
Received November 18, 2018, accepted December 5, 2018, date of publication December 10, 2018,
date of current version January 7, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2885948

Composition of Partially-Observable Services
HIKMAT FARHAT
Computer Science Department, Notre Dame University-Louaize, Zouk Mosbeh, Lebanon

e-mail: hfarhat@ndu.edu.lb

ABSTRACT In this paper, we tackle the problem of controlling the behavior of independent, partially
observable services so that they collectively achieve a desired behavior (specification). The solution consists
of synthesizing an orchestrator to coordinate the actions of the services, modeled as labeled transition
systems, while having partial knowledge about their states. We show that an orchestrator exists only if the set
of services is controllable where controllability is defined in terms of a set of message controllable relations.
We present two algorithms to solve the problem, prove their correctness, and study their complexity. One of
them is a novel backtracking algorithm that builds the solution incrementally, which makes it suitable as a
starting point for developing heuristics to solve this hard problem. The results of the backtracking algorithm
on a test case are promising.

INDEX TERMS Automated planning, behavior composition, supervisory control, partial observation, web
services.

I. INTRODUCTION
The composition of a set of independent services (or agents)
to collectively perform a sequence of actions that none of
them can perform individually is a recurring problem in
service oriented architecture and multi-agent systems [3], [6].
Such a composition is typically performed by an orches-
trator (controller) that communicates with the services to
accomplish the required task. The composition problem
is therefore the problem of synthesizing an orchestrator
given a specification and a collection of services. The
composition problem has been studied extensively [7], [10],
[16], [18], [23] but most of the work to date has assumed
that the orchestrator has perfect information about the state
of the services. In some situations, particularly if the services
are from different service providers, the orchestrator does not
have complete information about the state of the agents and
this situation is termed partial observation.

The service composition when the orchestrator has partial
observation has a higher complexity than the full observation
case which is already EXPTIME-hard [15]. This is because,
typically, one transforms the partial observation case to the
full observation case by considering subsets of states called
belief states [12]. Such a construction is exponential in the
worst case and it is performed prior to any synthesis even
if the problem has no solution. Furthermore, even in the
full observation case most of the algorithms to date use a
backward search strategy which necessitates the visitation

of all states. In backward search the starting point is the
whole state space and states are removed iteratively until
a fixed-point is reached. Such strategy is convenient in the
case of supervisory control of discrete event systems [17]
because it directly leads to the synthesis of the most permis-
sive controller (‘‘union’’ of all possible controllers) even if
there are other, less permissive, controllers. We have shown
that the composition problem is equivalent to the supervisory
control problem [9] but there is one key difference. In the
case of service composition the most permissive orchestrator
is not strictly required and any orchestrator that matches the
requirement is also a solution. Therefore in the case of service
composition building the solution incrementally, which does
not require the algorithm to visit all states, is desirable even
if it is not the most permissive. During the search, such
an algorithm stops if it finds a solution even if there is a
more permissive solution. Such an early stop of the algo-
rithm is even more evident when no solution exists. Fur-
thermore, an algorithm that builds the solution incrementally
can be improved by developing local search heuristics, or a
branch and bound [13] like technique since the algorithm
is essentially a backtracking algorithm, to reduce the time
complexity.

Our contribution is three fold. First, we present a model
of the services under partial control and partial observation
and we show that the existence of an orchestrator depends on
the existence of a set of message controlled (m-controlled for

VOLUME 7, 2019
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2281

https://orcid.org/0000-0002-5043-227X

H. Farhat: Composition of Partially Observable Services

short) relations. Second, we present a fixed-point algorithm
to find the set of m-controlled relations if it exists. Third,
we develop a backtracking algorithm to find one such set
(there could be multiple). We show the correctness of both
algorithms and we study their complexity. Finally, we com-
pare the two algorithms on a test case.

The paper is organized as follows. In section II we review
related work. In section III we present our model for services
and formulate the service composition problem. Also we
prove that the existence of an orchestrator is related to the
existence of a set of m-controllable relations. In sections IV
andVwe develop a fixed-point and a backtracking algorithms
respectively. The correctness of both algorithms is proved and
their complexity is studied. In section VI we show the results
of the implementation of the two algorithms on a case study.
We conclude in section VII.

II. RELATED WORK
In the vast majority of the methods that model and solve the
service composition problem for the case when the orches-
trator has partial information, the problem is converted to the
case of the synthesis of an orchestrator with complete infor-
mation over a groups of states called belief states [12]. The
computation of the belief state space for the services precedes
the synthesis of the orchestrator. Such computation groups all
service states with the same observation together in a belief
state. Once the belief state space is constructed, essentially
a subset construction which is exponential in the number of
states, the orchestrator is synthesized as an orchestrator with
perfect information over belief states. Therefore, there is a
preliminary step before the synthesis start even in the case
when no orchestrator exists. By contrast, the backtracking
algorithm proposed later in this paper, incrementally explores
belief states only when needed while synthesizing the
orchestrator.

Among the literature on the composition problem notmany
tackled the case of the orchestrator with partial information.
The ones closest to our approach are [2], [3], and [11].
While [2] converts the problem to a satisfaction of a µ cal-
culus formula without proposing an algorithm, [3] and [11]
make use of the belief state concept [12]. At first glance, our
model looks similar to the ones discussed in [3] and [11]
but there are essential differences. First, in [11], all actions
are considered as controllable (uncontrollability is accounted
for by non-determinism). Partial observation is taken into
account by using an observation function. In their model
the orchestrator can determine the state(s) of the services
by observing the sequence of actions. Therefore even if the
observation function returns the same value for two states (i.e.
they are indistinguishable) the orchestrator can distinguish
between them if they have taken different paths. Hence, our
model extends [11] both in terms of observability and con-
trollability.

The model used in [3] includes uncontrollable and unob-
servable actions like our model. The key difference is that
they consider unobservable actions as internal and are not

required to satisfy the specification. By contrast, in this
work unobservable actions must conform to the target
specification.

In [14] develops an on-the-fly algorithm, similar to our
backtracking algorithm, for the synthesis of a controller in
supervisory control theory but their aim is to synthesize the
most permissive controller with perfect information.

In this paper as in the above mentioned work the com-
position deals exclusively with the functional requirements
of a request. In addition it is assumed that the set of avail-
able services is given and does not deal with the service
discovery phase. In [21] a framework for service composition
is developed which includes a discovery phase that takes
non functional requirements into account. Among the various
components of their framework, one component deals with
service composition and our model can be integrated into
their framework playing the part of the dynamic composition
component.

Finally, our forward search algorithm can be used in
dynamic and mobile environments where the services com-
munity changes dynamically as studied in [5].

III. SERVICE MODEL
The model follows closely the definitions given in [9] with
the exception that the orchestrator has partial information.
Before giving a formal definition of the various parts of the
model it is convenient to give an informal description of its
components. The model has the following components: a set
of independent services whose behavior is coordinated by an
orchestrator to satisfy a given specification. Each service is
represented by a finite state labeled transition system (LTS).
The goal is to synthesize an orchestrator to coordinate the
action of the independent services so that their behavior
conforms to the given specification.

A. EXAMPLE
In this section we give a motivational example to introduce
the various concepts used in this paper. Figure 1 shows five
translation services and a translation request by a user. Each
service can read an input, action prefixed by ‘‘?’’, and produce
an output, denoted by the prefix ‘‘!’’. For example, service A,
can read an input in French (?fr) and produce an output in
English (!en). Three scenarios for the setup shown in that
figure will be used to clarify the concepts used in this paper.

Scenario one: the user requests a translation of a French
document to Japanese as shown in the request S in the top
right of Figure 1. Services A,B,C and D participate in this
scenario forming an asynchronous community (each service
action is independent of the others) which is (partly)shown
in the bottom left of the figure with the remaining possible
states and sequence of actions that do not lead to a solution
omitted for clarity. Since no single service can provide trans-
lation from French to Japanese the orchestrator has to coor-
dinate the actions of the community of services to satisfy the
request. There are two possible solutions: French-to-English-
to-Japanese and French-to-German-to-English-to-Japanese.

2282 VOLUME 7, 2019

H. Farhat: Composition of Partially Observable Services

FIGURE 1. Example of services and specification used in the three
scenarios in the text.

In this scenario all actions are controllable and observable
by the orchestrator, however, only reading French and writing
Japanese is observed by the user. This is a typical input-output
model (no internal action) used for services in web service
composition. In this scenario the user does not ‘‘care’’ about
the intermediate actions, i.e. how the translation is done,
as long as the input and output match the specification. There
are two basic strategies for obtaining the solutions.

The first is a backward search, whichwill be given formally
in Section IV, that starts with the whole state space of the
community and the request (in this case it has 243 states).
In each iteration of the backward search a set of states
that do not contribute to a solution are removed until what
remains are all possible solutions which in this scenario there
are two.

The second strategy is a forward search (with backtrack-
ing), which will be given formally in Section V, that incre-
mentally builds the solution. The forward search starts with
the initial state (a1b1c1d1) and tries the transitions one by one
and if a transition does not lead to a solution it backtracks.
For example the state (a1b1c1d1) on the transitions ?en and
?ge does not match the request of ?fr therefore the algorithm
backtracks and does not continue on that path. Depending on
which transitions it tries first the algorithm could find a solu-

tion by visiting just 5 states (a1b1c1d1)
?fr
−→ (a2b1c1d1)

!en
−→

. . .
!jp
−→ (a3b1c3d1) and stops when it finds the solution. This

is different from the case in supervisory control theory where
one needs to find the most permissible solution. Obviously,
this the best case scenario and in the worst case it might need
to visit all states but in practice, on average, it will visit much
less states than the backward search.

Scenario two: the user considers that something is lost in
the translation so it allows a single intermediary language as
shown in Figure 1 bottom right. In this case there is only
one solution, the leftmost labeled path shown in Figure 1
on bottom left. In the example all actions, including the
intermediate ones, are input-output but in different situations,
like in multi-agent systems, it could be other actions such as
ship item, load container,...etc.
Scenario three: service C is replaced by service E and the

specification is the same as in scenario two. ServiceE is unre-
liable and when given a English document it can translate it to
Japanese or fails to deliver as shown in the transitionFail. The
action Fail, being internal to service E , is both uncontrollable
and unobservable by the orchestrator. In this situation there is
no solution since in the specification failure is not allowed,
there is no Fail transition. In general, in addition to scenarios
one and two, the specification might require an action which
can only be performed by an internal action of a given service,
and the action is both uncontrollable and unobservable by the
orchestrator. To date a solution to this general case, to our
knowledge, has not been presented. In Section III-B we
present a necessary and sufficient condition for the existence
of an orchestrator for this general case. Furthermore, when
the orchestrator exists we show how it is constructed.

We restrict ourselves to the (reasonable) case where the
uncontrollable actions are also unobservable. The orchestra-
tor controls the actions of services by sending them messages
from a setCom. First we give the formal definition of a service
as a labeled transition system (LTS).
Definition 1 (Service): A Service Si is a labeled transition

system Si =
〈
Si, 6,Comi, s0i , θi

〉
where Si is a finite set of

states, 6 is a finite action alphabet, Comi is a finite set of
messages, s0i is the initial state, θi ⊆ Si×(6i∪Comi×6i)×Si
is the transition relation.

Often we will write s
a
−→ s′ if (s, a, s′) ∈ θi. Also,

if m ∈ Comi, a ∈ 6 we will often write s
m|a
−−→ s′. Since any

controllable action is prefixed by a message, e.g. s
m|a
−−→ s′,

the service moves from state s to state s′ while performing
action a only if it receives a message m from the orchestrator.
An uncontrollable action is without a prefix, e.g. s

a
−→ s′.

In this case the service could performs the transition (and
action) regardless of the action of the orchestrator andwithout
its knowledge (unobservable).
Definition 2 (Collection of Services (Community)): A set

of n services Si =
〈
Si, 6,Comi, s0i , θi

〉
, i = 1 . . . n, are

combined to form a collection (community) of services P =〈
P, 6,Com, p0, θ

〉
where

• P = S1 × . . .× Sn.
• p0 = (s01, . . . s

0
n).

• Com = ∪iComi
• θ ⊆ S × (6 ∪ Com×6)× S

θ is the transition relation of the collection defined as the
asynchronous product of all relations θi:

(〈s1, . . . , sn〉 , a,
〈
s′1, . . . , s

′
n
〉
) ∈ θ

VOLUME 7, 2019 2283

H. Farhat: Composition of Partially Observable Services

iff (sk , a, s′k) ∈ θk for some 1 ≤ i ≤ n

and for all k 6= i we have sk = s′k

Alternatively, we can defined θ functionally as:

θ (s1, . . . , sn, a) =
n⋃
i=1

⋃
s′i∈θk (si,a)

(s1, . . . , s′i, . . . , sn)

Controllable actions are prefixed by messages whereas
uncontrollable ones are not. Given an action a ∈ 6 and a
community state p, θ (p, a) denotes the set of states that the
services could be in after an uncontrollable a-transition and
θ (p,m | a) after a controllable transition (if enabled by the
orchestrator).
Definition 3 (Orchestrator): Let Com = ∪iComi be the

set of messages accepted by the community of services.
An orchestrator is a function� : A×Com −→ {0, 1}. Where
A depends on whether the orchestrator has partial or com-
plete information.

If the orchestrator has perfect information then it knows
exactly in which state the services are in and the sequence
of action they performed then A = P × 6∗. When the
controller has partial information it can only ‘‘remember’’ its
own messages then A ⊆ Com∗.
The orchestrator can affect only the controllable actions of

the services. Let p ∈ P, a ∈ 6,m ∈ Com, n ∈ Com∗ we
define the interaction of the orchestrator with the services by
the � operator:

θ (p,m |a)��(n,m) =

{
∅ If �(n,m) = 0

θ (p,m |a) If �(n,m) = 1

The evolution of the orchestrated community (i.e. under the
control of the orchestrator �), denoted by θ�, can thus be
divided into two parts: the uncontrollable and controllable
evolution. Formally,

θ�(p, a) = θ (p, a)
⋃

m∈Com

θ (p,m |a)��(n,m) (1)

Definition 4 (Behavior Specification): A behavior specifi-
cation (or target) Q is the LTS Q =

〈
Q, 6, q0, θt

〉
where 6

is a finite action alphabet, Q is a finite set of states, θt ⊆
Q × 6 × Q is the transition relation, and q0 is the initial
state.

The multi-step evolution of the community on a sequence
(trace) of actions, τ ∈ 6∗, a ∈ 6, is defined inductively
as:

θ�(p, τa) =
⋃

p′∈θ (p,τ)

θ�(p′, a)

Similarly, we extend the transition function of the target
inductively as:

θt (q, τa) =
⋃

q′∈θt (q,τ)

θt (q′, a)

Definition 5 (Service Composition): Let Q be a behavior
specification and P be a collection of independent services.

Let� be an orchestrator with partial observation and denote
byP� the orchestrated collection. We say thatP� is a service
composition of Q if and only if for all traces τ ∈ 6∗ and all
q ∈ θt (q0, τ), p ∈ θ�(p0, τ) we have :

∀a ∈ 6, θt (q, a) 6= ∅ ⇔ θ�(p, a) 6= ∅
Informally, the above definition means that after both the

target and the orchestrated community execute a sequence of
actions τ if one of them can make an a transition then the
other also can. Since this behavior is required to be true for
any sequence, including the empty one, then the orchestrated
community can mimic the behavior of the target and thus
satisfy the specified behavior.Wewill show that the existence
of an orchestrator for a service composition is characterized
by the existence of a set of relations called m-controllable
relations.

B. MESSAGE CONTROLLABLE RELATIONS
The set of m-controllable relations is a set of relations, R,
where each relation, R ∈ R, is a set of pairs of states (p, q),
one in the community and the other in the target and it has two
properties. First, in the presence of uncontrollable actions,
we don’t want the services to reach a state where it can
perform uncontrollable actions that the target cannot. This
property is important enough to merit its own name, R is said
to be a controllable relation.
Definition 6 (Controllable Relation): A relation R ⊆ P ×

Q is a controllable relation if and only if ∀(p, q) ∈ R, a ∈ 6
we have p

a
−→ p′ ⇒ ∃q′.q

a
−→ q′ ∧ (p′, q′) ∈ R

The definition above guarantees that any uncontrollable
service transition is matched by a target transition. Con-
versely, we want also that any target transition q

a
−→ q′ to be

matched by a service transition, either uncontrollable p
a
−→

p′ or controllable p
m|a
−−→ p′. In addition, since the message m

can potentially enable other transitions, those transitions are
also in R′. Formally,
Definition 7 (Message Controllable Relations): A set of

controllable relations R ⊆ 2P×Q is said to be message
controllable (m-controllable for short) if and only if ∀R ∈ R
and ∀(p, q) ∈ R, a ∈ 6 if q

a
−→ q′ then:

1) Either ∃p′.p
a
−→ p′ ∧ (p′, q′) ∈ R

2) Or ∃p′,m ∈ Com,R′ ∈ R with

p
m|a
−−→ p′ ∧ (p′, q′) ∈ R′

∧

∀(u, v) ∈ R, b ∈ 6

(u
m|b
−−→ u′ ⇒ ∃v′.v

b
−→ v′ ∧ (u′, v′) ∈ R′)

As we will see below the concept of set of m-controllable
relations is central for the concept of controllability (i.e. the
existence of an orchestrator). Each controllable relation inR
defines a state of the orchestrator and their transitions are the
transitions of the orchestrator.

Therefore, to synthesize an orchestrator it is sufficient to
design an algorithm to find the set of m-controllable relations
which is done in Sections IV and V. It is worth noting that

2284 VOLUME 7, 2019

H. Farhat: Composition of Partially Observable Services

in Petri Nets [1] a similar concept, regions, is used. Next we
extend the concept of controllability [9] to the case when the
orchestrator has partial observations.
Definition 8 (Controllability): LetP =

〈
P, 6,Com, p0, θ

〉
be a community of services and Q =

〈
Q, 6, q0, θt

〉
be a specification (target). P is said to be controllable
if and only if there exists a set of m-controllable rela-
tions R between P and Q and (p0, q0) ∈ R0 for
some R0 ∈ R.

Next we show that an orchestrator with partial observation
exists if and only the community is controllable. This reduces
the orchestrator synthesis problem to the problem of finding
the set of m-controllable relations.
Theorem 1: Let P =

〈
P, 6,Com, p0, θ

〉
be a commu-

nity of services and Q =
〈
Q, 6, q0, θt

〉
be a specification.

An orchestrator with partial information, �, exists such that
P� is a service composition of Q if and only if P is control-
lable. Furthermore, � is the m-controllable relations graph
and can be represented by a finite state labeled transition
system.

Proof: (If). Assume that P is controllable and letR be
the set of m-controllable relations. We need to prove that for
any τ ∈ 6∗ and for all q ∈ θt (q0, τ) and p ∈ θ�(p0, τ) we
have:

θt (q, a) 6= ∅ ⇔ θ�(p, a) 6= ∅

The proof is by induction on the length of τ .
Base case. Let ε be the empty trace then we can write q0 ∈

θt (q0, ε) and p0 ∈ θ�(p0, ε). By definition 8, (p0, q0) ∈ R for
some R ∈ R. Let q = θt (q0, a) thus q0

a
−→ q and by definition

7 we have one of the two cases:

1) ∃p.p0
a
−→ p ∧ (p, q) ∈ R.

2) ∃m ∈ Com, p ∈ P.p0
m|a
−−→ p ∧ (p, q) ∈

R′ for some R′ ∈ R. In addition, ∀(u, v) ∈

R
(
u

m|b
−−→ u′ ⇒ v

b
−→ v′ ∧ (u′, v′) ∈ R′

)
. By setting

�(ε,m) = 1 we get:

θ�(p0, a) ⊇ θ (p0,m |a)��(ε,m) 6= ∅

From the above we get that θt (q0, a) 6= ∅ ⇒ θ�(p0, a) 6= ∅.
Conversely suppose that p ∈ θ�(p0, a) then there are two

possibilities:

1) p0
a
−→ p but R is a controllable relation therefore ∃q

with q0
a
−→ q and (p, q) ∈ R.

2) p0
m|a
−−→ p and �(ε,m) = 1 for some m. The orches-

trator is set to �(ε,m) = 1 only happen if for some

p′, q′, q0
b
−→ q′ and p0

m|b
−−→ p′. From the second part of

definition 7, c ∈ 6 with p0
m|c
−−→ u there exists v such

that q0
c
−→ v and (u, v) ∈ R′. In particular, ∃q.q0

a
−→ q

and (p, q) ∈ R′.

Combining both part we get θt (q0, a) 6= ∅ ⇔ θ�(p0, a) 6= ∅.
Moreover for all p ∈ θ�(p0, a) and q ∈ θt (q0, a) we have
(p, q) ∈ R for some R ∈ R.

Induction Hypothesis: Suppose that ∀τ ∈ 6∗, | τ |= l − 1
we have(
p ∈ θ�(p0, τ) ∧ q = θt (q0, τ)

)
⇒ (θt (q, a) 6= ∅ ⇔ θ�(p, a) 6= ∅) ∧ (p, q) ∈ R

for some R ∈ R

Induction Step: Consider an arbitrary b ∈ 6 then |τb|= l.
Let ql ∈ θt (q0, τb), pl ∈ θ�(p0, τb) and ql

a
−→ ql+1. Then

ql ∈ θt (q, b) and pl ∈ θ�(p, b) for some p ∈ θ�(p0, τ) and
q ∈ θt (q0, τ). Now |τ |= l−1 and by hypothesis (pl, ql) ∈ R
therefore one the two cases is true:

1) ∃pl+1.pl
a
−→ pl+1, which implies that θ�(pl, a) 6= ∅

and (pl+1, ql+1) ∈ R.

2) ∃m, pl+1.pl
m|a
−→ pl+1 and (pl+1, ql+1) ∈ R′ for some

R′ ∈ R. Set �(τb,m) = 1, hence θ�(pl, a) ⊇ θ (pl,m |
a)��(τb,m) 6= ∅.

Conversely, let θ�(pl, a) 6= ∅. Then there are two cases:

1) Either ∃pl+1.pl
a
−→ pl+1. Since R is controllable

then ∃ql+1.ql
a
−→ ql+1, thus θt (ql, a) 6= ∅, and

(pl+1, ql+1) ∈ R.

2) Or ∃m, pl+1.pl
m|a
−−→ pl+1 and �(τ,m) = 1. The

orchestrator �(τ,m) is set to 1 only if ∃b ∈ 6 such

that ql
b
−→ q′ and pl

m|b
−−→ p′ with (p′, q′) ∈ R′ for

some R′ ∈ R. But since R is m-controllable we know
that this is done in such a way that for all c ∈ 6 with

pl
m|c
−−→ u, ∃v.ql

c
−→ u ∧ (u, v) ∈ R. In particular

pl
α|a
−→ pl+1 ⇒ ∃ql+1.ql

a
−→ ql+1 ∧ (pl+1, ql+1) ∈ R′,

thus θt (ql, a) 6= ∅.
Collecting the above two results we get that ∀τ ∈ 6∗

θt (q, a) 6= ∅ ⇔ θ�(p, a) 6= ∅ for all p ∈ θ�(p0, τ) and
ql ∈ θt (q0, τ).
(Only if) Assume that for all a ∈ 6, τ ∈ 6∗,p ∈

θ�(p0, τ),q ∈ θt (q0, τ) we have:

θt (q, a) 6= ∅ ⇔ θ�(p, a) 6= ∅

We will show that a set of m-controllable relations R exists.
In what follows τ = a1 . . . ak ∈ 6∗ is a set of uncontrollable
actions and for conciseness if p

a1
−→ p1 . . .

ak
−→ pk we write

p
τ
−→ pk .
Given a controllable relation R we construct for every m ∈

Com the relation:

Rm = {(p, q) | p0
m|a
−−→ p1 ∧ p1

τ
−→ p ∧ q0

aτ
−→ q for some

a ∈ 6, τ ∈ 6∗, p1 ∈ θ�(p0, a)}

where (p0, q0) ∈ R. First we show that Rm is a controllable
relation. Let (p, q) ∈ Rm then from the definition of Rm there

exists a ∈ 6, τ ∈ 6∗,p1 ∈ θ�(p0, a) such that p0
m|a
−−→ p1

τ
−→

p ∧ q0
aτ
−→ q. Now assume that p

b
−→ p′ for some b ∈ 6.

It follows that p′ ∈ θ�(p0, aτb) and by assumption ∃q′.q′ ∈

θt (q0, aτb). Combining both facts we get p0
m|a
−−→ p1

τ
−→ p

b
−→

p′ and q0
aτ
−→ q1

b
−→ q′. Therefore (p′, q′) ∈ Rm and thus

VOLUME 7, 2019 2285

H. Farhat: Composition of Partially Observable Services

Rm is a controllable relation. Next consider arbitrary c ∈ 6

and (p, q) ∈ R and suppose that p
m|c
−−→ p′ ∧ θ�(p, c) 6= ∅.

By assumption θt (q, a) 6= ∅ then we can write p
m|c
−−→ p′

ε
−→

p′ ∧ q
cε
−→ q′ therefore (p′, q′) ∈ Rm.

Using the above construction we build the set of relation
R inductively. Given R ∈ R construct Rm using the above
procedure. If Rm ∈ R stop otherwise add Rm to R. The base
case for the construction is:

Rε = {(p, q) | p0
τ
−→ p ∧ q0

τ
−→ q}.

That for every p0
τ
−→ p there exists q such q0

τ
−→ q follows

inductively using the assumption that θt (q0, a) 6= ∅ ⇔
θ�(p0, a) 6= ∅. Since the set of all relations, i.e. all subsets of
S × St , is finite our inductive procedure terminates in a finite
number of steps. By constructionR has the properties of a set
of m-controllable relations and therefore S is controllable. �

Algorithm 1 CONT Returns True iff R is a Controllable
Relation
CONT(R)

foreach (p, q) ∈ R do
foreach p

a
−→ p′ do

if q
a
−→ q′ then
if (p′, q′) /∈ R then

return false
else

return false
return true

IV. FIXED-POINT ALGORITHM
We develop a fixed-point algorithm in this section. The algo-
rithm computes largest set of m-controllable relations, which
corresponds to the most permissive orchestrator.

A. ALGORITHM
Since R is a controllable relation for all R ∈ R, algorithm 1,
based on definition 6, tests whether an input relation is con-
trollable or not. The starting point of the algorithm is the set
of all controllable relations, R1 defined as:

R1 = {R ∈ R0 | CONT (R)}

where R0 = 2P×Q. Let F be a function over the set of all
relations 2P×Q defined as:

F(Ri)
= {R ∈ Ri | ∀(p, q) ∈ R :

q
a
−→ q′ ⇒

(
∃p′.p

a
−→ p′ ∧ (p′, q′) ∈ R

)
(2a)

∨(
∃m ∈ Com, p′ ∈ P,R′ ∈ Ri.p

m|a
−−→ p′ ∧ (p′, q′) ∈ R′

(2b)
∧

∀(u, v) ∈ R : u
m|b
−−→ u′ ⇒ v

b
−→ v′ ∧ (u′, v′) ∈ R′

)
(2c)

The different conditions in the above equation are a
direct implementation of definition 7 in Section III-B.
Equations 2a corresponds to part 1 of definition 7. Also
equations 2b and 2c correspond to part 2 of the same def-
inition. The set of m-controllable relations is the largest
fixed-point of F . Therefore the algorithm computes the
sequence:

Ri+1 = F(Ri) (3)

It is easily seen from equation (2) that for any set of rela-
tions Ri, we have F(Ri) ⊆ Ri. This means that for each
application of equation (2) relations are removed but never
added. The first iteration is performed on R1, the set of
all controllable relations, therefore any relation in F(Ri) is
controllable.

Since R1 ⊆ R0 is finite then the above terminates in a
finite number of iterations. Thus F(Rk) = Rk for some k and
Rk is, by construction of R1 and F , a set of m-controllable
relations. Furthermore, by Tarski’s fixed-point theorem [19]
Rk is the largest such set.

B. COMPLEXITY
In this section we compute an upper bound for the complexity
of the algorithm. First, we compute the complexity of a single
application of equation (3). For each R ∈ Ri the function F in
equation (2) decides ifR ∈ Ri+1. Denote by |p

a
−→| and |q

a
−→|

the number of a-transitions that states p ∈ P and q ∈ Q,
respectively, can make. Then the complexity of processing
one relation R ∈ Ri is at most:∑
(p,q)∈R

∑
a∈6

∑
m∈Com

|q
a
−→|

·

|p a
−→| + |p

m|a
−−→| ·

∑
(u,v)∈R

∑
b∈6

|u
m|b
−−→|


This is because for every q

a
−→ transition, F needs to find

either a matching p
a
−→ or p

m|a
−−→. In addition, for a control-

lable action with message m, F has to check all transitions in
R enabled by m, hence the last sum in the above cost. If we
keep only the largest contribution in the above (double sum)
and that |q

a
−→| = 1 because the target is deterministic then

for each relation R ∈ Ri the cost is at most:∑
(p,q)∈R

∑
a∈6

∑
m∈Com

|p
m|a
−−→| ·

∑
(u,v)∈R

∑
b∈6

|u
m|b
−−→|

≤

 ∑
(p,q)∈R

∑
a∈6

∑
m∈Com

|p
m|a
−−→|


·

 ∑
(u,v)∈R

∑
n∈Com

∑
b∈6

|u
n|b
−→|


= |E|2 · |R|2

2286 VOLUME 7, 2019

H. Farhat: Composition of Partially Observable Services

where |E| is the number of controllable transitions in the
community P. The above is the cost of one R ∈ Ri. Knowing
that the algorithm terminates at iteration k and by summing
over all relations in Ri we get the following upper bound:

O

|E|2 k∑
i=1

∑
R∈Ri

|R|2


Since F is monotone decreasing then R1 ⊃ . . . ,⊃ Rj.

The worst case for the algorithm occurs whenRj = ∅, i.e. the
problem has no solution. Furthermore, in the worst case Ri
and Ri+1 differ by only one relation, i.e. |Ri| = |Ri+1| + 1.
Adding these two properties we get that in the worst case
it takes |R1| iterations for the algorithm to determine that
there is no solution. In addition R1 ⊃ Ri for all i then the
complexity becomes:

O

|E|2 |R1|∑
i=1

∑
R∈R1

|R|2

 = O

|E|2 · |R1|
∑
R∈R1

|R|2


The expression

∑
R∈R1

| R |2 is the sum of the square
of number of elements in all relations in R1. The above
complexity depends on the size ofR1 which is at most equal
to the size of R0 = 2P×Q. Let Rk be a subset of P × Q (i.e.
an element ofR0) with size k . Clearly the range of k is from
zero for the empty set up to N = |P×Q| for P×Q itself. The
number of subsets of P×Q of size k is given by the binomial
coefficient

(N
k

)
. Therefore the sum can be written as∑
R∈R1

|R|2 ≤
∑
R∈R0

|R|2

=

N∑
k=0

k2
(
N
k

)
= (N + N 2)2N−2

Finally the complexity of the fixed-point algorithm has the
following upper bound

O
(
|E|2 ·N 2

· 22N
)

Note that the above does not include the cost of computing
the setR1.

V. BACKTRACKING ALGORITHM
In this section we develop a backtracking algorithm,
to incrementally construct the set of m-controlled relations.
We believe this approach will lead to a smaller portion of
the search space being visited thus saving time even if the
complexity in the worst case is exponential in the number of
states.

A. ALGORITHM
Our aim is construct the set of m-controllable relations, R.
As we have seen, any relation R ∈ R has to be a controllable
relation. In the course of computation we need to determine

Algorithm 2 Forward Search Algorithm

cl ← CLOSURE((∅, p0, q0))
if cl = ∅ then

return ∅

DONE ← false
while ¬DONE do

DONE ← true
R← ∅
res = OBS(cl)
if res = false then

break
returnR

Algorithm 3 Function CLOSURE
CLOSURE(R,(p, q))

if (p, q) ∈ bad then
return ∅

if (p, q) ∈ R then
return R

R′← R ∪ {(p, q)}
foreach p

a
−→ p′ do

if q
a
−→ q′ then
R′← CLOSURE(R′, (p′, q′))
if R′ = ∅ then

bad ← bad ∪ {(p′, q′)}
return ∅

else
bad ← bad ∪ {(p, q)}
return ∅

return R′

if a given pair of states (p, q) belongs to a controllable rela-
tion or not. This closure operation is performed using the
CLOSURE function given in Algorithm 3. The return value
of the function is ∅ if (p, q) is not in a controllable relation,
and returns the controllable relation otherwise.

The function OBS(R) is the backtracking function and all
other functions are helpers. It determines if the input relation
R is to be added to the solution R. Note that R when used as
input for OBS it is guaranteed to be a controllable relation.
Basically, the function OBS(R) checks that R belongs to an
m-controllable set according to definition 7. Otherwise, R is
added to a set Z that contains all the relations that should not
be in R.
The main algorithm, algorithm 2 adds relations to R in

preorder and checks them in postorder fashion. Because of
that it is possible a relation R′ is removed from R even if
some other relation R depends it. Therefore, we maintain a
variable DONE set to false if a given relation is removed
fromR and the algorithm is runs again withR reset to empty.
When DONE is true the algorithm stops. It should be noted
that while R is reset to empty the set Z , which contains

VOLUME 7, 2019 2287

H. Farhat: Composition of Partially Observable Services

Algorithm 4 Function OBS

OBS(R)

if R ∈ Z then
return false

if R ∈ R then
return true

R← R ∪ {R}
foreach (p, q) ∈ R do

foreach q
a
−→ q′ do

res = FindMatch (R,p,q
a
−→ q′)

if res = false then
GOTO END

return true

END:R← R− R
Z ← Z ∪ R
DONE ← false
return false

the relations that are not in R is maintained after each run
because if R /∈ R at some point it cannot be in R in a
subsequent run. Now we explain the various functions used
by the algorithm.

The input to the function OBS is a relation R and returns
true if R ∈ R. This is done with the help of function
FindMatch explained below. The FindMatch function checks
for the first and second part of the disjunction in equation (2).
We can write the function F in equation (2) as:

F(Ri)={R ∈ Ri | ∀(p, q) ∈ R : FindMatch(R, p, q
a
−→ q′)}

(4)

Finally, the return value of the function TEST is either ∅ or⋃
(u,v)∈R

u
α|b
−→v′

CLOSURE(u, v)

B. CORRECTNESS
We will show that the algorithm is correct by ‘‘unrolling’’ the
functions that are used. From Algorithm 4 it is clear that a
relation R is included in R if and only if the return value of
OBS(R) is true. Now, the return value of OBS(R) is true if R
has the following properties:

∀(p, q) ∈ R,∀a ∈ 6 :

q
a
−→ q′ ⇒ FindMatch(R, p, q

a
−→ q′)

We unroll the code of FindMatch:

∀(p, q) ∈ R,∀a ∈ 6 :

q
a
−→ q′ ⇒

(
∃p′.p

a
−→ p′

)
∨(

∃m ∈ Com, p′ ∈ P.p
m|a
−−→ p′

∧ (TEST (R,m) 6= ∅) ∧ OBS(TEST (R,m)))

Algorithm 5 Function FindMatch

FindMatch (R, p, q
a
−→ q′)

if p
a
−→ p′ then
return true

foreach m ∈ Com do

if p
m|a
−−→ p′ then
/* the result is a controllable

relation */
R′←TEST (R,m)
if R′ = ∅ then

/* the result is not a
controllable relation */

Continue
else

res =OBS (R′)
if res = true then

return true
return false

Algorithm 6 Function TEST

TEST (R,m)
R′← ∅
foreach (p, q) ∈ R do

if p
m|b
−−→ q′ then

if q
b
−→ q′ then
cl = CLOSURE(∅, p′, q′)
if cl = ∅ then

return ∅
else

R′← R′ ∪ cl
else

return ∅
return R′

Since the input to OBS and FindMatch is a controllable
relations then the term ∃p′.p

a
−→ p′, can be written

as:

∃p′.p
a
−→ p′ ∧ (p′, q′) ∈ R

By unrolling the function TEST and the fact that the
return value of OBS(R) is true if and only if R ∈ R
we get:

∀(p, q) ∈ R,∀a ∈ 6 :

q
a
−→ q′ ⇒

(
∃p′.p

a
−→ p′ ∧ (p′, q′) ∈ R

)
∨{
∃m ∈ Com, p′ ∈ P.

[
p

m|a
−−→ p′

∧∀(u, v)∈R
(
u

m|b
−−→ u′⇒∃v′.v

b
−→ v′∧closure(u′, v′)

)
2288 VOLUME 7, 2019

H. Farhat: Composition of Partially Observable Services

∧

⋃
(u,v)∈R

u
m|b
−−→u′

v
b
−→v′

closure(u′, v′) ∈ R
]}

(5)

Let:

R′ =
⋃

(u,v)∈R

u
m|b
−−→u′

v
b
−→v′

closure(u′, v′)

Then the unrolled code for OBS(R) can be written as:

∀(p, q) ∈ R,∀a ∈ 6 :

q
a
−→ q′ ⇒

(
∃p′.p

a
−→ p′ ∧ (p′, q′) ∈ R

)
∨{
∃m ∈ Com, p′ ∈ P,R′ ∈ R.

[
p

m|a
−−→ p′ ∧ (p′, q′) ∈ R′

∀(u, v) ∈ R
(
u

m|b
−−→ u′ ⇒ ∃v′.v

b
−→ v′ ∧ (u′, v′) ∈ R′

)
(6)

By comparing equation (6) with equation (2) it is clear that
R is a fixed-point of F and therefore the algorithm is correct.
Note that R is not necessarily the largest fixed-point.

C. COMPLEXITY
Our starting point is determining the cost of single call to
OBS. ∑

(p,q)∈R

∑
a∈6

|q
a
−→| · |FindMatch(R, p, q

a
−→ q′)|

The complexity of FindMatch is dominated by the control-
lable transitions thus:∑

(p,q)∈R

∑
a∈6

∑
m∈Com

|p
m|a
−−→| · |TEST (R,m)|

Including the cost of the TEST function we get∑
(p,q)∈R

∑
a∈6

∑
m∈Com

|p
m|a
−−→|

·

∑
(u,v)∈R

∑
b∈6

|u
m|b
−−→ u′| · |v

b
−→ v′| · |closure(∅, u′, v′)|

Since the closure function visits a pair at most once then in
the worst case it will visit all the pairs in P× Q thus

|closure(∅, u′, v′)| ≤
∑

(p,q)∈P×Q

∑
a∈6

|p
a
−→| · |q

a
−→|

≤ |Eu|

where |Eu| is the number of uncontrollable transitions of the
community (the target is deterministic so |q

b
−→ q′| ≤ 1).

E does not depend on R and can be removed outside the
summation. Therefore the cost of a single call of OBS(R) is:

≤ |Eu|
∑

(p,q)∈R

∑
a∈6

∑
m∈Com

|p
m|a
−−→| ·

∑
(u,v)∈R

∑
b∈6

|u
m|b
−−→ u′|

TABLE 1. Results of the four experiments.

The value of the multiple sum was computed in
section IV-B. Therefore the complexity of the algorithm is

O(|Eu| · |E|2 · N 2
· 2N)

VI. EXPERIMENTAL
We implemented the two algorithm to solve the system first
presented in [20]. The system consists of four services: the
user, a producer, a shipper and a delivery. The user would
like to purchase some items from the producers and have
them delivered at her home. When the user requests an item
an offer, including the cost and delay, is made which can
be accepted or refused by the user. Therefore each item
requested by the user can have four properties: location,
delay, cost and size. We tested two of the case mentioned
in [20] (cases 5 and 6) which we refer two as case 1 and
case 2 in the table to compare the difference in performance
between the fixed-point and the forward search algorithm.
The test were run on a MAC book with Intel Core i5 2.4MHZ
with 4GB or RAM. Furthermore, in each case we made a
small variation in order to make the target unachievable (i.e.
no solution) which we label as case 3 and case 4. The results
are shown in the table below. As we can see the backtracking
algorithm performs better in all cases than the fixed-point
algorithm.

VII. CONCLUSION
In this paper we have developed methods to find a solution
to the composition problem under partial information. First,
we have shown that an orchestrator exists if and only if a set
of m-controllable relations exists and the orchestrator is the
same as the graph of the m-controllable relations. Then we
developed two algorithms to find them-controllable relations.
One is a fixed-point algorithm that obtains the most permis-
sive orchestrator and the second is a backtracking algorithm
that obtains an orchestrator which is not necessarily the most
permissive. We proved the correctness and computed the
complexity of both algorithms. The backtracking algorithm
performed better when used on a test case.

The backtracking algorithm developed in this paper can be
improved by using heuristics based on abstraction as done
for the complete information case in [8]. Also, the algo-
rithm can be improved further by using binary decision dia-
grams(BDD) [4] as done in supervisory control problems
such as [22]. Finally, it is interesting to try our approach for
the distributed orchestration case where the specification is
divided into sub-specifications and an orchestrator is synthe-
sized for each then a super-orchestrator will coordinate the
actions with the synthesized orchestrators.

VOLUME 7, 2019 2289

H. Farhat: Composition of Partially Observable Services

REFERENCES
[1] E. Badouel and P. Darondeau, ‘‘Theory of regions,’’ in Lectures on Petri

Nets I: Basic Models: Advances in Petri Nets. Berlin, Germany: Springer,
1998, pp. 529–586.

[2] P. Balbiani, F. Cheikh, and G. Feuillade, ‘‘Composition of interactive Web
services based on controller synthesis,’’ in Proc. IEEE Congr. Services I,
Jul. 2008, pp. 521–528.

[3] P. Bertoli, M. Pistore, and P. Traverso, ‘‘Automated composition of Web
services via planning in asynchronous domains,’’ Artif. Intell., vol. 174,
nos. 3–4, pp. 316–361, Mar. 2010.

[4] R. E. Bryant, ‘‘Symbolic Boolean manipulation with ordered binary-
decision diagrams,’’ACMComput. Surv., vol. 24, no. 3, pp. 293–318, 1992.

[5] N. Chen, N. Cardozo, and S. Clarke, ‘‘Goal-driven service composition in
mobile and pervasive computing,’’ IEEE Trans. Services Comput., vol. 11,
no. 1, pp. 49–62, Jan./Feb. 2018.

[6] G. De Giacomo, F. Patrizi, and S. Sardina, ‘‘Agent programming via
planning programs,’’ in Proc. 9th Int. Conf. Auton. Agents Multiagent
Syst. (AAMAS), Richland, SC, USA, vol. 1, 2010, pp. 491–498,

[7] G. De Giacomo and S. Sardina, ‘‘Automatic synthesis of new behaviors
from a library of available behaviors,’’ in Proc. 20th Int. Joint Conf.
Artif. Intell. (IJCAI). San Francisco, CA, USA: Morgan Kaufmann, 2007,
pp. 1866–1871.

[8] H. Farhat, ‘‘Composition services behavior via orchestrator synthesis,’’
Ph.D. dissertation, Inst. Recherche en Inf. de Toulouse, Paul Sabatier Univ.,
Toulouse, France, 2014.

[9] H. Farhat, ‘‘Web service composition via supervisory control theory,’’
IEEE Access, vol. 6, pp. 59779–59789, 2018.

[10] Y. Feng, A. Veeramani, R. Kanagasabai, and S. Rho, ‘‘Automatic service
composition via model checking,’’ in Proc. IEEE Asia–Pacific Services
Comput. Conf. (APSCC), Dec. 2011, pp. 477–482.

[11] G. De Giacomo, R. De Masellis, and F. Patrizi, ‘‘Composition of partially
observable services exporting their behaviour,’’ in Proc. ICAPS, 2009,
pp. 90–97.

[12] R. P. Goldman andM. S. Boddy, ‘‘Expressive planning and explicit knowl-
edge,’’ in Proc. AIPS, 1996, pp. 110–117.

[13] E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B. Shmoys, The Trav-
eling Salesman Problem: A Guided Tour of Combinatorial Optimization.
Hoboken, NJ, USA: Wiley, 1985.

[14] S. Miremadi and B. Lennartson, ‘‘Symbolic on-the-fly synthesis in super-
visory control theory,’’ IEEE Trans. Control Syst. Technol., vol. 24, no. 5,
pp. 1705–1716, Sep. 2016.

[15] A. Muscholl and I. Walukiewicz, ‘‘A lower bound on Web services com-
position,’’ Logical Methods Comput. Sci., vol. 4, no. 2, pp. 1–14, 2008.

[16] P. Papapanagiotou and J. Fleuriot, ‘‘Formal verification of Web services
composition using linear logic and the pi-calculus,’’ in Proc. 9th IEEE Eur.
Conf. Web Services (ECOWS), Sep. 2011, pp. 31–38.

[17] P. J. G. Ramadge and W. M. Wonham, ‘‘The control of discrete event
systems,’’ Proc. IEEE, vol. 77, no. 1, pp. 81–98, Jan. 1989.

[18] J. Rao and X. Su, ‘‘A survey of automated Web service composition
methods,’’ in Proc. 1st Int. Conf. Semantic Web Services Web Pro-
cess Composition (SWSWPC). Berlin, Germany: Springer-Verlag, 2005,
pp. 43–54.

[19] A. Tarski, ‘‘A lattice-theoretical fixpoint theorem and its applications,’’
Pacific J. Math., vol. 5, no. 2, pp. 285–309, 1955.

[20] P. Traverso and M. Pistore, ‘‘Automated composition of semantic Web
services into executable processes,’’ in The Semantic Web—ISWC (Lecture
Notes in Computer Science), vol. 3298, S. McIlraith, D. Plexousakis, and
F. Harmelen, Eds. Berlin, Germany: Springer, 2004, pp. 380–394.

[21] A. K. Tripathy and P. K. Tripathy, ‘‘Fuzzy QoS requirement-aware
dynamic service discovery and adaptation,’’ Appl. Soft Comput., vol. 68,
pp. 136–146, Jul. 2018.

[22] A. Vahidi, M. Fabian, and B. Lennartson, ‘‘Efficient supervisory synthesis
of large systems,’’ Control Eng. Pract., vol. 14, no. 10, pp. 1157–1167,
2006.

[23] E. Zahoor, O. Perrin, and C. Godart, ‘‘Web services composition veri-
fication using satisfiability solving,’’ in Proc. IEEE 19th Int. Conf. Web
Services (ICWS), Jun. 2012, pp. 242–249.

HIKMAT FARHAT received the B.Sc. degree in
physics from the American University of Beirut in
1993 and the Ph.D. degree in artificial intelligence
from the University of Paul Sabatier in 2014. He is
currently an Associate Professor of computer sci-
ence at Notre Dame University-Louaize, Lebanon.
His research interests include artificial intelligence
broadly construed and in particular formal meth-
ods and machine learning.

2290 VOLUME 7, 2019

	INTRODUCTION
	RELATED WORK
	SERVICE MODEL
	EXAMPLE
	MESSAGE CONTROLLABLE RELATIONS

	FIXED-POINT ALGORITHM
	ALGORITHM
	COMPLEXITY

	BACKTRACKING ALGORITHM
	ALGORITHM
	CORRECTNESS
	COMPLEXITY

	EXPERIMENTAL
	CONCLUSION
	REFERENCES
	Biographies
	HIKMAT FARHAT

