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ABSTRACT Finite battery capacity limits the network lifetime ofwireless sensor networks, and thus severely
impedes the deployment of large scale sensor networks. To prolong the lifetime, researchers utilize mobile
chargers to recharge sensors with external power sources. In this paper, we study both periodic charging
time scheduling and charging path planning with multiple chargers. First, we present an efficient slot-based
periodic charging time scheduling algorithm with both a fine-grained node classification scheme to prevent
unnecessary visits of energy-sufficient nodes, and a balanced charging task assignment scheme to avoid
charging starvation. To further enhance charging efficiency, we also propose a charging path planning
algorithm, which enables parallel power replenishment with multiple chargers. The simulation results show
that our algorithms are effective and competitive when compared with existing algorithms.

INDEX TERMS Wireless sensor networks, power replenishment, path planning, scheduling.

I. INTRODUCTION
Energy is a critical factor that influences the performance
of wireless sensor networks (WSN). Since typical sensor
networks are mainly powered by batteries, they can only
work for limited time depending on battery capacities. Hence,
finite network lifetime becomes a fundamental performance
bottleneck that severely constrains the application of sensor
networks.

To prolong the network lifetime, extensive research efforts
have been made in recent years [6], [8], [24]. Typical
strategies employed fall into two categories. One category
aims to reduce energy consumption via conventional meth-
ods such as duty cycling, data compression, and dynamic
routing [9], [28]. Such solutions are effective to some degree,
but network lifetime is still determined by limited battery
capacity. Another category utilizes the energy harvesting
technique to relieve the energy limitation by replenishing
sensors via thermal, mechanical, or electromagnetic energy
captured from ambient environments [8], [29]. Nevertheless,
their success for sensor networks remains limited in practice.
This is because the proper operation of any energy-harvesting
technique heavily depends on the environment. Further,
the size of an energy-harvesting device may pose a concern
in deployment, particularly when the size of such a device is

of much larger scale than the sensor that it is attempting to
power.

Recently, researchers started to adopt mobile chargers
to recharge sensors with external power sources. Different
from energy harvesting techniques that acquire dynamic and
unreliable power supplies, the mobile chargers are capable
of offering stable and reliable power sources for sensor
networks, and thus enable sustainable system operations.
With recent breakthroughs in wireless power transfer tech-
nology, mobility-assisted charging becomes more convenient
and thus received much attention in academia. A handful
of papers [21], [23], [25] have demonstrated the possibility
of offering perpetual and stable power supplies to sensor
networks via replenishing sensors with mobile wireless
rechargers.

Due to the limitedmobility of the charger, the scheduling of
charging tasks for sensor nodes in the network plays a critical
role in achieving a high charging efficiency. The Traveling
Salesman Problem (TSP)-based charging protocols are com-
mon solutions to the mobile charging problem [7], [12], [13].
In TSP-based approaches, the mobile charger periodically
executes a pre-optimized charging tour to replenish the
energy of sensor nodes in the networks. However, the draw-
back of TSP-based solutions is that when nodes energy

2612
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0003-2800-4348
https://orcid.org/0000-0001-9910-4237
https://orcid.org/0000-0001-9987-0329
https://orcid.org/0000-0002-8629-4622


M. Hu et al.: Periodic Charging for WSNs With Multiple Portable Chargers

FIGURE 1. Example: simultaneous power replenishment with multiple chargers.

consumptions are diverse, it may lead to the unnecessary
visits of energy-sufficient nodes. This not only increases the
charger travel distance when performing the charging tasks
of sensor nodes, but also prolongs the waiting time before the
energy-hungry nodes can be charged.

To cope with this deficiency, a recent work Esync [20]
synchronizes the power replenishment of sensor nodes based
on a series of periodic TSP tours. In each tour only the
energy-hungry nodes are charged, which prevent unnecessary
visits of energy-sufficient nodes. In Esync, energy-hungry
nodes are identified via a classification approach which
clusters nodes according to their various energy con-
sumption rates. Nevertheless, the classification method is
coarse-grained and may still lead to the unnecessary visits of
energy-sufficient nodes. Another problem is that in Esync the
charging loads, i.e., the number of nodes to be charged in each
tour, are not balanced among all tours. Specifically, in the
last tour all nodes are charged at one time. The unbalanced
charging schedule may lead to starvation of some nodes once
some tours cannot be started on time. Since the duration
of every tour is determined by the nodes with the fasted
energy consumption, probably Esync cannot manage to finish
charging all nodes in a single tour.

To this end, this paper contributes a Periodic Scheduling
algorithm with Balanced Load Assignment (PSBLA). The
proposed algorithm balances charging task assignments and
periodically assigns charging tasks in multiple tours based on
planned time slots. The balanced load assignment approach
effectively prevents starvation caused by late power replen-
ishment. To boost charging efficiency, we also design a
fine-grained node classification policy, which avoids unnec-
essary visits of energy-sufficient nodes. When nodes are
charged, their energy levels are guaranteed to be at a strictly
low level.

Moreover, previous studies [7], [16], [20] customarily
considered a scenario that one mobile charger serves the
whole network. However, such methods are inefficient in the
sense that the charger has to waste much time in waiting for
the power replenishment to finish. Nowadays chargers off the
shelf normally charge batteries in few hours. In this case,
even if we neglect the time spent in traveling among sensors,
it still requires hundreds of hours to recharge hundreds of
sensors. Consequently, some sensors may use up their energy
before the charger visit them. As a result, one mobile charger
can only maintain small scale sensor networks. Moreover,

the time expenses (and corresponding manpower expenses)
for maintaining sensor networks with one mobile charger are
also unaffordable. Observing the limitation of power replen-
ishment with one mobile charger, our fourth contribution is
a novel charging path planning strategy which replenishes
sensors with a mobile worker carrying multiple portable
chargers, as shown in Fig. 1. This strategy implements par-
allelism and thus greatly enhance the charging efficiency,
finally reducing charging time when the charging duration is
non-negligible.

By and large, the contribution of this paper is multi-fold.
We study both periodic charging time scheduling and charg-
ing path planning with multiple chargers. We first present
an efficient slot-based periodic charging time scheduling
algorithm with a fine-grained node classification scheme
to prevent unnecessary visits of energy-sufficient nodes
and a balanced charging task assignment scheme to avoid
charging starvation. To further enhance charging efficiency,
we also propose a charging path planning algorithm which
enables parallel power replenishment with multiple charg-
ers. The remainder of this paper is organized as follows.
Section 2 reviews the related work. Section 3 formulates the
problem and introduces preliminaries. Section 4 describes
the periodic charging scheduling algorithm with balanced
load assignment. Section 5 proposes the multi-charger path
planning strategy. Section 6 presents simulation results, with
conclusion following in Section 7.

II. RELATED WORK
A number of studies on the power replenishment of
sensor networks have been reported in literature [1]–[25].
Peng et al. [18] proposed a wireless charging system for
WSN and built a proof-of-concept prototype in small-scale
networks. Tong et al. [27] designed heuristics for a joint
network deployment and routing problem for wireless
rechargeable sensor networks. Peng et al. [22] studied an
optimal scheduling problem in rechargeable sensor networks
for stochastic event capture, i.e., how to jointly mobilize
the charger for energy distribution and schedule sensors
for optimal quality of monitoring. Liang et al. [1] pro-
posed approximation algorithms with constant approxima-
tion ratios so that the sum of charging rewards collected
from all charged sensors by the mobile charger per tour is
maximized. Shu et al. [10] proposed a localization technique
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for rechargeable wireless sensor networks. Han et. al. [2]
designed a joint energy replenishment and data collection
algorithm based on semi-Markov energy prediction model.
Their algorithm divides the target region into multiple clus-
ters and each cluster is handles by two mobile chargers.
Li et al. [15] presented a joint routing and charging approach,
which not only charge sensor networks but also effectively
improves network energy utilization via guiding routing paths
and recharge energy on demand. This solution recharge sen-
sor nodes on demand, and thus cannot offer performance
guarantees from a global perspective. He et al. [26] deployed
RFID readers to supply energy to RFID tags for continuous
operation while the tags can collect and transfer environmen-
tal data with energy harvested from RF signals.

A handful of studies assumed network energy consump-
tions are rather stable and thus formulated the problem as
periodic power replenishment. Xie et al. [7] considered a
scenario wherein a mobile charger periodically visits and
charges all nodes in sensor networks to enable sustainable
network operations. They studied an optimization prob-
lem maximizing the ratio of the charging vehicle’s vaca-
tion time over the cycle time. They proposed pre-optimized
TSP-based charging protocols to solve the problem. Actu-
ally, the pre-optimized TSP based charging approaches are
a kind of classic solutions to the periodic mobile charg-
ing problem [7], [12], [13]. In such approaches, the mobile
charger periodically carries out a pre-optimized tour to charge
a set of sensors in the network. However, in the TSP-based
solutions, when nodes energy consumptions are diverse,
it may lead to the unnecessary visits of energy-sufficient
nodes. This not only increases the charger travel distance
when performing the charging tasks of sensor nodes, but also
prolongs thewaiting time before the energy-hungry nodes can
be charged.

To handle this limitation, [20] proposed Esync, which
constructed a set of nested TSP tours based on the energy
consumption rates of different sensors, and only the nodes
with low remaining energy are involved in each charging
tour. Since in every tour only the energy-hungry nodes are
charged, the strategy effectively prevents unnecessary visits
of energy-sufficient nodes. However, in Esync, the charging
loads, i.e., the number of nodes to be charged in each tour,
are not balanced among all tours, while we propose balanced
solutions which offer guaranteed and sustainable power sup-
plies via periodic charging schedules.

Data collection with a mobile base station has signifi-
cant benefits on load balancing. Therefore, some previous
works utilized a mobile base station to simultaneously sup-
port mobile data collection and power replenishment. Guo
et al. [16] proposed a joint approach of energy replenishment
and anchor-point based mobile data gathering by consider-
ing both diverse energy consumptions and the time-varying
nature of energy replenishment. Xie et al. [12] studied opti-
mization problems for co-locating the mobile base station
on the wireless charging vehicle and minimized energy con-
sumption of the entire system while ensuring none of the

sensors runs out of energy. In another work [13], Xie et al.
proposed to jointly optimize traveling path, stopping points,
charging schedule, and flow routing. Zhao et al. [17] also
studied the joint optimization of effective energy charging
and high-performance data collections. Their proposed algo-
rithm searches for a maximum number of anchor points
where sensors hold the least battery energy under limited
tour length and maximizes data gathering performance with
a distributed algorithm. By and large, these prior works
employed a multi-functional vehicle carrying a mobile base
station and a charger to serve a sensor network with joint data
collection and power replenishment. All the aforementioned
papers assumed that the whole network is served by only
one mobile charger. Such a design may incur considerable
charging time which deteriorates charging efficiency. In con-
trast, we propose to enhance charging efficient at a low cost
via employing one mobile worker carrying multiple portable
chargers.

Only a few previous studies attempted to charge multiple
sensors simultaneously for scalable network power supplies.
Xie et al. [14] showed that multiple sensors can be concur-
rently recharged by one wireless charger. Reference [14] uti-
lized this multi-node wireless energy transfer technology to
address charging problems in sensor networks. Nevertheless,
wireless chargers off the shelf can only charge devices within
one meter while normally multiple sensors are deployed at
locations 50 to 100 meters from each other for economic
considerations. Consequently, their solution is too ahead of its
time as current charging technologies cannot support such a
large charging coverage. In contrast, our multi-charger design
is more realistic for multi-node charging as each portable
charger can be placed at one node even if the nodes are
sparsely deployed. Another work [21] studied the deploy-
ment of the minimum number of mobile charging vehicles
to charge a large-scale WSN such that no sensor will run
out of energy. In the paper Liang et al. proposed an approx-
imation algorithm and a heuristic algorithm to address the
deployment problem.Wang et al. [19] also exploited multiple
mobile chargers to charge a sensor network. They solved
a multi-charger problem with heuristics based on concepts
borrowed fromNamed Data Networking. Different from [21]
and [19], we employ only one mobile charger to carry mul-
tiple portable chargers. Since the cost of a portable charger
is probably much lower than the mobile carrier (either an
robotic vehicle or a human being), we claim that our novel
design can achieve a high charging efficiency at a much lower
cost.

III. PROBLEM FORMULATION
A. MODELS
We consider a wireless sensor network consisting of many
stationary energy rechargeable sensors. The sensors can be
recharged by a mobile worker who carries a number of K
portable chargers. The worker can be a human worker, a vehi-
cle driven by a human, or an unmanned robot. A charger is
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a power transmitter equipped with a high capacity recharge-
able battery to store sufficient energy. The worker can carry
multiple chargers and use them to simultaneously recharge
multiple sensors. When reaching a region where the sensors
need to be charged, the worker visits K nearby sensors and
places K chargers on the sensors, respectively. The chargers
can charge the sensors simultaneously. Let B be the battery
capacity. It takes a period of time TC to fully recharge a sensor
from zero capacity. The worker then waits a while until the
chargers finish charging. Afterwards, the worker re-visits the
K sensors again to recycle the chargers, which completes a
charging round. Then the worker can leave for the next target
region and start another round. Fig. 1 shows the 3 steps of
a charging round wherein 4 sensors are replenished by an
mobile worker.

The sensor nodes periodically gather data from ambient
environment and deliver it to a base station in a multi-hop
manner. All nodes are identical and they are initially fully
charged. We assume the network topology is comparable
stable and the routing paths (or routing table) of all nodes
rarely change. We also assume communications are the dom-
inant source of the nodes’ energy consumptions. In this
case, the power consumptions of sensor nodes are stable
and diverse. Sensor nodes near the base station deplete their
batteries much faster than other sensor nodes. Consequently,
nodes near the base station require more frequent power
replenishment than other nodes. Since the power consump-
tion rates of the nodes are stable, such information is known
to the scheduler. It is thus possible to periodically charge the
sensor nodes such that the energy consumptions and supplies
can achieve a balance.

B. PRELIMINARIES
Since TSP-based approaches is inefficient to handle diverse
node energy consumption rates, [20] proposed to cluster
nodes as nested TSP tours based on their various energy con-
sumption rates. For the convenience of constructing nested
TSP tours, the authors in Esync use a power-α classifica-
tion approach to categorize nodes according to their energy
consumptions. Let rmax and rmin as the maximal and minimal
energy consumption rates of the sensors, respectively. Esync
classifies a number of m intervals and

m = dlogα(
rmax
rmin

)e (1)

where dxe is the first integer that is greater than x; α is an inte-
ger parameter that is greater than 1. We write the m intervals
in the non-decreasing order of energy consumption rates as:
[rmin,

rmax
αm−1

], ( rmax
αm−1

, rmax
αm−2

], . . ., ( rmax
α2
, rmax
α1

], ( rmax
α1
, rmax]. The

energy consumption rates of all sensor nodes fall into the m
intervals, i.e., m classes.

With this classifying algorithm, the ratio between the max-
imal and the minimal energy consumption rates of the sensor
nodes in the same class (interval) is upper bounded by α.
Suppose all nodes are synchronized in the sense that all nodes
are initially full of energy and they start operation at the same

time. In i-th (i = 1, . . . , αm−1) tour, the first N cnt
i classes of

nodes are involved in power replenishment, where the number
N cnt
i can be derived by algorithm 1.

Algorithm 1 Get Ci
1: temp← α

2: N cnt
i ← 1

3: while temp ≤ αm−1 or i mod β = 0 do
4: temp← temp ∗ α
5: N cnt

i ← N cnt
i + 1

6: end while

In i-th tour, when the first Ci classes are charged, the nodes
in these classes remain at most α−1

α
of their total energy. Such

nodes are so-called energy hungry nodes. If not charged in
this tour, they will run out of energy. Since in each tour only
the energy-hungry nodes are charged, the strategy effectively
prevents unnecessary visits of energy-sufficient nodes.

Clearly, α plays a critical role in determining the charging
performance. The charging efficiency is related to the remain-
ing energy of the nodes when they are being charged. In the
worst case, a node would have α−1

α
of remaining energy.

This means, a smaller α value leads to better worst case
charging efficiency. Therefore, in this paper, we fix α as 2.
Accordingly, in the worst case a node would have half of
remaining energy when it is charged.

However, in Esync, the charging loads, i.e., the number of
nodes to be charged in each tour, are not balanced among
all tours. Specifically, in the last tour all nodes are charged
at one time. The unbalanced charging schedule may lead to
starvation of some nodes once some tours cannot be started
on time. Since the duration of every tour is determined by the
nodes with the fasted energy consumption, probably Esync
cannot manage to finish charging all nodes in a single tour.

IV. PERIODIC SCHEDULING WITH BALANCED
LOAD ASSIGNMENT
This paper studies power replenishment problem of a sensor
network wherein each sensor node incurs a stable energy
consumption rate. We synchronize the power supply of sen-
sor nodes via a set of periodic charging tours. In the fol-
lowing, Section IV-A first clusters nodes into fine-grain
classes, in preparation for node scheduling. Section IV-B
presents a slot-based scheduling algorithm, which determines
the time schedules for periodic sensor power replenishment,
i.e., sensors are charged in which slots. Section IV-C further
optimizes the scheduling algorithm on load balancing.

A. FINE-GRAINED NODE CLASSIFICATION
Since sensors consume power in different rates, for the conve-
nience of constructing nested TSP tours, the authors in Esync
use a power-α classifying algorithm to group nodes according
to their energy consumptions. As illustrated above, α plays
a key role in determining the charging performance. When
the nodes are charged, they remain at most α−1

α
of their total

energy. Classification algorithm groups nodes in relatively
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FIGURE 2. Example of node classification. Four different colors/shapes
denote four classes.

coarse-grain as α can only be selected as integers. This limits
the flexibility of node classification and may also restricts the
efficiency of power replenishment since the nodes may still
remain abundant energy when they are charged.

In this case, we propose a fine-grain α-β classifying algo-
rithm based on the power-α algorithm [19]. In this algorithm,
both α and β are integer design parameters, where α ≥ 2
and β ≥ 1. This algorithm group nodes in two steps. In step
1, we construct m intervals of required charging period. Let
Tmin = B

rmax
, which is the shortest required charging period

among all nodes. The charging periods of the sensors fall
into the m intervals: [Tmin, αTmin), [αTmin, α2 Tmin), . . .,
[αM−2Tmin, αM−1Tmin), [αM−1Tmin, B

rmin
].

Then, every interval is evenly divided into β sub-intervals.
The i-th (i = 1, 2, . . . ,m) interval [αi−1Tmin, αiTmin)
is divided into the following intervals: [αi−1Tmin,
αi−1Tmin(β+α−1)

β
), [α

i−1Tmin(β+α−1)
β

,
αi−1Tmin(β+2(α−1))

β
),

. . . , [α
i−1Tmin(β+(β−2)(α−1))

β
,

αi−1Tmin(β+(β−1)(α−1))
β

),

[α
i−1Tmin(β+(β−1)(α−1))

β
, α

iB
rmax

]. The required charging periods
of all nodes fall into the sub-intervals. Every sub-interval
corresponds to a class and thus finally we have βm
classes. The required charging period of a class is the
lower bound of its corresponding sub-interval. Hence,
for the i-th interval, the required charging period of its
corresponding β classes are: αi−1Tmin,

αi−1Tmin(β+α−1)
β

,

. . ., α
i−1Tmin(β+(β−2)(α−1))

β
, α

i−1Tmin(β+(β−1)(α−1))
β

. There are
totally at most βm sub-intervals (i.e., classes).

With the fine-grained node classification, charging effi-
ciency can be improved. When a node is being charged, its
remaining energy is at most α−1

β+α−1 . Obviously, a smaller α
and a greater β lead to a smaller upper bound of remaining
energy. In other words, reducing α and increasing β can

increase charging efficiency. Since α and β are integer design
parameters satisfying α ≥ 2 and β ≥ 1, one may wish to
choose a small α and a large β to enhance charging efficiency.
However, it is not wise to choose a large β for two reasons.
Firstly, the slot length (discussed in the next subsection)
is reciprocal to β. If β is too large, the slot length may
become insufficient for one charging tour. Secondly, if β

is too large, the number of nodes in one class may be too
few, which may deteriorate the charging efficiency. Accord-
ing to our experiments, we recommend setting α = 2 and
β = 2. Fig. 3 shows an example of the two-step classification
method. Descriptions on the example can be found in the next
subsection.

B. SLOT-BASED PERIODIC SCHEDULING
The proposed scheduling algorithm derives a charging sched-
ule which periodically works over cycles. The scheduling of
every cycle is identical and thus all charging activities repeat
in every cycle. Due to the time-varying nature of the energy
replenishment demand, to facilitate our study, we divide the
time into fixed time intervals of length T , namely ‘‘time
slots’’. A cycle contains multiple slots.In each time slot the
worker runs a tour to selectively recharge sensors at low
energy levels. A slot is the smallest time unit wherein one
charging tour can execute. As sensors consume power in
different rates, in each slot different classes may be charged.
Notice that each tour should be finished before the current slot
ends, to assure that the next tour can timely start in the next
period. This issue is addressed via load balancing discussed
in the next section.

The length of a slot is T = (α−1)Tmin
β

, which is the duration
of the first (smallest) sub-interval. The required charging
periods of all classes are multiples of slot length. The cycle
length L is the least common multiple of the required charg-
ing periods of all classes. In this case, both the duration of
the cycle and required charging periods of the classes can be
counted in the terms of slots. All the classes can be charged
periodically in terms of slots. Suppose the nodes are catego-
rized into a number of J (J = βm) classes (C1,C2, . . . ,CJ ).
The required charging period of class Cj (j = 1, 2, , J ) is pj.
Class Cj is charged in slots npj

T (n = 1, 2, . . . , LT ). With the
node classification and slot based design, we can periodically
schedule the power replenishment into slots based on node
classes. Also, we are able to schedule multiple classes into
one slot. According to the schedules, in each period the
worker selectively charges a part of sensors such that for each
sensor, the interval between every two consecutive charges is
no greater than its required minimal charging interval.

Fig. 3 shows an example of slot-based periodic scheduling.
In this example, our two-step classificationmethod is applied.
Let α = 2, we first obtain 3 classes with periods equaling to
2T , 4T , and 8T . Then, let β = 2, the nodes finally fall into
6 classes, namely C1,C2, . . . ,C6. The charging periods of
the 6 classes are: p1 = 2T , p2 = 3T , p3 = 4T , p4 = 6T ,
p5 = 8T , p6 = 12T . The cycle length is 24T , which means
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FIGURE 3. Example of slot-based periodic scheduling: 6 classes scheduled in 24 slots.

FIGURE 4. Example of balanced assignment: 15 subclasses from 4 classes scheduled in 12 slots.

a cycle consists of 24 slots. Fig. 3 shows the classes charged
in every slot in a cycle. The charging tasks are issued in parts
of slots in a cycle. A slot is called a working slot once there
are charging tasks issued in the slot. Notice that not all slots
are working slots. The algorithm obtains all working slots in
a cycle.

C. BALANCED LOAD ASSIGNMENT
The above section proposes a scheduling algorithm for peri-
odic power replenishment. However, the charging loads,
i.e., the number of nodes to be charged in each tour, are not
balanced among all tours (slots). For example, in Fig. 3, all
classes are scheduled in slot 24 while no class is scheduled in
slot 23. If the slot duration is comparatively short, the sched-
ule may become infeasible as the worker cannot finish the job
in slot 24 in time.

To tackle this problem due to unbalanced charging policies,
we improve load balancing via a balanced load assignment
approach. This approach proposes to balance the charging
tasks through all slots. That is, we evenly charge nodes on
every slot such that the number of nodes charged in every
slot is roughly identical. We evenly divide class Cj into
nsubj =

pj
T subclasses. Then, the nsubj subclasses are charged

in turn through every nsubj slots. In every slot, we charge a
set of nodes, which contains J subclasses selected from J
classes, one subclass from one class. Figs. 2, 5 and 4 depict
an example of balanced assignment. In this example, nodes
are clustered into 4 classes, C1, C2, C3, and C4, as shown
in Fig. 2. Their required charging periods are p1 = 2T ,
p2 = 3T , p3 = 4T , p4 = 6T , respectively. The cycle length
is thus 12T . Fig. 5 shows the 15 subclasses of the example.
Fig. 4 shows the assignment of slots and subclasses. As shown
in the figure, C1 is divided into 2 subclasses C11 and C12
since the period of C1 is 2 spans 2 slots. Hence, in every slot,
one subclass from C1 is scheduled. In this case, in every slot
totally 4 subclasses from 4 classes are scheduled. In Fig. 5,

FIGURE 5. Example of balanced assignment: 15 subclasses in the field.
The four subclasses C11, C21, C31, and C41 are scheduled in the same
slot, which is slot 1 in Fig. 4.

the 4 subclasses in gray color (C11, C21,C31, and C41) are
scheduled in the same slot, which is slot 1 in Fig. 4.

Having outlined the basic idea of the algorithm, we now
present a two-step approach, as described in the following
2 subsections. In step 1 we divide every class into multiple
subclasses and in step 2 we assign the subclasses into slots.
In both steps, we aim to optimize charging efficiency via
minimizing travel distance for each charging tour.

1) NODE SUB-CLASSIFICATION
We apply clustering algorithms to partition the classes into
subclasses. In the above subsections we have categorized
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Algorithm 2 Node Sub-Classification of Class Cj
1: input: class Cj
2: output: nsubj subclasses
3: for 1 to nsubj do
4: select a cluster for partitioning.
5: for 1 to N iter do
6: Bisect the selected cluster with basic K -Means
7: end for
8: take the split that produces the clustering with the

highest overall similarity.
9: end for

sensor nodes according to their energy consumptions. Now
in this subsection, to balanced load assignment, we partition
each node class Cj into nsubj subclasses. We propose to use
a bisecting K-means algorithm, which is a simple and effi-
cient implementation of the basic K-means algorithm. The
bisectingK-means algorithm incrementally updates centroids
through N iter iterations, which produces results with better
overall similarity and avoid inefficient choice of initial cen-
troids. In every iteration the algorithm picks a cluster and
splits it into two smaller clusters. There are a number of
different ways to choose which cluster is split. We choose
the largest cluster at each step to balance the subclass sizes,
i.e., balance the number of nodes charged in every period.

2) BALANCED SUB-CLASS ASSIGNMENT
Given subclasses partitioned, the algorithm then determines
the schedules in every slot, i.e., which subclasses are sched-
uled in every slot. We shall guarantee 2 periodicity conditions
for scheduling: firstly, each subclass in class Cj is charged in
every pj

T slots; secondly, only one subclass from class Cj is
charged in every slot. Also, to enhance charging efficiency,
we aim to minimize the travelling distance to charge all
subclasses in every slot.

The balanced assignment approach is shown in
Algorithm 3. The algorithm starts with a number of L

T empty
partial schedules, ψ1, ψ2, . . . , ψ L

T
. The algorithm executes J

iterations to generate schedules. In every iteration, the algo-
rithm updates the partial schedules by assigning subclasses
to them.

We define the distance between a subclass Cij and a partial
schedule ψk (k = 1, 2, . . . , LT ) as the distance between two
nearest nodes from the subclass and the schedule. We denote
the distance as δ(Cij, ψk ). A small distance value implies that
the mergence is favorable and the total travelling distance to
charge all subclasses in the partial schedule is rather short.
The algorithm tends to select a pair of partial schedule and
subclass with the smallest distance value to combine as a new
partial schedule. In iteration j, the algorithm considers the
first nsubj partial schedules. It iterates to assign nsubj subclasses
to update the first nsubj partial schedules. Once a subclassCij is
assigned to a schedule ψk (k ≤ nsubj ), it will also be assigned

Algorithm 3 Balanced Sub-Class Assignment

1: for each class j, get nsubj subclasses via Node Sub-
Classification

2: ∀k ψk ← ∅
3: for j = 1 to J do
4: for i = 1 to nsubj do
5: select scheduleψk and Cij that minimizes δ(Cij, ψk )

(k ≤ nsubj )
6: for k ′ = 0 to L

nsubj T
− 1 do

7: ψk+k ′nsubj
← ψk+k ′nsubj

∩ Cij
8: end for
9: end for
10: end for

to schedules ψk+k ′nsubj (k ′ = 1, 2, . . . , L
nsubj T

− 1). Finally,

every schedule ψk contains J subclasses from J classes,
as shown in an example Fig. 4.

V. MULTI-CHARGER TOUR PATH PLANNING
The above sections determines in which slot the nodes are
recharged. In this section, we will address how to recharge
the nodes in one slot, i.e., the path planning of each tour.

A. MULTI-ROUND TOUR DESIGN
Since the mobile worker carries a number of K chargers,
in every charging tour it charges sensors withmultiple rounds.
In each round the worker can simultaneously charge up to
K sensors in its proximity, one charger for each sensor. The
worker first visits the sensors that are to be charged and
deploys a charger at each sensor. It then waits for the chargers
to finish charging and returns to recycle the chargers. After-
wards it travels to the next target region and starts another
round to distribute and recycle chargers. Accordingly, in each
tour the worker can execute multiple rounds to charge many
sensors. Fig. 1 shows the 3 steps of a round which charges 4
sensors.

We claim that the multi-charger strategy is much more
efficient than traditional single-charger strategies widely
absorbed in the previous studies. Firstly, simultaneously
charging multiple nearby sensors with multiple chargers
can significantly reduce waiting time (i.e., charging time)
incurred per sensor. Secondly, the charging time can be
overlapped with travelling time to some degree, which fur-
ther reduce the worker’s working time. That is, in each
round when some sensors are being charged, the worker can
visit other sensors to deploy or recycle sensors. Since the
cost of employing a mobile worker (e.g., paying salaries
to human workers) is probably much higher than that of
purchasing chargers, the proposed simultaneous charging
strategy achieves much higher charging efficiency than the
single-charger strategy at the cost of only minor budget
increases.

In each round, the sequence to visit nodes and place
chargers is a travelling salesman problem [30], which can be
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FIGURE 6. Path planning in a multi-round charging tour.

addressed by a TSP solver (e.g., Concorde TSP Solver [31]).
The example in Fig. 6 depicts a tour containing 4 rounds,
while the path in each round is shown as a node-level TSP. As
shown in Fig. 6, a complete charging tour consists of paths
within the rounds and paths between the rounds. The path
within each round is a circuit obtained by the TSP solver,
while the paths between the rounds link all rounds (i.e.,
circuits) together. We seek the paths between the rounds via
a TSP with neighborhoods problem (TSPN) [32]. In TSPN,
we are given a collection of disjoint subsets of vertexes in
the plane, called neighborhoods, and we seek the shortest
tour that visits each neighborhood (i.e., visits any vertex in
each specified subset). In our charging problem, each round
specifies a circuit path, which is indeed a neighborhood in
TSPN. We assume that the worker can arrive at any node in
each round and regard the node as the origin node of the round
where the worker starts to distribute chargers. After power
replenishment finishes, the worker returns to the origin node
and leaves for the next round. In this case, seeking the shortest
tour between the rounds (i.e., the shortest tour that visits all
neighborhoods) is a TPSN. Such a problem has been proved
to be NP-complete, and a handful of algorithms have been
proposed to address it [30].

B. NODE CLUSTERING IN A TOUR
In the following, we focus on how to organize nodes in every
tour into multiple rounds while the TSP problems are left to
TSP solvers. The critical challenge of the round organization
problem is how to organize sensors into rounds in every tour
for efficient power replenishment. We formulate the problem
as a clustering problem: a number of n nodes involved in a
tour are classified as multiple clusters. Each cluster consists
of up to K sensors in proximity. In this case, all sensors in
one cluster can be simultaneously charged in one round. Once

the nodes in one tour are efficiently clustered such that each
round only involves nearby nodes, the time incurred in every
round can beminimized and the time of a tour can be reduced.

The proposed node clustering algorithm is shown in
Algorithm 4. The algorithm executes 3 stages. Stage 1 par-
titions the nodes into clusters via a bisecting K -means
approach while Stages 2 and 3 refine the results. The time
complexity of the algorithm is O(n∗K ∗N iter ) where n is the
number of nodes in the tour, K is the number of chargers, and
N iter is the number of iterations executed.

Algorithm 4 Node Clustering Algorithm
1: while there exists any cluster whose size is greater than
K do

2: select a cluster whose size is greater than K for parti-
tioning.

3: for 1 to N iter do
4: Bisect the selected cluster with basic K-Means
5: end for
6: take the split that produces the clustering with the

highest similarity.
7: end while
8: put all clusters in S
9: while S 6= ∅ do
10: pick a cluster c with the largest size from S
11: if bisecting c reduces working time then
12: bisect c
13: end if
14: S ← S \ c
15: end while
16: put all clusters in S
17: while S 6= ∅ do
18: pick a cluster c with the smallest size from S
19: if dismissing c reduces working time then
20: dismiss c and migrate its nodes to nearby clusters
21: end if
22: S ← S \ c
23: end while

Stage 1 (lines 1 - 7 of Algorithm 4) executesN iter iterations
to partition all nodes into small clusters whose sizes are
no greater than K . Each cluster corresponds to a cluster of
neighboring nodes which are to be charged in parallel with
up to K chargers. In each iteration, the algorithm picks a
cluster whose size is greater than K for bisecting. This stage
terminates once the size of every cluster is no greater than K .
Stage 2 (lines 8 - 15 of Algorithm 4) attempts to further

divide the clusters into smaller ones. The algorithm examines
all clusters according to the non-increasing order of the clus-
ter size. For each cluster examined, the algorithm attempts to
bisect it and checks whether the bisection can result in shorter
working time during the tour. If the bisection leads to shorter
working time, it is bisected. This stage prevents the case that
the nodes within a round are far from each other, such that the
travelling time within a round compromises the time saved
via parallel charging with multiple chargers.
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FIGURE 7. Average working time. (a) Average working time versus battery capacity. (b) Average working time versus number of chargers.
(c) Average working time versus charging time delay. (d) Average working time versus number of sensors. (e) Average working time
versus worker speed.

Finally, in stage 3 (lines 16 - 23 of Algorithm 4), the
algorithm attempts to dismiss the excessive clusters and
assign the nodes of the dismissed clusters to nearby clus-
ters. The algorithm examines all clusters according to the
non-decreasing order of the cluster size. For each cluster
examined, if the following conditions are simultaneouslymet,
it will be dismissed and all its nodes are migrated to nearby
clusters: Firstly, the sizes of the nearby clusters are no greater
than K after they receive nodes from the cluster. Secondly,
the total time costs after the node migration can be reduced,
i.e., the dismissal and migration are beneficial.

VI. PERFORMANCE EVALUATION
In order to assess the effectiveness of the proposed scheduling
policies, we will now present a performance evaluation study,
carried out by means of a discrete-event simulator. To under-
stand the merits of the proposed algorithms, we compare
them with Esync. The proposed algorithms are denoted as
PSBLA-1 (with single charger) and PSBLA-M (with mul-
tiple chargers), respectively. We can evaluate the effect of
PSBLA via comparing the performance between Esync and
PSBLA-1, and evaluate the effect of the multi-charger path
planning component via comparing the performance between
PSBLA-1 and PSBLA-M, respectively.

We are interested in two performance metrics: The first
one is average working time, i.e., the average time in a cycle
that the worker is out in the field. This metric reflects the
overall charging efficiency of an algorithm. The second one

is maximum working time, i.e., the maximum time that the
worker is out in the field in one tour among all tours in a
cycle. This metric indicates how an algorithm balances the
charging jobs among all tours.

The default system configurations are set as follows: The
target sensor network has 300 nodes, which are uniformly
randomly deployed in a 1 km × 1 km sensing field. The
service station is located at one corner of the sensing field.
The worker carries 5 portable chargers and travels at a speed
of 1 m/s (3.6 km/h). The charging time required for serve
one sensor is set as 1 hour. The nodes’ battery capacity is set
as 1,000 mAH. The energy consumption rate for the sensing
tasks is 1.5 mW. The communication energy costs of sensor
nodes are set based on the data sheet of the MICA2 node:
the transmitting and receiving energy consumption rates are
50 mW and 16 mW, respectively. After nodes deployed,
a routing structure is constructed based on the TinyOS stan-
dard CTP [11]. Then the environment information, after cap-
tured by individual nodes, is transmitted to the sink through
multi-hop communications.

In the following experiments, we only vary one parameter
at a time while keeping the other settings. The corresponding
results on average working time and maximum working time
are shown in Fig. 7 and Fig. 8, respectively. Specifically,
we first vary battery capacity from 500 mAH to 2500 mAH,
and the corresponding results are shown in Fig. 7(a) and
Fig. 8(a), respectively. We then vary the number of charg-
ers from 2 to 10, and the corresponding results are shown
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FIGURE 8. Maximum working time. (a) Maximum working time versus battery capacity. (b) Maximum working time versus number of
chargers. (c) Maximum working time versus charging time delay. (d) Maximum working time versus number of sensors. (e) Maximum
working time versus worker speed.

in Fig. 7(b) and Fig. 8(b). Notice that these 2 figures only
present the results for PSBLA-M since only this algorithm
utilizes multiple chargers. We also vary the charging time
for serving one sensor from 0.5 to 2.5 hours, and the corre-
sponding results are shown in Fig. 7(c) and Fig. 8(c). Fur-
ther, to evaluate the scalability of our algorithm we vary the
number of sensors in the network from 100 to 500, and the
corresponding results are shown in Fig. 7(d) and Fig. 8(d).
Finally, we vary worker speed from 0.25 m/s to 4 m/s, and the
corresponding results are shown in Fig. 7(e) and Fig. 8(e).

The results in Fig. 7 show that the proposed algorithm
outperforms the baseline algorithms by a clear margin under
various scenarios. Specifically, we can observe two facts.
Firstly, the PSBLA-1 and Esync delivers close performance
in terms of average working percentage. This implies that our
balanced tour scheduling scheme cannot help to lower overall
working time. Secondly, compared to PSBLA-1 and Esync,
PSBLA-M only requires about 1/3 to 1/5 working time on
average. This means that in our simulations, themulti-charger
tour design can reduce 2/3 - 4/5 of the overall working time
than the single-charger TSP solution.

Fig. 8 shows that for maximum working percentage,
PSBLA-1 and PSBLA-M significantly outperform Esync,
which demonstrates that our balanced tour scheduling
scheme can effectively balance charging jobs among all tours.
Specifically, comparing Fig. 7 and Fig. 8, we can find that the
maximumworking time is 4 - 5 times of averageworking time
for PSBLA-1 and PSBLA-M, while for Esync, the maximum
working time is about 20-30 times of its average working

time. This indicates that PSBLA achieves better load bal-
ancing than Esync. In many cases of Fig. 8, Esync requires
hundreds of hours in the longest tours. Since the maximum
working time is too long, Esync probably will fail to keep the
network operational in some time intervals.

In Fig. 7(a) and Fig. 8(a), when large volume batteries
are applied, all algorithms require less working time. This is
because when battery capacity grows, the required charging
frequency is lowered for every node and thus the worker less
frequently works. Fig. 7(b) and Fig. 8(b) show that as the
number of chargers grows, PSBLA-M requires much less
working time, demonstrating the advantage of using multiple
chargers in parallel. In addition, when the number of charg-
ers is greater than 6, the working time gradually saturates.
A plausible explanation is that the density of the sensors are
limited, and excessive chargers cannot be effectively utilized
for parallel charging. In Fig. 7(c) and Fig. 8(c) the perfor-
mance of PSBLA is comparatively stable when charging time
delay grows. This implies that the multi-charger tour design
can effectively resist the increase of charging delay. Also,
when the charging time is small, the time taken for the worker
to move among the sensors dominates the total working
time. Accordingly, the performance of our proposed algo-
rithms becomes more stable when the charging time is small.
In Figs. 7(d) and 8(d), the performance gap increases when
the network scales. This means the proposed multi-charger
approach is more efficient and scalable for large networks.
Figs. 7(e) and 8(e) show that increasing worker speed helps to
save total working time. But when the worker speed is greater
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than 1m/s, the total working time gradually saturates. This is
because when the worker speed is sufficiently large, the total
time is mostly related to charging time, which is unrelated
to the worker speed, resulting in stable performance. In con-
clusion, the results show that PSBLA constantly achieves
both lower average working percentage and lower maximum
working percentage than all other algorithms.

VII. CONCLUSIONS
In this paper we have investigated the problem of periodic
mobile power replenishment for wireless sensor networks
with multiple portable chargers. We study both charging
time scheduling and charging route path planning prob-
lems. Our contributions are multi-fold. Firstly, we have
designed a periodic charging scheduling with balanced load
assignment approach, which evenly assign charging tasks
in multiple tours periodically. Secondly, we have also pre-
sented a fine-grained node classification policy, which avoids
unnecessary visits of energy-sufficient nodes. Thirdly, prior
studies customarily assumed that a mobile charger sequen-
tially visits and charges sensors. However, this method is inef-
ficient since it normally incurs considerable charging waiting
time. To address the limitation, we have proposed a novel
charging path planning strategy, which replenishes sensors
with a mobile worker carrying multiple portable chargers.
This strategy greatly enhance the charging efficiency and
reduce charging time when the charging duration is non-
negligible. Performance evaluation results are presented to
demonstrate the effectiveness and competitiveness of our
approaches when compared with existing algorithms.
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