to 2∗P
populations.
Step 7:Nondominated sorting and crowding distance com-

putation of the population is done and P best solutions are
selected from 2∗P solutions.
Step 8: Check for the improvement in rank 1 solution(s):

If Yes
then m=m + 1;

Else ifm>1
then m= m − 1;

End

Step 9: Check the stopping condition(s) reached.
If yes, then terminate the process and report the best opti-

mum solution. Otherwise, go to Step 3 and follow the steps
until the stopping condition is reached.

The readers may refer to [4] for detailed evaluation of
nondominated sorting and calculation of crowding distance.
The proposed MO-SAMP Jaya algorithm is used in this work
for the design optimization of selected thermal devices and
basic thermal cycles.
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FIGURE 1. Flowchart of MO-SAMP Jaya algorithm.

The next section presents the precious research work car-
ried out for the design optimization of selected thermal
devices and basic thermal cycles.

III. LITERATURE REVIEW ON OPTIMIZATION OF
SELECTED THERMAL DEVICES AND BASIC
THERMAL CYCLES
A. THERMO-ELECTRIC COOLER
Due to the need of a steady, low temperature and eco-friendly
operating environment for different applications the demand

of thermoelectric coolers (TECs) has grown significantly. It is
extensively used in various applications such as aerospace,
military, medicine, and other electronic devices etc. However,
the cooling capacity and coefficient of performance (COP)
of TCEs are comparatively low as compared with traditional
cooling devices. Therefore, the improvement in the perfor-
mance of TECs is the most important issue in their applica-
tions [11], [12].

Single stage TEC can produce a maximum temperature
difference of 70 K when its hot end is maintained at room
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FIGURE 2. Two stage TEC (a) Electrically separated; (b) Electrically connected in series [14].

temperature. Therefore, when large temperature difference is
required then two stage TECs should be used [13]. Basically,
two-stage TECs are commercially arranged in cascade. The
two-stage TECs are arranged in two different design config-
urations namely electrically separated and electrically con-
nected in series. Fig. 2 presents the different configurations
of two-stage TECs [14].

Chen et al. [15] analyzed the performance of a two-stage
TE heat pump system driven by a two-stage TE generator.
Many researchers [1], [16]–[20] had analysed the two stage
TECs for optimization of COP or for best layout of the TE
module. Cheng and Shih [14] described the thermal model of
the two stage TECs. It is described as below.

The cascade two stage TECs are stacked one on the top of
the other (Fig. 2). Here in this arrangement the top stage is
the cold stage and the bottom stage is the hot stage. In Fig. 2,
Qc,c and Qh,h are the cooling capacities of the cold side of
the cold stage and the heat rejected at the hot side of hot stage
respectively. Tc,c, Tc,h, Th,c and Th,h are the temperatures of
the cold side of the cold stage, hot side of the cold stage, cold
side of the hot stage and hot side of the hot stage respectively.

Ic and Ih are the input currents to the cold stage and the hot
stage respectively. n And p stand for n-type and p-type TE
modules respectively. The COP of the two stage TECs is
given as follows:

COP =
Qc,c

Qhh − Qcc
(4)

where, Qc,c and Qh,h are obtained by heat balance at relevant
junction of TECs.

Qc,c =
Nt
r + 1

[
αcIcTc,c −

1
2
I2c Rc − Kc

(
Tc,h − Tc,c

)]
(5)

Qh,h =
Ntr
r + 1

[
αhIhTh,h +

1
2
I2hRh − Kh

(
Th,h − Th,c

)]
(6)

where,Nt is the total number of TEmodules of two stages and
r is the ratio of the number of TE modules between the hot
stage (Nh) to the cold stage (Nc). α, R and K are the Seebeck
coefficient, electrical resistance and thermal conductance of
the cold stage and the hot stage respectively. The total thermal
resistance (RSt ) existing between the interface of TECs is
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FIGURE 3. Two-stage combined irreversible heat pump model and its Temperature-Entropy diagram [22].

calculated as follows:

RSt = RSsprd + RScont (7)

Here, RSsprd and RScont are the spreading resistance and
contact resistance between the interfaces of the two TECs
respectively.

The heat rejected at the hot side of the cold stage (Qc,h)
and cooling capacity at the cold side of the hot stage (Qh,c)
are obtained by considering the heat balance at the interface
of TECs and it is calculated as follows.

Qc,h =
Nt
r + 1

[
αcIcTc,h +

1
2
I2c Rc − Kc

(
Tc,h − Tc.c

)]
(8)

Qh,c =
Nt
r + 1

[
αhIhTh,c +

1
2
I2hRh − Kh

(
Th,h − Th.c

)]
(9)

This case study is taken from the work of Hadidi (2017).
The maximization of COP and cooling capacity is considered
as objective functions which are calculated by (4) and (5)
respectively.

The objective functions are governed by the three design
variables whose ranges are given below:

4 ≤ Ic ≤ 11 (10)

4 ≤ Ih ≤ 11 (11)

2 ≤ r ≤ 7.33 (12)

B. TWO STAGE IRREVERSIBLE HEAT PUMP
Heat pumps are widely used for transporting heat from
low temperature sources to higher ones and are usually
single-stage heat pumps [21]. However, there are some limi-
tations in conventional single-stage compression heat pumps,
for example, the inefficient performance, high discharge tem-
perature and low performance of compressor especially in

winter which make them less popular. With the purpose of
gaining a higher range of temperature difference between the
environment and heated space, two stage heat pump plants
are developed and are widely used in industrial scale. Many
authors had investigated the performance of single stage
vapor compression and absorption heat pumps and refrig-
eration cycles employing finite time thermodynamics [22].
Fig. 3 illustrates the T–S diagram of the model [22].

This is a two stage irreversible heat-pump system. Because
of a number of causes such as heat resistance, friction, inter-
nal losses and heat leak, the cycle differs from the ideal
system. In the present study, the heat leak and friction losses
are considered as internal losses and finite-rate heat trans-
fer. The two cycles with two distinct working fluids might
work within various temperature ranges. The heat exchanger
between them transfers the heat from one to another to
recover the heat between two cycles. There are a number of
investigations in literature related to irreversible Carnot heat
pump cycle with irreversibility of heat resistance, heat leak
and internal loss [22]

This case study is considered from the work of
Sahraie et al. [22]. In this study, the authors had developed
mathematical models to optimize the performance of the
two-stage irreversible heat pump (HP) while satisfying the
imposed conditions. The objectives of this HP are as follows:

a. Maximization of co-efficient of performance (COP)
and it is defined as:

COP =
Q̇H
W
=

1− R

1− TY TZ
I1I2TXTW

(13)

Here, R denotes the heat leakage percentage and is
assumed to be an identified constant. TW , TX , TY and
TZ are known as the temperatures of warm working
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fluid of the second cycle, warm working fluid of the
first cycle, cold working fluid of the first cycle and cold
working fluid of the second cycle respectively. I1 and
I2 are known as irreversibility of first stage and second
stage respectively.

b. Maximization of heat transfer rate (qH ) and is defined
as:

qH =
Q̇H
A
= (1− R)×

[
1

UH (TX − TH )

+
TYTZ

I1I2TXTWUL (TL − TZ )

+
TY

I1TXUW (TW − TY )

]−1
(14)

[c.] Maximization of thermo-economic benchmark of
absorption heat pump (F):

F = (1− R)×
[(

1
UL (TL − TZ )

− 1
)

TYTZ
I1I2TXTW

+
k

UH (TX−TH )
+

kTY
I1TXUW (TW − TY )

+1
]−1
(15)

Design variables and there ranges are as follows:

412.4 ≤ TX ≤ 448.8

249.6 ≤ TZ ≤ 265.6

0.9041 ≤ u ≤ 0.9715

0.1 ≤ k ≤ 1

where, u = TY /TW& k = a/b and I1 = I2 = 1.05,
R = 0.02, UH = UL = UW = 0.5, TH = 400K,
TL = 273K.

C. PLATE-FIN HEAT EXCHANGER
In recent years the application of advanced optimization
algorithms for design problems of PFHE has gained much
momentum. Mixed-Integer-Non-Linear-Programming was
used for the design optimization of PFHE system with dis-
crete and continuous variables [23]; Traditional methods
were also used for carrying out the optimization of these
systems having a complex mathematical model [24]. Sim-
ulated annealing (SA) [25], artificial neural networks [26]
and evolutionary algorithms [27]–[32] had been used for the
thermal design optimization of heat exchanger.

The details of mathematical model considered from the
work of Hadidi [31] are as follows: Effectiveness of an
unmixed cross-flow heat exchanger is expressed as [31]:

ε = 1− exp
[(

1
C

)
NTU0.22

{
exp

(
−C · NTU0.78

)
− 1

}]
(16)

Here, C is known as heat capacity ratio and defined as:

C =
Cmin

Cmax
=

min (Ch,Cc)
max (Ch,Cc)

(17)

Here, suffix h and c denotes the hot and cold side respectively.
Fig. 4 presents the layout of a PFHE.

Outlet temperatures of hot fluid (Th,o) and cold fluid (Tc,o)
are calculated as:

Th,o = Th,i − εCmin/Ch(Th,i − Tc,i) (18)

Tc,o = Tc,i + εCmin/Cc(Th,i − Tc,i) (19)

Now, the number of transfer units (NTU) can be calculated
as:

1
NTU

=
Cmin

UAt
(20)

At is the total heat transfer area of plate-fin heat exchanger
and U is known as overall heat transfer co-efficient. It is
defined as:

1
UA
=

1
(hA)h

+
1

(hA)c
(21)

Convective-heat transfer coefficient is calculated as:

h = j.G.Cp.P−2/3r (22)

Here, j is known as Colburn factor [31]; G is mass flux and
defined as:

j = 0.6522(Re)−0.5403(α)−0.1541(δ)0.1499(γ )−0.0678

×

[
1+5.269×10−5(Re)1.34(α)0.504(δ)0.456(γ )−1.055

]0.1
(23)

G = m/Af (24)

Here, α, δ and γ are the geometrical parameters of PFHE. Re
is known as Reynolds number and defined as:

Re =
G · Dh
µ

(25)

Here µ is dynamic viscosity and Dh is known as hydraulic
diameter and can be evaluated as:

Dh =
4
(
c− tf

) (
b− tf

)
x

2
((
c−tf

)
x +

(
b−tf

)
x+tf

(
b−tf

))
+ tf

(
c−tf

)
−t2f
(26)

Here, tf , b, c and x are the thickness, height, pitch and length
of the fin, respectively. Af is known as free flow area and is
evaluated as:

Af ,h = LhNp(bh − tf ,h(1− nh · tf ,h) (27)

Af ,c = Lc · (Np + 1)((bh − tf ,h)(1− nh · tf ,h) (28)

Lc and Lh are the hot and cold flow length. Heat transfer area
of hot side and cold side is calculated as:

Ah = LhLcNp[1+ 2nh(bh − tf ,h)] (29)

Ac = LhLc(Np + 1)[1+ 2nc(bc − tf ,c)] (30)

Now, the total heat transfer area is calculated as:

At = Ah + Ac (31)

And the rate of heat transfer is evaluated as:

Q = εCmin(Th,i − Tc,i) (32)
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FIGURE 4. Detailed layout of plate-fin heat exchanger [29].

Due to friction, pressure drop is caused. Hot and cold side
pressure drop is evaluated as:

1Ph =
2fhLhG2

h

ρhDh.h
(33)

1Pc =
2fcLcG2

c

ρcDh,c
(34)

Here, for an off-strip fin fanning factor f is evaluated as:

f = 9.6243(Re)−0.7422(α)−0.1856(δ)0.3053(γ )−0.2659

×

[
1+7.669×10−8(Re)4.429(α)0.920(δ)3.767(γ )0.236

]0.1
(35)

The allowed ranges of the design variables are shown
below [31]:
• Stream flow length of hot side, Lh(m) = 0.1 ≤ Lh ≤ 1.
• Stream flow length of cold side, Lc(m) = 0.1 ≤ Lc ≤ 1.
• Fin height, b (mm) = 2 ≤ b ≤ 10.
• Fin thickness, tf (mm) = 0.1 ≤ tf ≤ 0.2.
• Frequency of fin (n) = 100 ≤ n ≤ 1000.
• Offset length, x(mm) = 1 ≤ x ≤ 10.
• Fin layers number (NP) = 1 ≤ Np ≤ 200.

Out of these parameters, NP is a discrete variable and rest of
the variables are continuous in nature.

Nine constraints are imposed on the PFHE design, in order
to get the specific duty of heat exchanger with limita-
tions on mathematical model and geometries, are defined as
follows:

The value of Re for hot and cold steam flow must be in the
following range:
Constraint 1: 120 ≤ Rec ≤ 104

Constraint 2: 120 ≤ Reh ≤ 104

The equations used for the calculation of Colburn factor
and fanning factor are to be used only when the values Re
of the suggested design falls in the above given range. The
geometrical parameters of the PFHEmust be in the following
ranges:
Constraint 3: 0.134 ≤ α ≤ 0.997
Constraint 4: 0.041 ≤ γ ≤ 0.121

Constraint 5: 0.012 ≤ δ ≤ 0.048
Eqs. of Colburn factor and fanning factor) are valid only

for above ranges.
No-flow length (Ln) of PFHE is also restricted:
Constraint 6: Ln = 1.5
The value of Ln is evaluated with the help of following

equation:
Constraint 7:

Ln = b− 2tp + Np(2b+ 2tp) (36)

Heat duty required for the PFHE is also taken as constraint
in order to meet the minimum heat duty [28]:
Constraint 8: Q ≥ 1069.8 kW
Allowed pressure drop of hot side and cold side:
Constraint 9: 1Ph ≤ 9.5 kPa and 1Pc ≤ 8 kPa
Four different objectives are taken up for the design opti-

mization of PFHE. The details of the objective functions
considered from the work of Hadidi [31] described below.

First objective is the minimization of total annual cost
which is the sum of initial investment costCin and operational
cost Cop. Detailed mathematical model for the calculation of
these costs is described as follows:

Cin = a · Ca · An1t (37)

Cop =
[
kelτ

1Ph
η

mh
ρh

]
+

[
kelτ

1Pc
η

mc
ρc

]
(38)

and

Ctot = Cin + Cop (39)

In the above equations, Ca is cost per unit of At ; n1 is
exponent value; kel is electricity price; τ is hours of operation
and η is known as compressor efficiency. In (37), a is known
as annual cost coefficient and described as follows:

a =
i

1− (1+ i)−ny
(40)

where, i is rate of interest and ny is time of depreciation.
Minimization of heat transfer area required for proper

heat transfer is the second objective of this study. Total area
required is calculated from the (31). This design equation is
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linked with investment cost of the considered PFHE. Third
objective is also to be minimized which is a combined func-
tion of pressure drops of cold side and hot side fluids. The
objective of this case is linked with the operating cost of the
PFHE system. A combined normalized function of pressure
drops is used in the optimization study and it is defined by
the following equation:

O(x) =
1Ph
Ph,max

+
1Pc
Pc,max

(41)

Maximization of effectiveness is considered as the fourth
objective. Calculation of the effectiveness of the heat
exchanger is based upon (16).

D. TRANSCRITICAL CYCLES
Due to increasing greenhouse effect of hazardous refrigerants
on the environment, it has become need of the world to use
eco-friendly refrigerants for heating or cooling applications.
Carbon Dioxide (CO2) can be used as a substitute to the
other harmful refrigerants. The advantages of selecting CO2
(R744) as working fluid are: low cost, non-toxicity and non-
flammability. The main advantages of using CO2 as refrig-
erant in comparison to other refrigerants are: having zero
Ozone layer depletion layer index and low global warming
potential. The environmental damages can be minimized by
taking the advantages of transcritical (TC) cycles. A TC cycle
is a type of thermodynamic cycle in which the working fluid
goes under both critical and subcritical state [37].

Sarkar et al. [33] performed the optimization of TC CO2
heat pump cycle for simultaneous applications of heating and
cooling. The objective functions considered in their study
were maximization of coefficient of performance, minimiza-
tion of discharge pressure and maximization of output tem-
perature. A theoretical optimization method was used by
Rezayan and Behbahaninia [34] for minimizing the annual
costs of a cascade system with ammonia and CO2 as refrig-
erants.

Fazelpour and Morosuk [35] had developed a cost and
energy efficient TC refrigeration system. It was recom-
mended that by using the economizer as an supplemen-
tary component for single-stage TC refrigeration system can
reduce the total cost about 14%. Bai et al. [36] carried out
an advanced analysis of an ejector expansion transcritical TC
refrigeration system. The study had suggested that compres-
sor with highest avoidable endogenous exergy destruction
required to improve performance of refrigerator.

Khanmohamadi et al. [37] did the modeling and thermal
and economic optimization of a modified TC CO2 refriger-
ation cycle by using multiobjective genetic algorithm (GA).
The maximization of cooling capacity and minimization of
cost were considered as objectives. The authors had used
decisionmaking techniques in order to get the best set of solu-
tion among the nondominated solutions. Ahmadi et al. [38]
did the exergy and thermodynamic analysis, and multiob-
jective (MO) optimization of a TC CO2 power cycle by
using nondominated sorting GA (NSGA-II). This cycle was

powered by geothermal energy having heat sink in the form of
liquefied natural gas. Theminimization of total heat exchange
area and maximization of exergetic performance criteria, and
exergy efficiency were considered as objective functions.
The authors had used three decision making techniques in
order to get the best set of solution among the nondominated
solutions.

Ahmadi et al. [39] performed thermodynamic analysis
and MO optimization of a TC CO2 power cycle by using
NSGA-II. This cycle was powered by solar energy having
heat sink in the form of liquefied natural gas. The maximiza-
tion of thermal efficiency and solar fraction and minimization
of total cost of the system were considered as the objec-
tive functions. The authors had used three decision making
techniques in order to get the best set of solution among the
nondominated solutions.

1) MODIFIED TRANSCRITICAL CO2 REFRIGERATION CYCLE
A graphical representation of the modified TC CO2 refriger-
ation cycle with its parts is shown in Fig.5 [37]. It is having
nine important parts which are included in the modified TC
CO2 refrigeration cycle. These are namely, ejector, evapora-
tor, low-pressure compressor, internal heat exchanger, high-
pressure compressor, expansion valve, separator, gas cooler
and intercooler.

Khanmohammadi et al. [37] developed a mathematical
model to optimize the modified transcritical CO2 refriger-
ation cycle. The design variables considered in their study
were, cooling water temperature (Tgc), gas cooler pressure
(Pgc), evaporator temperature (Te) and extracted mass flow
rate (α). The objective functions consisted in this work was
the maximization of cooling capacity (Q) and minimization
of cost rate (Z ). The equations of the objectives, (42) and (43),
are defined as shown at the bottom of the next page.

Where,

C23 = a01 + a11∗Pgc + a21∗T gc + a31∗(P2gc)+ a41∗T
2
gc

+ a51∗Pgc∗T gc;
C13 = a02 + a12∗α + a22∗T gc + a32∗α2 + a42∗T 2

gc

+ a52∗α∗T gc;
C34 = a03 + a13∗T gc + a23∗T e + a33∗T 2

gc + a43∗T
2
e

+ a53∗T e∗T gc;
C2313 = a04 + a14∗C23 + a24∗C13 + a34∗C2

23 + a44∗C
2
13

+ a54∗C23∗C13;

Where,

Z14 = c01 + c11∗α + c21∗T e + c31∗α2 + c41∗T 2
e

+ c51∗α∗Te;
Z34 = c02 + c12∗T gc + c22∗T e + c32∗T 2

gc + c42∗T
2
e

+ c52∗T gc∗T e;
Z2214 = c03 + c13∗Pgc + c23∗Z14 + c33∗P2gc + c43∗Z

2
14

+ c53∗Pgc∗Z14;

Z3422 = c04 + c14∗Z34 + c24∗Pgc + c34∗Z34 + c44∗P2gc
+ c54∗Pgc∗Z34;
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FIGURE 5. Schematic diagram of modified two-stage refrigeration cycle [37].

The values of constant used in Eqs. (42) and (43) can be
obtained from [37].

The ranges of design variables are as follows:

• 35◦C ≤ Tgc ≤ 55◦C, Gas cooler temperature;
• 75 bar ≤ Pgc ≤ 140 bar, Gas cooler pressure;
• −30◦C ≤ Te ≤ −1◦C, evaporator temperature;
• 0.1 ≤ α ≤ 0.9, extracted mass flow rate.

2) TRANSCRITICAL CO2 HEAT PUMP CYCLE FOR
SIMULTANEOUS HEATING AND COOLING APPLICATIONS
The CO2 vapor compression refrigeration system was devel-
oped in 1850, subsequently it was used for many years.
It was mainly used in marine. Many problems were found
with the early CO2 based systems because of having low
critical temperature of CO2. With the development of halo-
carbon refrigerants, CO2 was slowly rolled down from the

applications of air conditioning and refrigeration. However,
halocarbon refrigerants deplete the Ozone layer and hence
negative effect on environment. This renewed a new interest
in natural refrigerants such as CO2 [33]. A schematic diagram
of CO2 based heat pump of heating and cooling system
having its main component are shown in Fig. 6 [33].

Sarkar et al. [33] presented the optimization of a TC CO2
heat pump. It is used for cooling and heating applications
together. A Mathematical model was developed for maxi-
mization of COP, minimization of discharge pressure (Popt)
and maximization of output temperature (t2) in terms of
evaporation temperature (tev) and cooler exit temperature (t3).
The details of the objective functions are as follows:

COPmax = 48.2+ 0.2tev + 0.05t3 (t3 − 48.5)− 0.0004 · t33
(44)

Popt = 4.9+ 2.256 · t3 − 0.17tev + 0.002 · t23 (45)

Qmax = a05 + a15 · C2313 + a25 · C34 + a35 · C2
2313 + a45 · C

2
34 + a55 · C2313 · C34 (42)

Zmin = c05 + c15 · Z2214 + c25 · Z3422 + c35 · Z2
2214 + c45 · Z

2
3422 + c55 · Z2214 · Z3422 (43)
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FIGURE 6. Line diagram of a TC CO2 system [33].

t2 = −10.65+ 3.78 · t3 − 1.44 · tev − 0.0188 · t23
+ 0.009 · t2ev (46)

E. IRREVERSIBLE CARNOT POWER CYCLE
Analysis of the irreversible thermodynamic systems has
gained importance especially after the petrol crisis happened
in 1970s [40]. This engine provides us more realis-
tic results than reversible Carnot cycle. Maximum avail-
able work from an irreversible system was analysed by
Wu [41]. Ecological function criterion (ECF) was proposed
by Angulo-Brown [42] which is used for the analysis of
irreversible Carnot power cycle. Yan [43] suggested to use
T0 (heat sink temperature) on the place of TL (cold reservoir
temperature).

Many research works are found in the literature regard-
ing ecological optimization of irreversible Carnot power
cycle [44]. Another thermo-ecological criterion called eco-
logical coefficient of performance (ECOP) was presented and
applied to various thermodynamic cycles by Ust et al. [45].
Similarly, to determine the relationship between exergy and
exergy destruction for a cycle, performance coefficient so
called exergetic performance criteria (EPC) was presented
by Ust et al. [46]. To obtain a method for the application
of exergy concept in finite time thermodynamic (FTT), a
number of studies were published by several authors [47].
A new criterion for assessing actual thermal cycles was
submitted by Acıkkalp [48]. Ahmadi et al. [49] had used
multiobjective genetic algorithm (MO-GA) to optimize the
thermal performance of irreversible Carnot power cycle. The
results of MO-GA were further analyzed by using TOPSIS,
LINMAP and fuzzy logic.

The first law efficiency (η), the exergetic performance
criteria (EPC) and the maximum available work (MAW) are
the three objective functions considered for the optimization
and given as follows.

η = 1− Ix (47)

Ecological function criteria:

ECF =
(TL − xTH ) (TH (ITox + TL (Ix − 1))− TLTo) yz

TLTHx (y+ 1) (1+ y)
(48)

Maximum available work:

MAW =
(TL − IxTo) (xTH − TL) yz

TLx (y+ I ) (1+ y)
(49)

Here, I is the irreversibility parameter. TH and Th are the heat
source temperature and hot working fluid temperature (K),
respectively, and kH is the heat conductance (kW/K) between
the hot temperature heat source and working fluid. TL and
Tc are the heat sink temperature and cool working fluid
temperature (K), respectively, and kL is the heat conductance
(kW/K) between the low temperature heat sink and working
fluid.

Three decision variables have been chosen for our study,
which are as follows:

x: ratio of fluid temperature
(
x = Tc

Th

)
y: parameter of the heat conductance rate

(
y = KL

KH

)
z: the sum of heat conductance rate (z = KL + KH )

0.5 ≤ y ≤ 1

1.08 ≤ z ≤ 1.8

0.45 ≤ x ≤ 0.7
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TABLE 1. Optimization results of individual objectives for electrically separated TEC.

For choosing the best Pareto optimal solution, a quan-
tity measure index known as deviation index is evaluated.
The deviation index defines the deviation of each solution
from the ideal and non-ideal solutions and can be calcu-
lated using (50) and (51), shown at the bottom of this
page [10].

The next section presents the application of theMO-SAMP
Jaya algorithm for the design optimization of selected thermal
devices namely TEC, irreversible HP, PFHE and two basic
thermal cycles namely transcritical cycle, and irreversible
Carnot power cycle.

IV. RESULTS AND DISCUSSION
A. THERMO-ELECTRIC COOLER
The results obtained by using MO-SAMP Jaya algorithm
are presented below. Two different case studies namely
electrically separated and eclectically connected are consid-
ered. Table 1 presents the results obtained by MO-SAMP
Jaya algorithm and their comparison for the thermal perfor-
mance optimization of two-stage electrically separated TEC.
Table shows the comparison of results for single objective
optimization. It can be observed from this table that the
results obtained by using MO-SAMP Jaya algorithm are
better as compared to the results of GA [14], PSO, ABC,

TLBO, modified-TLBO [19] and CRO algorithms [20] for
each value of RSt . When the value of RSt = 0.02 cm2 K/W is
considered. The value of COP obtained by MO-SAMP Jaya
algorithm is increased by 1.808%, 1.29%, 0.775%, 0.775%,
0.775% and 4.392% as compared to the results of GA, PSO,
ABC, TLBO, MOTLBO and CRO algorithms. Subsequently,
the value cooling capacity is increased by 4.28%, 0.697%,
0.646%, 0.608%, 0.608% and 3.90% as compared to the
results of GA [14], PSO, ABC, TLBO, modified-TLBO [19]
and CRO [20] algorithms.

When the value of RSt = 0.2 cm2 K/W is considered,
the value of COP obtained by MO-SAMP Jaya algorithm
is increased by 5.74%, 1.705%, 1.705%, 1.705%, 1.705%
and 6.64% as compared to the results of [14], PSO, ABC,
TLBO, modified-TLBO [19] and CRO [20] algorithms..
Subsequently, the value cooling capacity is increased by
6.6473%, 1.495%, 1.495%, 1.495%, 1.495% and 6.14% as
compared to the results of GA [14], PSO, ABC, TLBO,
modified-TLBO [19] and CRO [20] algorithms.. When the
value of RSt = 0.02 cm2 K/W is considered. The value
of COP obtained by MO-SAMP Jaya algorithm is increased
by 7.253%, 1.612%, 0.868%, 0.564%, 0.54% and 4.213%
as compared to the results of GA [14], PSO, ABC, TLBO,
modified-TLBO [19] and CRO [20] algorithms. Subse-
quently, the value cooling capacity is increased by 7.93%,

d+ =
√(

EPCn − EPCn,ideal
)2
+
(
ηn − ηn,ideal

)2
+
(
MAWn −MAWn,ideal

)2 (50)

d− =
√(

EPCn − EPCn,nnon−ideal
)2
+
(
ηn − ηn,non−ideal

)2
+
(
MAWn −MAWn,non−ideal

)2
d =

d+
(d+)+ (d−)

(51)
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TABLE 2. Optimization results of individual objectives for electrically connected TEC.

1.498%, 1.323%, 1.323%, 1.323 and 4.256% as compared to
the results of GA [14], PSO, ABC, TLBO, modified-TLBO
[19] and CRO [20] algorithms.

Table 2 presents the results obtained by using MO-SAMP
Jaya algorithm and their comparison for the design
optimization two-stage electrically connected TEC. Table
shows the comparison of results for single objective opti-
mization. It can be observed from this table that the results
obtained by using MO-SAMP Jaya algorithm are better as
compared to the results of GA [14], PSO, ABC, TLBO,
modified-TLBO [19] and CRO [20] algorithms for each
value of RSt . When the value of RSt = 0.02 cm2 K/W is
considered, the value of COP obtained by MO-SAMP Jaya
algorithm is increased by 3.45%, 2.94%, 2.94%, 2.94% and
2.94% as compared to the results of PSO, ABC, TLBO and
modified-TLBO [19] algorithms. Subsequently, the value
cooling capacity is increased by 2.81%, 0.435%, 0.435%,
0.435% and 0.355% as compared to the results of GA [14],
PSO, ABC, TLBO and modified-TLBO [19] algorithms.

When the value of RSt = 0.2 cm2 K/W is considered,
the value of COP obtained by MO-SAMP Jaya algorithm is
increased by 9.735%, 3.867%, 3.867%, 2.965% and 2.965%
as compared to the results of GA [14], PSO, ABC, TLBO
andmodified-TLBO [19] algorithms. Subsequently, the value
cooling capacity is increased by 3.39%, 1.64%, 1.524%,
1.524% and 1.524% as compared to the results of GA [14],
PSO, ABC, TLBO and modified-TLBO [19] algorithms.
When the value of RSt = 2 cm2 K/W is considered,
the value of COP obtained by MO-SAMP Jaya algorithm
is increased by 6.16%, 1.08%, 1.08%, 1.08% and 1.08%
as compared to the results of GA [14], PSO, ABC, TLBO

andmodified-TLBO [19] algorithms. Subsequently, the value
cooling capacity is increased by 3.39%, 1.287%, 0.780%,
0.6498% and 0.6498% as compared to the results of GA [14],
PSO, ABC, TLBO and modified-TLBO [19] algorithms.

Table 3 presents the specification of sample design points
obtained by MO-SAMP Jaya algorithm and its comparison
with modified-TLBO for the thermal performance opti-
mization of two-stage electrically separated TEC. It can
be observed from this table that results obtained by using
MO-SAMP Jaya algorithm is better at each design point with
respect to both the objective as compared to the design points
suggested by modified-TLBO.

Fig. 7 presents the distribution of Pareto optimal curve
obtained by MO-SAMP Jaya algorithm and its comparison
with modified-TLBO for electrically separated TEC with
different values ofRSt . It can be observed from this figure that
the Pareto optimal solutions are uniformly distributed and
clearly showing the conflicting nature of COP and cooling
capacity for TEC. Furthermore, it can also be observed that
the Pareto optimal solutions obtained by MO-SAMP Jaya
algorithm are dominating the Pareto optimal solutions sug-
gested by modified-TLBO for each value of RSt .

Table 4 presents the specification of sample design points
obtained by MO-SAMP Jaya algorithm and its compari-
son with the modified-TLBO for design optimization of
two-stage electrically connected TEC. Table shows the com-
parison of results for multiobjective optimization. It can
be observed from this table that results obtained by using
MO-SAMP Jaya algorithm is better at each design point with
respect to both the objective as compared to the design points
suggested bymodified-TLBO. Fig. 8 presents the distribution
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TABLE 3. Optimal output variables for a to e Pareto optimal front shown in Figure 3.

TABLE 4. Optimal output variables for A to E Pareto optimal front shown in Figure 4.

of Pareto optimal curve obtained by MO-SAMP Jaya algo-
rithm and comparison for electrically connected TEC with
values of RSt .

B. TWO STAGE IRREVERSIBLE HEAT PUMP
Table 5 presents the set of nondominated solutions obtained
by using MO-SAMP Jaya algorithm for multiobjective
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FIGURE 7. The distribution of Pareto-optimal points solutions for
electrically separated TEC using the modified TLBO algorithm and
MOSAMP Jaya algorithm (a) RSj = 0.02 cm2 K/W, (b) RSj=0.2 cm2 K/W,
and (c) RS=2 cm2 K/W.

optimization of irreversible heat pump. A designer may select
any solution based on the application requirement.

Fig. 9 presents the Pareto optimal curve obtained by using
MO-SAMP Jaya algorithm for multiobjective optimization of
two-stage irreversible heat pump.

FIGURE 8. The distribution of Pareto-optimal points solutions for
electrically connected TEC using the modified TLBO algorithm and
MO-SAMP-Jaya algorithm (a) RSj = 0.02 cm2 K/W, (b) RSj=0.2 cm2 K/W.

FIGURE 9. Pareto optimal curve for two-stage irreversible heat pump.

Table 6 presents the comparison of results obtained
by MO-SAMP Jaya algorithm with other methods like
TOPSIS, LINMAP and fuzzy logic which are based on
the MO-GA algorithm. It is to be noted that the set
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TABLE 5. Sets of nondominated solutions for two-stage irreversible heat pump.

TABLE 6. Comparison of results for irreversible heat pump.

of nondominated solutions obtained by MO-SAMP Jaya
algorithm are not found superior with respect to all
objectives as compared to other methods used by previ-
ous researchers. Therefore, a well known multi-attribute

decision making method known as weighted sum method [9]
is used for selecting the best solution. In this, a normal-
ized score is calculated for each method by considering
equal weights of each objective which are same as used by
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TABLE 7. Sets of nondominated solutions for PFHE design.
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TABLE 8. Multiobjective optimization results of MO-SAMP JAYA
algorithm.

previous researchers. The normalized score (Z) is shown in
Table 6.

It can be observed from Table 6 that the results obtained
by MO-SAMP Jaya algorithm have obtained highest score
among all four methods. Hence, MO-SAMP Jaya algorithm
has given rank 1. Similarly, TOPSIS, LINMAP and Fuzzy
logic methods get the 2nd, 3rd, and 4th ranks. It can be con-
cluded based on the rank of the solutions that the MO-SAMP
Jaya algorithm has performed better for multiobjective opti-
mization of irreversible heat pump as compared to the
NSGA [22].

C. PLATE-FIN HEAT EXCHANGER
In this work conflicting objectives namely minimization of
the total cost (annual investment cost and operational cost),
total surface area, total pressure drop and maximization of
heat exchanger effectiveness are optimized simultaneously.
The sets of nondominated solutions obtained by MO-SAMP
Jaya algorithm are given in Table 7.

As, the multiobjective design optimization is not carried
out by the previous researchers. Hence, the results cannot
be compared. The best compromise solution obtained by
MO-SAMP Jaya algorithm is presented in Table 8.

D. TRANSCRITICAL CYCLES
1) OPTIMIZATION OF A MODIFIED TRANSCRITICAL CO2
REFRIGERATION CYCLE
Table 9 presents the set of nondominated solutions obtained
by MO-SAMP Jaya algorithm for the multiobjective design

FIGURE 10. Pareto optimal curve for refrigeration TC cycle.

FIGURE 11. Pareto optimal curve obtained by MO-SAMP-Jaya algorithm
for TC heat pump cycle.

optimization of modified CO2 refrigeration cycle with the
objectives of maximization of cooling rate and minimization
of total cost.

The comparison of results obtained by MO-SAMP Jaya
algorithm with multiobjective genetic algorithm (MO-GA) is
shown in Table 10.

It can be observed from Table 10 that the results obtained
by MO-SAMP Jaya algorithm are found better as com-
pared to the results of MO-GA with respect to all design
points. Fig. 10 presents the Pareto optimal curves obtained
by Jaya algorithm and its improved versions with a pri-
ori approach, MO-SAMP Jaya algorithm and the compari-
son with the results of MO-GA which show the superiority
of design obtained by MO-SAMP Jaya as compared to
MO-GA [37].

2) OPTIMIZATION OF TRANSCRITICAL CO2 HEAT PUMP
CYCLE
Table 11 presents the sets of nondominated solutions for
TC CO2 heat pump cycle for simultaneous heating and
cooling applications. Fig. 11 presents the Pareto optimal
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TABLE 9. Sets of nondominated solutions for refrigeration cycle.

TABLE 10. Comparison of multiobjective optimization results of refrigeration cycle.

curve obtained by MO-SAMP Jaya algorithm for heat pump
cycle. As the previous researchers did not present any multi-
objective optimization results, therefore, comparison with the
previous results cannot be made.

A designer may choose any solution as per the requirement
from Table 11.

E. IRREVERSIBLE CARNOT POWER CYCLE
Table 12 presents the sets of Pareto optimal solutions obtained
by using MO-SAMP Jaya algorithm.

The results obtained by MO-SAMP Jaya algorithm and
the comparison with the results obtained by TOPSIS, LIN-
MAP, and fuzzy logic methods (these methods have used
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TABLE 11. Sets of nondominated solutions for heat pump cycle.

the data obtained by MO-GA) are presented in Table 13.
It can be observed from Table 13 that deviation index of the
solution obtained by MO-SAMP Jaya algorithm is minimum

TABLE 12. Sets of Pareto optimal solutions given by MO-SAMP Jaya for
irreversible Carnot cycle.

as compared to the other solutions obtained by TOPSIS,
LINMAP, and fuzzy logic. Hence,MO-SAMP Jaya algorithm
has obtained 1st rank with 0.1016 deviation index value.
Table 14 shows the computational time taken by the algo-

rithm to get the Pareto optimal solution for different case
studies.

It may be concluded, based on the results of multiobjective
optimization of selected thermal devices ad cycles that the

TABLE 13. Comparison of results for irreversible Carnot power cycle.
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TABLE 14. Compuational time taken by MO-SAMP-Jaya.

results obtained by MO-SAMP Jaya algorithm are better as
compared to other algorithms.

V. CONCLUSIONS
This paper proposes a posteriori multiobjective version of
Jaya algorithm named as MO-SAMP Jaya algorithm. The
proposed algorithm is used for the design optimization of
three selected thermal devices namely two-stage thermo elec-
tric cooler, two stage irreversible heat pump, and a plate-fin
heat exchanger and two basic thermal cycles namely trans-
critical CO2 cycle and irreversible Carnot power cycle. The
results obtained by usingMO-SAMP Jaya algorithm are com-
pared with those obtained by using GA, PSO, ABC, TLBO,
MO-TLBO and CRO algorithms for two stage thermo-
electric cooler; TOPSIS, LINMAP and fuzzy logic (the
results of which were based on the results ofMO-GA) for two
stage irreversible heat pump; MO-GA for transcritical CO2
refrigeration cycle; and TOPSIS, LINMAP and fuzzy logic
(the results of which were based on the results of MO-GA)
for irreversible Carnot power cycle. The MO-SAMP Jaya
algorithm is proved superior to other advanced optimization
in terms of quality of solutions. Furthermore, the proposed
MO-SAMP Jaya algorithm a posteriori approach has pro-
vided multiple Pareto optimal solutions in single simulation
run as compared to the a priori approach.
The proposed MO-SAMP Jaya algorithm may be easily

extended to solve the multiobjective optimization problems
of other thermal devices and cycles where the problems are
complex and having a number of design variables.
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