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ABSTRACT Using the semi-tensor product method, this paper studies the set stability of Boolean net-
works (BNs) with stochastic function perturbations. First, the definition of one-column function perturbation
for BNs is defined, and two kinds of stochastic function perturbations are formulated. Second, by construct-
ing a state transition matrix, a new criterion is proposed for the set stability of BNs with probabilistic function
perturbation. Third, the set stability of BNs withMarkov jump function perturbation is studied by calculating
the state probability distribution. Finally, the obtained results are applied to D. melanogaster segmentation
polarity gene network.

INDEX TERMS Boolean network, stability, stochastic function perturbation, semi-tensor product of
matrices.

I. INTRODUCTION
Stability analysis is a fundamental issue in understanding
the behavior of nonlinear dynamical systems [12], [40], [41].
Particularly, for gene regulatory networks (GRNs), it is shown
that stability analysis can reveal the phenotype of a cell and
explain some living phenomena [2], [8], [32], [33]. Recently,
a semi-tensor product (STP) method [5], [7] has been estab-
lished for Boolean networks (BNs) [14], [27], [29], [35], [37],
[38], [42], which is an effective model of GRNs.

Cheng et al. [6] firstly studied the stability analysis
problem of BNs based on STP. Then, the set stabil-
ity analysis problem of BNs was proposed and solved
in [10], [15], and [16]. The feedback stabilization problem
of Boolean control networks was well studied by many
scholars [4], [9], [17], [20]–[22], [25]. The Lyapunov func-
tion method has also been developed for the stability anal-
ysis of BNs in some recent works [18]. [31] investigated
Markov jump switching and stability analysis combining
the STP method with linear positive system theory. In [11],
a new definition of stability in the distribution (SD) for
probabilistic Boolean networks (PBNs) was proposed, based
on which, SD problems of PBNs with Markov switching
was considered. For other applications on STP, please refer
to [19], [23], [24], and [28].

It should be pointed out that due to gene mutation,
the function perturbation often occurs in the model of

GRNs [33], [36]. The solvability of function perturbation
analysis in GRNs can help us design therapeutic interven-
tions that guide a GRN from some dangerous states to
a healthy one [34]. Xiao and Dougherty [36] investigated
the impact of one-bit function perturbation on the fixed
point of BNs. Meng and Feng [30] further considered the
impact of modifications of update schedule on the topological
structure of BNs. The function perturbation impact on the
transition matrix and topological structure of singular BNs
was considered in [26] based on STP. Note that the exist-
ing results on function perturbation of BNs just considered
the deterministic function perturbation [13], [39]. In practi-
cal GRNs, most of gene mutations are generated by some
stochastic factors [3]. Hence, it is meaningful to study the
impact of stochastic function perturbation on the topologi-
cal structure of BNs. However, there exist fewer results on
this topic.

In this paper, we investigate the set stability analysis of
BNs with stochastic function perturbations based on STP, and
present several new results. The main contributions of this
paper are as follows:
(i) The stochastic function perturbation problem is firstly

proposed in this paper, which is more practical than the
existing deterministic function perturbation.

(ii) Based on STP, two new criteria are presented for
the set stability of BNs with probabilistic function
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perturbation and Markov jump function perturbation,
respectively. These conditions are easily verified via
MATLAB.

The paper is organized as follows. Section II presents pre-
liminaries and problem formulation. In Section III, we study
the stochastic function perturbation impact on the set stability
of BNs, and present the main results. In Section IV, we give
two illustrative examples. Section V is a brief conclusion.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. PRELIMINARIES
D is a set consisting of 0 and 1. A mapping f : Dn

→ D is
called a logical function. 1k := {δ

i
k : i = 1, · · · , k}, where

δik denotes the i-th column of Ik . 12 := 1. 1n := [1 · · · 1]︸ ︷︷ ︸
n

.

Given Q ∈ Rm×n, Colα(Q), Rowα(Q) and (Q)α,β denote the
α-th column, α-th row and (α, β)-th entry of Q, respectively.
Given Q ∈ Rn×t , if Col(Q) ⊆ 1n, then Q = [δi1n · · · δ

it
n ] =

δn[i1 · · · it ] is called the logical matrix. The set containing all
n×t logical matrices is denoted byLn×t .Q ∈ Rn×t satisfying
(Q)α,β ≥ 0 and

∑n
α=1(Q)α,β = 1, ∀ β = 1, · · · , t is called

the stochastic matrix. The set of all n× t stochastic matrices
is denoted as ϒn×t .
The main tool of this paper is STP, denoted by ‘‘n’’. For

its definition and properties, please refer to [5].

B. PROBLEM FORMULATION
The considered BN is given as follows:

x1(t + 1) = f1(x1(t), x2(t), · · · , xn(t)),
...

xn(t + 1) = fn(x1(t), x2(t), · · · , xn(t)),

(1)

where X (t) = (x1(t), · · · , xn(t)) ∈ Dn and fi : Dn
7→ D,

i = 1, · · · , n are the state variables and logical functions,
respectively.

Identify logical variables as the vector form and set x(t) =
nn
i=1xi(t). Then, system (1) can obtain the following equiva-

lent algebraic form of system (1):

x(t + 1) = Lx(t), (2)

where L ∈ L2n×2n is called the state transition matrix. Denote

L = δ2n [i1 i2 · · · i2n ].

The definition of one-column function perturbation for
system (1) is given as follows.
Definition 1: A one-column perturbation for system (1)

occurs if some column of L changes.
In practical GRNs, gene mutation always occurs

stochastically [3]. Thus, in this paper, we consider the fol-
lowing two kinds of stochastic function perturbations:
(i) Probabilistic function perturbation: the j-th column of

L changes from ij to k ∈ {1, 2, · · · , 2n} with P{ij =
k} = pk ≥ 0. Obviously,

∑2n
k=1 pk = 1.

(ii) Markov jump function perturbation: the j-th column of
L changes according to aMarkov chain, that is, P{ij(t+
1) = s | ij(t) = l} = psl , and

∑2n
s=1 psl = 1, l =

1, · · · , 2n.
Now, we give the concepts of set stability with probability

one and with positive probability for system (1) with stochas-
tic function perturbations, respectively.

Given a nonempty set A = {δα12n , · · · , δ
αr
2n } ⊆ 12n and one

of the above two kinds of stochastic function perturbations.
Definition 2: System (1) is said to be stable at the set A

with probability one under one of the above two kinds of
stochastic function perturbations, if ∃ τ ∈ Z+ such that under
the considered stochastic function perturbation,

P{x(t) ∈ A | x(0) = x0} = 1

holds for ∀ x0 ∈ 12n and ∀ t ≥ τ , t ∈ N.
Definition 3: System (1) is said to be stable at the set A

with positive probability under one of the above two kinds of
stochastic function perturbations, if ∃ τ ∈ Z+ such that under
the considered stochastic function perturbation,

P{x(t) ∈ A | x(0) = x0} > 0

holds for ∀ x0 ∈ 12n and ∀ t ≥ τ , t ∈ N.

III. MAIN RESULTS
A. PROBABILISTIC FUNCTION PERTURBATION
This part considers the set stability problem of system (1)
with probabilistic function perturbation.

Setting

Lk := δ2n [i1 · · · ij−1 k ij+1 · · · i2n ], (3)

we obtain the following equivalent stochastic system of
system (1) with probabilistic function perturbation:

x(t + 1) = L̃x(t), (4)

where L̃ ∈ L2n×2n and P{̃L = Lk} = pk .
Define

M =
2n∑
k=1

pkLk ∈ ϒ2n×2n (5)

and

B = {α1, · · · , αr }. (6)

The necessary and sufficient condition for the set stability
with probability one of system (1) with probabilistic function
perturbation can be obtained as follows.
Theorem 1: System (1) with probabilistic function pertur-

bation is stable at the set A with probability one, iff ∃ τ ≤ 2n,
τ ∈ Z+ such that ∑

i∈B

Rowi(M τ ) = 12n . (7)

Proof: For ∀ t ∈ N and ∀ x(t) ∈ 12n , we can gain

P{x(t + 1) = Lkx(t)} = pk ,
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which implies that

P{x(t + 1) = δα2n | x(t) = δ
β

2n} =

( 2n∑
k=1

pkLk
)
α,β
= (M )α,β .

Thus,

P{x(t) = δα2n | x(0) = δ
β

2n} = (M t )α,β (8)

holds for ∀ t ∈ N and ∀ α, β ∈ {1, 2, · · · , 2n}.
(Necessity) Suppose that system (1) with probabilistic

function perturbation is stable at the set A with probability
one. Then, from (8) and Definition 2, there exists a τ ∈ Z+
such that

P{x(t) ∈ A | x(0) = δβ2n}

=

∑
i∈B

P{x(t) = δi2n | x(0) = δ
β

2n}

=

∑
i∈B

(M t )i,β = 1 (9)

holds for ∀ t ≥ τ and ∀ β ∈ {1, 2, · · · , 2n}. Hence,∑
i∈B Rowi(M

t ) = 12n holds for ∀ t ≥ τ .
Let τ be the smallest integer such that∑

i∈B

Rowi(M τ ) = 12n .

If τ > 2n, then there exist two positive integers p ≤ 2n, p /∈ B
and q ≤ 2n such that (M2n )p,q > 0, that is,

Ṕ{x(2n) = δp2n | x(0) = δ
q
2n} > 0.

Since {x(t) : t ∈ {0, 1, · · · , 2n}} has 2n different elements,
there exist t1, t2 ≤ 2n (t1 < t2, t1, t2 ∈ N) such that

x(t1) = x(t2) := δ
γ

2n

and

P{x(t2 − t1) = δ
γ

2n | δ
γ

2n} > 0.

Then,

P{x(2n + s(t2 − t1)) = δ
p
2n | x(0) = δ

q
2n}

≥

(
P{x(t2 − t1) = δ

γ

2n | δ
γ

2n}

)s
×P{x(2n) = δp2n | x(0) = δ

q
2n} > 0

holds for ∀ s > 0, s ∈ Z+. Therefore, there exists s ∈ Z+
satisfying 2n + s(t2 − t1) > τ , which contradicts to the
minimality of τ . Hence, τ ≤ 2n.
(Sufficiency) Presume that (7) holds. By induction,

we prove that
∑

i∈B Rowi(M
t ) = 12n holds for ∀ t ≥ τ , t ∈ N

at first. Obviously,
∑

i∈B Rowi(M
t ) = 12n holds for t = τ .

Provided that
∑

i∈B Rowi(M
t ) = 12n holds for t = ξ > τ ,

then∑
i∈B

Rowi(M ξ+1)

=

∑
i∈B

Rowi(M ξM )

=

∑
i∈B

[Rowi(M ξ )M ] =
[∑
i∈B

Rowi(M ξ )
]
M

= 12nM = 12n ,

which implies that
∑

i∈B Rowi(M
t ) = 12n holds for t = ξ+1.

By induction,
∑

i∈B Rowi(M
t ) = 12n holds for ∀ t ≥ τ ,

t ∈ N.
From (7) and (8),

P{x(t) ∈ A | x(0) = δβ2n} =
∑
i∈B

(M t )i,β

= Colβ
(∑
i∈B

Rowi(M t )
)
= Colβ (12n ) = 1

holds for ∀ t ≥ τ , t ∈ N, and ∀ β ∈ {1, 2, · · · , 2n},
which together with Definition 2 shows that system (1) with
probabilistic function perturbation is stable at the set A with
probability one. �
Remark 1: When (7) holds for some pk ≥ 0 with∑2n
k=1 pk = 1, it will hold for any pk satisfying pk ≥ 0 and∑2n
k=1 pk = 1.
Similarly, we can obtain the following necessary and suf-

ficient condition for the set stability with positive probability
of system (1) with probabilistic function perturbation.
Theorem 2: System (1) with probabilistic function per-

turbation is stable at the set A with positive probability,
iff ∃ τ ≤ 2n, τ ∈ Z+ such that∑

i∈B

Rowi(M τ ) > 0. (10)

Remark 2: As a special kind of one-column function per-
turbations, one-bit function perturbation [36] of system (1)
occurs if some logical function fi, i = 1, · · · , n has an
alteration by modifying the value on the j-th (j ∈ {1, · · · , n})
entry of its truth table, that is, the j-th column of Mi changes
its value toM ′i . In this case, L̃ only has two possible choices,
that is, P{̃L = L} = p and P{̃L = M1 ∗ · · · ∗M ′i ∗ · · · ∗Mn} =

1 − p, where 0 < p < 1. By letting the probability of
other 2n − 2 possible choices of L be 0, one can study the
set stability of system (1) with one-bit function perturbation
based on Theorem 1.

B. MARKOV JUMP FUNCTION PERTURBATION
This part studies the set stability problem of system (1) with
Markov jump function perturbation.

With the Markov jump function perturbation, we can con-
vert system (1) into equivalent Markov jump switched system
as follows:

x(t + 1) = Lσ (t)x(t), (11)

where σ : N 7→ {1, 2, · · · , 2n} is a switching signal satis-
fying P{σ (t + 1) = s | σ (t) = l} = psl ,

∑2n
s=1 psl = 1,

l = 1, · · · , 2n, and Lk , k = 1, 2, · · · , 2n is given in (3).
Identifying σ (t) = l as the vector form σ (t) = δl2n and

setting

L̂ = [L1 L2 · · · L2n ] ∈ L2n×22n , (12)

we have the equivalent form of system (11) as follows:

x(t + 1) = L̂σ (t)x(t), (13)
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where {σ (t) : t ∈ N} ⊆ 12n denotes the discrete-time
homogeneous Markov chain and the transition probability
matrix P = (psl)2n×2n , where

P{σ (t + 1) = δs2n | σ (t) = δ
l
2n} = psl . (14)

Given a probability distribution σ (t) ∈ ϒ2n×1, we can easily
obtain that

σ (t + 1) = Pσ (t). (15)

The above analysis can lead to the following result.
Lemma 1: For ∀ t ∈ Z+, ∀ x(0) ∈ 12n and ∀ σ (0) ∈ 12n ,

the probability distribution of x(t) for system (13) satisfies
the following formula:

x(t) = Qtσ (0)x(0), (16)

where

Qt =

{
L̂, t = 1,
L̂Pt−1(I2n ⊗ Qt−1)Mr,2n , t ≥ 2.

Proof: When t = 1, from (13), one can easily see that
x(1) = L̂σ (0)x(0) = Q1σ (0)x(0) holds for ∀ x(0) ∈ 12n and
∀ σ (0) ∈ 12n , that is, Q1 = L̂.

For t = 2, by (13) and (15), we have

x(2) = L̂σ (1)x(1)

= L̂Pσ (0)x(1)

= L̂Pσ (0)Q1σ (0)x(0)

= L̂P(I2n ⊗ Q1)Mr,2nσ (0)x(0)

= Q2σ (0)x(0),

where Q2 = L̂P(I2n ⊗ Q1)Mr,2n ∈ ϒ2n×22n .
Similarly, for any integer t ≥ 3,

x(t) = L̂σ (t − 1)x(t − 1)

= L̂Pσ (t − 2)x(t − 1)

= L̂Pt−1σ (0)Qt−1σ (0)x(0)

= L̂Pt−1(I2n ⊗ Qt−1)Mr,2nσ (0)x(0)

= Qtσ (0)x(0),

where Qt = L̂Pt−1(I2n ⊗ Qt−1)Mr,2n ∈ ϒ2n×22n .
Hence, (16) holds. This completes the proof. �
If system (1) with Markov jump function perturbation is

stable at the set A with probability one, then A should be an
invariant set for any Li, i = 1, 2, · · · , 2n. Thus, we give the
following assumption.
Assumption 1: The set A satisfies LiA ⊆ A, ∀ i =

1, 2, · · · , 2n, where LiA := {Lix : x ∈ A}.
Based on the above analysis, we present the following

result.
Theorem 3: Suppose that Assumption 1 holds. System (1)

with Markov jump function perturbation is stable at the set
A with probability one, if and only if there exists a positive
integer τ ≤ 22n such that∑

i∈B

Rowi(Qτ ) = 122n . (17)

Proof (Necessity): Presume that system (1) with Markov
jump function perturbation is stable at the set A with proba-
bility one. Then, from Definition 2 and Lemma 1, there exists
a τ ∈ Z+ such that

P{x(t) ∈ A | σ (0), x(0)} =
∑
i∈B

Rowi(Qt )σ (0)x(0) = 1

(18)

holds for ∀ t ≥ τ , t ∈ N, ∀ x(0) ∈ 12n and ∀ σ (0) ∈ 12n .
Hence,

∑
i∈B Rowi(Qt ) = 122n , ∀ t ≥ τ .

Let τ be the smallest integer such that∑
i∈B

Rowi(Qτ ) = 122n .

If τ > 22n, then there exist two positive integers p ≤ 2n,
p /∈ B and q ≤ 22n such that (Q22n )p,q > 0. Therefore, for
σ (0)x(0) = δ

q
22n

, there exists a path {σ (0), · · · , σ (22n − 1)}
such that

P{x(22n) = δp2n | x(0), σ (0)}
≥ P{σ (22n − 1) | σ (22n − 2)}P{σ (22n − 2) |

σ (22n − 3)} · · ·P{σ (1) | σ (0)} > 0.

Since {σ (t)x(t) : t ∈ {0, 1, · · · , 22n}} has 22n different
elements, there exist t1, t2 ≤ 22n (t1 < t2, t1, t2 ∈ N) such
that

σ (t1)x(t1) = σ (t2)x(t2) := δθ2n n δ
γ

2n

and

P{x(t2 − t1) = δ
γ

2n | δ
γ

2n , δ
θ
2n} > 0.

Then, for σ (0)x(0) = δq
22n

, we can obtain that

P{x(22n + s(t2 − t1)) = δ
p
2n | x(0), σ (0)}

≥

(
P{x(t2 − t1) = δ

γ

2n | δ
γ

2n , δ
θ
2n}

)s
×P{x(22n) = δp2n | x(0), σ (0)} > 0

holds for ∀ s > 0, s ∈ Z+. Therefore, there exists s ∈
Z+ satisfying 22n + s(t2 − t1) > τ , which contradicts the
minimality of τ . Hence, τ ≤ 22n.
(Sufficiency) Presume that (17) holds. By induction,

we prove that
∑

i∈B Rowi(Qt ) = 122n holds for ∀ t ≥ τ , t ∈ N
at first. Obviously,

∑
i∈B Rowi(Qt ) = 122n holds for t = τ .

Provided that
∑

i∈B Rowi(Qt ) = 122n holds for t = ξ > τ .
By (18), we obtain that P{x(ξ ) ∈ A | σ (0), x(0)} = 1
holds for ∀ x(0) ∈ 12n and ∀ σ (0) ∈ 12n . Then, from
Assumption 1, one can see that

P{x(ξ + 1) ∈ A | σ (0), x(0)}

=

∑
i∈B

P{x(ξ + 1) = δi2n | σ (0), x(0)}

=

∑
i∈B

∑
iξ∈B

P{x(ξ + 1) = δi2n | σ (ξ ) = Pσ (ξ − 1),
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x(ξ ) = δ
iξ
2n} ×

[ ∑
δ
i1
2n ,··· ,δ

iξ−1
2n ∈12n

P{x(1) = δi12n | σ (0),

x(0)} × · · · × P{x(ξ ) = δiξ2n | σ (ξ ) = Pσ (ξ − 1),

x(ξ − 1) = δ
iξ−1
2n }

]
= 1

holds for ∀ x(0) ∈ 12n and ∀ σ (0) ∈ 12n , which implies that∑
i∈B Rowi(Qξ+1) = 122n . By induction,

∑
i∈B Rowi(Qt ) =

122n holds for ∀ t ≥ τ , t ∈ N.
Therefore, for ∀ t ≥ τ , t ∈ N, ∀ x(0) ∈ 12n

and ∀ σ (0) ∈ 12n , we have P{x(t) ∈ A | σ (0), x(0)} =∑
i∈B Rowi(Qt )σ (0)x(0) = 1, which together with

Definition 2 shows that system (1) with Markov jump func-
tion perturbation is stable at the set A with probability
one. �

Similar to Theorem 3, we have the following result on
the set stability with positive probability of system (1) with
Markov jump function perturbation.
Theorem 4: Suppose that Assumption 1 holds. System (1)

with Markov jump function perturbation is stable at the set A
with positive probability, if and only if there exists a positive
integer τ ≤ 22n such that∑

i∈B

Rowi(Qτ ) > 0. (19)

Remark 3: When |A| = 1, one can use Theorems 1 and 3
to study the stability to an equilibrium of BNs with stochastic
function perturbation.

IV. ILLUSTRATIVE EXAMPLES
Example 1: The D. melanogaster segmentation polarity

gene network is given as follows:

x1(t + 1) = x1(t) ∧ ¬x2(t) ∧ ¬x4(t),

x2(t + 1) = ¬x1(t) ∧ x2(t) ∧ ¬x3(t),

x3(t + 1) = x1(t) ∨ x3(t),

x4(t + 1) = x2(t) ∨ x4(t),

x5(t + 1) = {¬x2(t) ∧ ¬x4(t)} ∨ {x5(t)

∧ ¬x1(t) ∧ ¬x3(t)},

x6(t + 1) = {¬x1(t) ∧ ¬x3(t)} ∨ {x6(t)

∧ ¬x2(t) ∧ ¬x4(t)},

(20)

where x1 = wg1, x2 = wg2, x3 = wg3, x4 = wg4, x5 = PTC1
and x6 = PTC2, wg and PTC denote the secreted proteins
wingless and the transmembrane receptor proteins patched,
respectively [1].

Setting x(t) = n6
i=1xi(t), by the STP method, system (20)

has the algebraic representation as follows:

x(t + 1) = Lx(t),

FIGURE 1. The probability trajectory of equilibrium xe = δ3
4 under the

Markov jump function perturbation σ (t), where σ (0) = δ2
4 and x(0) = δ4

4 .

where

L = δ64[ 52 52 52 52 52 52 52 52

52 52 52 52 52 52 52 52

52 52 52 52 21 22 21 22

52 52 52 52 21 22 21 22

52 52 52 52 52 52 52 52

41 41 43 43 41 41 43 43

52 52 52 52 53 54 53 54

57 57 59 59 61 61 61 61].

From the algebraic form, we can easily obtain the total 10
fixed points of system (20) as δ2164 , δ

22
64 , δ

41
64 , δ

43
64 , δ

52
64 , δ

53
64 , δ

54
64 ,

δ5764 , δ
59
64 , δ

61
64 .

Assume that after probabilistic function perturbation,
P{Col1(L) = δ2064} = 0.6 and P{Col1(L) = δ5264} = 0.4.
In the following, we verify whether system (20) is stable
at A = {δ2164, δ

22
64 , δ

41
64, δ

43
64, δ

52
64 , δ

53
64, δ

54
64, δ

57
64 , δ

59
64, δ

61
64} with

probability one or not.
Setting M = L1 × 0.6+ L2 × 0.4, where

L1 = δ64[ 20 52 52 52 52 52 52 52

52 52 52 52 52 52 52 52

52 52 52 52 21 22 21 22

52 52 52 52 21 22 21 22

52 52 52 52 52 52 52 52

41 41 43 43 41 41 43 43

52 52 52 52 53 54 53 54

57 57 59 59 61 61 61 61]

and L2 = L. A simple calculation shows that∑
i∈{21,22,41,43,52,53,54,57,59,61}

Rowi(M2) = 164.

Therefore, by Theorem 1, system (20) with probabilistic
function perturbation is stable at the set A with probability
one.
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Example 2: The considered BN is:{
x1(t + 1) = ¬x2(t),
x2(t + 1) = x1(t) ∨ x2(t).

(21)

Setting x(t) = x1(t)n x2(t), system (21) has the algebraic
representation as follows:

x(t + 1) = Lx(t), (22)

where L = δ4[3 1 3 2]. Obviously, system (21) is stable
at xe = δ34 .
Suppose that the 4-th column of L is perturbed by aMarkov

jump function perturbation with

P =


0.3 0.1 0.2 0
0.2 0.5 0.3 0
0.1 0.2 0.4 1
0.4 0.2 0.1 0

 .
According to (12), L̂ = [L1 L2 L3 L4], where Li =

δ4[3 1 3 i], i = 1, 2, 3, 4. One can easily see that Lixe = xe,
i = 1, 2, 3, 4. Thus, Assumption 1 holds.
By Lemma 1, a simple calculation shows that

Q3 = δ4[3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3].

Therefore, Row3(Q3) = 116. By Theorem 3, system (21) with
the Markov jump function perturbation is stable at δ34 with
probability one.

V. CONCLUSION
We have considered the set stability of BNs with two kinds of
stochastic function perturbations, that is, probabilistic func-
tion perturbation and Markov jump function perturbation.
By constructing a state transition matrix, we have proposed a
new criterion for the set stability of BNs with probabilistic
function perturbation. In addition, by calculating the state
probability distribution, we have studied the set stability of
BNs with Markov jump function perturbation.

It is noted that we only consider stochastic one-column
function perturbations in this paper. Future works will study
the case of stochastic multi-column function perturbations,
and the set stabilization of BNs with stochastic function
perturbations.
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