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ABSTRACT Energy sampling-based interference detection and identification (IDI) methods collide with the
limitations of commercial off-the-shelf (COTS) IoT hardware. Moreover, long sensing times, complexity,
and inability to track concurrent interference strongly inhibit their applicability in most IoT deployments.
Motivated by the increasing need for on-device IDI for wireless coexistence, we develop a lightweight and
efficient method targeting interference identification already at the level of single interference bursts. Our
method exploits real-time extraction of envelope and model-aided spectral features, specifically designed
considering the physical properties of the signals captured with COTS hardware. We adopt manifold
supervised-learning (SL) classifiers ensuring suitable performance and complexity tradeoff for the IoT
platforms with different computational capabilities. The proposed IDI method is capable of real-time
identification of IEEE 802.11b/g/n, 802.15.4, 802.15.1, and Bluetooth Low Energy wireless standards,
enabling isolation and extraction of standard-specific traffic statistics even in the case of heavy concurrent
interference. We perform an experimental study in real environments with heterogeneous interference
scenarios, showing 90%–97% burst identification accuracy. Meanwhile, the lightweight SL methods,
running online on wireless sensor networks-COTS hardware, ensure sub-ms identification time and limited
performance gap from machine-learning approaches.

INDEX TERMS Bluetooth, interference detection and identification, IoT, machine learning, wireless
coexistence, wireless sensor networks, WLAN.

I. INTRODUCTION
Internet of things (IoT) is empowering massive con-
nectivity of objects, machines and devices for realizing
smart-home, -building and -industrial applications. In this
respect, short-range radio technologies such as WLAN
(IEEE 802.11), Bluetooth/BLE (IEEE 802.15.1) and Zigbee
(IEEE 802.15.4) etc. are in pivotal position to provide the
needed local-area connectivity in unlicensed bands [1]. How-
ever, relying on these already widely adopted heteroge-
neous technologies for massive IoT comes with a caveat
of cross-technology interference. The interference is usu-
ally detrimental for performance in co-located and con-
current operation [2], [3] in unlicensed bands, especially
when coexistence—detection, identification and avoidance—
mechanisms are ignored. As the domain of IoT services
expands, interference characteristics strongly diversify
in time, frequency and space domain. Therefore, each

device must have a built-in intelligence to detect, clas-
sify and characterize interference in distributed manner,
which we study in detail in this paper, such that an
interference-source specific mitigation strategy can be
devised.

In unlicensed bands, a de facto form of agility to inter-
ference is based on benign clear channel assessment (CCA).
CCA can blindly—without knowing the source—detect inter-
ference and defer transmissions. However, CCA is unfavor-
able, in terms of medium access opportunities, especially
to low-power systems as 802.15.1, BLE and 802.15.4 [4].
The other naive countermeasures are time-slotted channel
hopping, manual channel blacklisting [5] and link-quality
estimation [6], which are best effort and/or lazy to react to
interference. As a result, many recommendations (e.g., IEC
62657-2 [7]) suggested the adoption of interference-aware
transmission (IAT) schemes in order to meet any quality
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of service (i.e., reliability and timeliness) requirements of
diverse IoT applications.

A fundamental block for any IAT scheme is interference
detection and identification (IDI). In the literature, a com-
mon approach to IDI is energy sampling (ES)-based inter-
ference detection followed by feature-based identification.
This approach is usually straightforward and implementable
in commercial off-the-shelf (COTS) hardware with radios
of limited time/frequency sampling resolution. However,
ES-based identification generally requires a sufficiently-long
sampling time, mandating the root radio network (RRN)
to defer its routine operation, while the storage size and
processing of large set of samples leads to cumbersome
and inefficient IDI implementation. Moreover, the detec-
tion of concurrent interference from multiple interfering
radio networks (IRNs) is generally only possible with ded-
icate hardware, making it non-scalable for massive IoT
deployments.

In this paper, mindful of these gaps, we present a real-time
and lightweight solution to IDI in ISM bands (using 2.4 GHz
as an example) that can differentiate among heteroge-
neous wireless technologies appearing in isolation or con-
currently. By combining signal bandwidth and envelope
information, and their slender extraction in COTS hard-
ware (using 802.15.4 radio), with the intelligently tailored
supervised-learning (SL) classification-trees, our solution
enables on-board burst-based interference identification, pre-
dominantly in real-time. Our main contributions can be
summarized as:

1) We develop a real-time burst-based interference iden-
tification solution for massive IoT environments, suit-
able for COTS hardware, which to authors’ best
knowledge is the first IDI method of this kind.

2) We bring the identification time (the time for detect-
ing and processing an interference bursts) to mini-
mum, with respect to minimum interference-to-noise
ratio (INR) and on-air-time (OAT) achievable with the
employed COTS platform.

3) Apart from IDI, our solution provides a first such
framework based on COTS hardware that allows on-
board inference of the traffic distributions of concurrent
heterogeneous IRNs, desired by coexistence solutions
exploiting channel idle times [8].

4) The proposed method, instead of flimsy and heuristic
power threshold-based features, utilizes signal features
with unrestrictive requirement in reference to actual
noise floor. While, we scrutinize the impact of INR on
the identification performance.

5) We develop an analytical model for the key-enabler
spectral features (SFs), which leads to an upper bound
on classification gain and helps to fine-tune the SFs’
parameters.

6) We compare the performance of SL classifiers of het-
erogeneous complexity and investigate the trade-off
between implementable lightweight classifiers and
complex machine-learning-based approaches.

The rest of the paper is organized as follows. Section II gives
the necessary background on IDI in the 2.4 GHz ISM-band,
and discusses the related works. Section III describes the pro-
posed method—including the feature extraction process and
the classification strategies. Section IV presents the experi-
mental setup, while Section V evaluates the performance of
our IDI method. Section VI investigates the implications of
SFs and develops an analytical model for estimating the upper
bound on the classification gain. Section VII presents a use
case of the proposed method. Finally, we conclude this work
in Section VIII.

II. BACKGROUND
In this section, we develop the necessary background on het-
erogeneous characteristics of wireless technologies operating
in ISM-bands, and the limitations of spectrum sensing in
COTS hardware and related IDI methods in the literature.

A. COEXISTENCE OF WIRELESS TECHNOLOGIES
AT 2.4 GHz
At 2.4 GHz, wireless coexistence—often harmful—results
from ubiquity of networks and devices employing IEEE
802.11 (with variants as b/g/n/ac), IEEE 802.15.1 (Blue-
tooth classic and low-energy BLE extension), and IEEE
802.15.4 standards. By comparing the PHY and medium
access parameters in these standards (see Table 1), it is
instantly noticeable that the utilized channel bandwidth
and transmit power in 802.11 radios can be inundating
for low-power standards. The same is validated by several
studies (see [2] and the references therein), which show
that a co-located 802.11 pose serious concerns for reliabil-
ity in 802.15.4-based WSNs, while the interference from
802.15.1 is less pronounced due to its sub-ms fast-frequency-
hopping (FFH) scheme and a channel blacklisting (CB)
policy.

TABLE 1. Salient features of wireless technologies in the 2.4 GHz
ISM-band–A perspective on coexistence.

B. ENERGY SAMPLING WITH 802.15.4 HARDWARE
Energy sampling (ES) is a generic spectrum-sensing pro-
cess for capturing information in a certain time and fre-
quency RF-resource through sampling of the current induced
by electromagnetic radiation on the desired radio interface.
To this end, the energy detector employed in COTS WSN
transceivers is a low-cost solution as compared to dedicated
spectrum analyzers or software defined radios (SDR). How-
ever, as the radio front-ends in COTS hardware are designed
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mainly for 802.15.4 standard-specific operations (e.g., CCA),
the prerogatives of ES are partly met, due to sub-Nyquist
sampling rate and limited frequency resolution. In addition,
the energy measurements are available only in the form
of a received signal strength indicator (RSSI), i.e., 8 bit,
Tr = 128µs-moving-average filtered version of the base-
band power envelope [9].

FIGURE 1. Information loss in RSSI filtering: (1) power envelope
of 802.11 bursts extracted from high-resolution I/Q data, (2) after
802.15.4-compliant moving average filtering, (3) sampling and
quantization at 8 bit/10 kHz—a common situation with COTS WSN
hardware.

In Fig. 1, we show an example of information loss in RSSI
calculation using a high-resolution I/Q trace of two consec-
utive 802.11g packets. The effect of digital RSSI filtering,
here obtained by an 802.15.4-emulator, is the most devas-
tating in terms of information loss. The resulting low-pass
filtering (LPF) effect not only wipes out the information on
signal envelope—inhibiting modulation-based identification
(such as [10]), but also caps time-resolution—dampening
the information gain of sampling frequencies above fr =
7.8 kHz. This, in turn, leads to the inability to capture
short interference bursts and inter-frame spaces, such as the
802.11 DCF inter-frame space (DIFS). Despite these limi-
tations, it remains attractive to perform IDI using low-cost
802.15.4 hardware for enabling in-device distributed sensing
and adaptation capability.

C. RELATED WORKS
ES-based IDI methods commonly rely on signal features
extracted from RSSI samples. These features are subse-
quently mapped to an interference class by an interfer-
ence classification engine, while the two most common
classification techniques are technology-specific (heuris-
tic) thresholding [11]–[13] and machine learning [14], [15].
In WSNs community, the interest has been towards
low-complexity and low-cost solutions such that the interfer-
ence identification is demodulation free. This requirement,
induced mainly by the hardware-constraints of COTS-radios,
impacts on the identification time and accuracy. That is,
usually long traces of low-resolution RSSI-based channel
energy samples are required since the technology-specific
temporal (e.g., idle/busy time and distributions, burstiness,
periodicity etc.) and spectral (power distribution with respect

to frequency channels) features become apparent only at large
observation windows. For instance, temporal features-based
identification in [12] requires observation time in the order of
seconds to achieve moderate accuracy only. In essence, this
is not only due to hardware limitations but also due to the
selection of signal features of limited scope.

When it comes to the identification of multiple hetero-
geneous interference sources appearing concurrently, there
is a limited work in the literature. In [15], the identification
of concurrent multi-source interference is based on k-means
clustering of RSSI samples. Using a sampling frequency of
21 kHz and a samplingwindow of 3 s, Iyer et al. [15] achieved
a classification accuracy of 90%, which however reduces if
the 802.15.4 network is not silent during observation time.
Interference detection in the presence of 802.15.4 traffic is
addressed in [13] using power variations of the RRN with an
enhanced CCA mechanism. However, the solution does not
target the identification of interfering signals.

A different approach to IDI is to search for interference-
specific bit error patterns in the received packets. In [16]
and [17], for example, such patterns are exploited bymeans of
supervised-learning (SL) or algorithmic approach. While the
identification time is rather limited (i.e., in the order of tens
of milliseconds with COTS hardware), the methods are con-
strained by the event of receiving an interfered RRN packet,
generally leading to higher detection time as compared to
ES methods.

Using specialized hardware, such as WLAN cards and
SDRs, for protocol-free IDI has also been investigated in
many studies, e.g., [10], [18], [19], and references therein.
As specialized hardware can ensure high sampling frequency
and high-resolution I/Q data, the benefit of more complex
classifiers (e.g., deep learning [10]) increases and higher
accuracy is generally achieved. However, we have shown that,
even with limited sensing resolution and lightweight super-
vised learning, COTS IoT nodes can reach the same-level of
accuracy in real-time.

An objective comparison of the related works with the
proposed solution in this paper can be made from Table 2.
It shows how reactive and accurate our solution is, while
enabling identification of both concurrent heterogeneous
IRNs (CI) and RRNs.

III. PROPOSED METHOD
In this work, contrary to earlier studies, we aim to stretch a
hardware-limited WSN to perform burst-based IDI, enabling
real-time identification of concurrent sources of interference.
We additionally pursue the identification of packets transmit-
ted by the 802.15.4 RRN, removing the need of idle period
in spectrum sensing, for ensuring a IDI process with no
performance impact on the RRN. To achieve these objectives,
we optimize both the design of features and the classifica-
tion strategy. In particular, we compensate the problem of
time-resolution loss due to RSSI filtering process via domain-
switch. That is, we capture spectral features (SFs) within a
burst duration to extract information on the bandwidth of
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TABLE 2. Summary of interference detection and identification techniques in related works.

FIGURE 2. Global scheme of the proposed method.

the single bursts. On the classification side, we evaluate a
number of SL methods to find a reasonable trade-off between
complexity and classification accuracy.

A. BURST DETECTION ENGINE
The proposed burst detection engine samples the RSSI reg-
ister with frequency fs = 18.5 kHz, fetching 1 dB-resolution
data and ensuring adequate super-Nyquist rate with respect to
the RSSI LPF cutoff frequency fr . Signal bursts are separated
from noise in real-time using a threshold-based criterion with
threshold PT = µN + 2σN , where µN and σN are the mean
and standard deviation of the AWGN noise due to the radio
front-end, such that the probability of noise-triggered bursts
is minimized. Note thatµN and σN are device specific param-
eters usually provided by chip manufacturer, and can also
be determined via a quick calibration process. Nevertheless,
a conservative choice on PT only leads to a slight loss in
detection sensitivity for low-INR bursts.

B. FEATURE EXTRACTION
Upon burst detection, eight time- and frequency-domain fea-
tures are extracted in real-time, which we describe below.

1) SPECTRAL FEATURES
The combined LPF effect of 802.15.4 channel-filtering and
RSSI calculation reduces the bandwidth of captured bursts
to a few kHz, meaning that the spectral signature of differ-
ent signals is completely removed. To overcome this lim-
itation, the proposed method hunts for information in the
frequency domain by using a simple yet proactive strategy.

FIGURE 3. Time-frequency representation of the employed intra-burst
side-channel sampling method.

Two fast upward and downward intra-burst frequency shifts
are performed, and the RSSI values on the related side-bands
are sampled and compared to the mean value of the burst
envelope captured at the central frequency fc. The extraction
process of SFs is shown in Fig. 3, depicting the collection of
RSSI samples xn from the sampling of fr -LPF-filtered version
of the signal available at the radio interface. The first sample
x0, representing the initial reading on the central band fc,
is acquired dfs/fre = 2 samples after the first over-threshold
reading. It ensures that the RSSI value has sufficient time to
accommodate to the crest value of the burst. Subsequently,
in order to perform a reading on the lower side-band, the
on-board voltage controlled oscillator (VCO) is tuned to fc−
1fd . To reduce the correlation between the samples on the
central and lower band, introduced by the moving average
filter, the first two samples on the side-band are discarded
so that x1 reflects the value of the third sample. The same
procedure is repeated to perform a reading x2 on the upper
side band fc + 1fu, and then the VCO is tuned back to fc
to sample the remaining portion of the burst, until the last
over-threshold sample xm is recorded.
Let y = [x0, x3, · · · , xm] be the vector of samples collected

at fc with mean ȳ and cardinality Cy = |y|. Then the SFs with
respect to upper side-band FSu and lower side-band FSd are
simply defined as

FSu = ȳ− x1; FSd = ȳ− x2; FSc = cZ (1)

where FSc is a support feature, which reflects the chan-
nel number cZ ∈ [11, 26] of 802.15.4 in reference to fc.
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In essence, the SFs exploit the native spectral differences
among the coexisting signal families, under the condition that
the frequency shift parameters 1fu and 1fd can guarantee
sufficient separation among interference classes. The analysis
leading to appropriate selection of these parameters is non-
trivial, as we study in detail in Sec. VI-A using a model-based
approach, and leads to a symmetric selection of1fu = 1fd =
2MHz, as shown in Table 3.

TABLE 3. IDI-mode: Details of parameters for burst analysis.

2) TIME- AND POWER-DOMAIN FEATURES
We base the design of envelope features (FE ) on the inher-
ent limitations of the COTS hardware observing that, while
time- and power-domain information is scarce, macroscopic
differences among packets from interference families remain
observable. Specifically, since the information on the mod-
ulation format of the different signals and the effects of
fast-fading is removed by the RSSI LPF, the observable
variations of the 1 dB-quantized envelope are mainly due
to: a) the inability of the observation system to resolve two
closely-spaced packets with interarrival time TI < Tr , lead-
ing to the artifact of a single burst with steep envelope varia-
tion (see Fig. 1), b) the short-term fading dynamics reflecting
in slow RSSI variations in the order of few dB [21] within the
lifespan of the observed signal bursts (see Table 3).

Under these premises, we introduce the following
lightweight time- and envelope-features (FT and FE ):
• Burst length: total sample length of the detected burst,
hence, FTl = Cy + 6.

• Burst mean power: reflecting the mean envelope
power extracted on the central frequency fc, then,
FEp =

∑
y/Cy.

• Crest factor: indicating the maximum envelope vari-
ation, i.e., dynamic range of the signal envelope, as,
FEc = max(y)−min(y),

• Envelope ripple: representing a measure of the maxi-
mum power variation between two consecutive samples.

FEr =
Cy−1∑
i=0

r
(
|yi+1 − yi|

)
s.t.: r(y) =

{
1 if y ≥ PE
0 otherwise

(2)

where PE is a threshold value, empirically set to 4 dB.

3) CCA BASED FEATURE
In order to decrease the simultaneous channel access and
packet collisions, the 802.15.4 standard mandates using one

of the four CCA methods before making a medium access
attempt [9]. The mode of particular interest is CCA Mode 2,
which detects 802.15.4-compliant signal using the on-board
OQPSK modem. We exploit CCA Mode 2 to acquire an
identification marker of 802.15.4 signals. In this respect,
a CCA Mode 2 is performed immediately after acquiring
the first valid sample x0, while the related binary feature
FCCA ∈ [0, 1] reflects the CCA outcome.

C. SUPERVISED-LEARNING CLASSIFIERS
Our objective is to efficiently map the eight-dimensional
feature space, used for representing bursts, to interference
classes. The target interference technologies (802.15.1, BLE
beacons,1 802.15.4 and 802.11) are represented with the
elements of the label set LI = {B,L,Z ,W }. In practice,
it is a single-label multi-class classification problem and we
employ widely known [22], [23] classification approaches
within the SL framework. Finally, the candidate methods are
trained using a common dataset S t = S tB ∪ S

t
W ∪ S

t
L ∪ S

t
Z

engineered basing on experimental observations.

1) CLASSIFICATION TREE FAMILY
Classification trees (CT) are a lightweight and human-
readable approach to classification, where points in the fea-
ture space are assigned to one of the target classes by using a
sequence of decisions (splits). The structure of the tree itself
can be generated using a multitude of approaches, spanning
from heuristic to SL.

FIGURE 4. From right to left, the custom classification tree CT1 with
training-data driven parameter optimization, and classification tree CT2,
directly generated with a SL approach.

a: CUSTOM CT WITH SL-DRIVEN PARAMETER
OPTIMIZATION (CT1)
Our first candidate method uses a custom multivariate-split
CT, shown in Fig. 4, meaning that the tree is generated

1Although BLE is part of the 802.15.1 standard since release 4.0, we target
its identification separately as: 1) it introduces observable differences at
PHY, such as larger bandwidth, 2) BLE-based applications are becoming
increasingly popular.
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manually, resembling the algorithm-based methods in the lit-
erature. However, to detach from the usual heuristic approach,
we employ semi-parametric decisions at each split with
SL-backed selection of parameters. To such end, we define a
misclassification function gm(S t , p̄) as the false positive ratio
calculated over all the elements s̄ti ∈ S

t with a priori known
label l ti , for a certain choice of parameters p̄ = [p1, p2, p3].
Hence an optimal set of parameters arises from the solution
of the following minimization problem

minimize: gm(S t , p̄) =
∑
l∈LI

∑|S tl |
i=0 ge(gc(s̄

t
i , p̄), l

t
i )

|LI ||S tl |

such that: |p1,2| ≤
Dr
2
, and 0 ≥ p3 ≤ Dr (3)

with gc CT1-labeling function, ge evaluation function assign-
ing a penalty ge(l1, l2) = 1 if the labels l1, l2 are different
and 0 otherwise, while the dynamic rangeDr bounds the opti-
mization problem within a feasible range of RSSI, according
to the employed hardware. Specifically, the parameters p1 and
p2 are used for thresholding the SF FSu , while p3 is employed
in the inequality |FSu − FSd | > p3. The inequalities are
then employed in more complex multi-feature decisions at
each split. While the general setup of the tree for CT1 is
inferable from Fig. 4, we omit the complete structure of the
splits for space reasons. Instead, Fig. 5 shows the shape of the
misclassification function in the region of global minimum,
derived using a grid-search approach.

FIGURE 5. SL-based optimization of parameters for CT1: misclassification
function gm(St , p̄) in a feasible region of the (p2,p3)-parameter
subspace.

b: SL-CLASSIFICATION TREE (CT2)
In CT1, we developed a customized CT with a simple and
intuitive structure that benefits from SL for parameter opti-
mization. On the other hand, in CT2, we employ SL at the
very beginning of problem formulation. Therein, the training
set S t is used to drive the learning process of a nc-univariate-
split decision tree, meaning that at each split a binary decision
is made by thresholding a certain feature. The SL process,
in this case, can be driven by different minimization targets,
e.g., entropy gain, while the number of splits, directly affect-
ing the complexity of the tree, is selected by the parameter nc.
Fig. 4 shows the structure of CT2 generated with Gini’s

diversity index minimization, with a constraint of nc ≤ 20
in order to favor implementability in COTS hardware.

c: RANDOM FOREST OF CLASSIFICATION TREES (RFCT)
The complexity and the performance of supervised CT meth-
ods depends greatly on the parameter nc. Anyway, extreme
values of nc do not bring classification improvement instead
lead to issues of over-fitting and higher complexity. The idea
of random forest of classification trees (RFCT) is to generate
a set of CTs with sufficient cardinality, pursuing reduction of
classification variance [23]. In our method, we test different
sizes of RFCT composed of fully grown SL-CT, i.e., without
the constraint nc ≤ 20 as in CT2, to maximize classification
accuracy at the cost of increased complexity.

2) MULTICLASS-SVM (MSVM)
Support vector machine (SVM) is a powerful binary clas-
sifier, exploiting quadratic-programming (QP) methods to
determine an optimal decision hyperplane in the feature-
space. The possibility to use different kernel function ensures
good classification performance also in non-linearly separa-
ble data sets. In this paper, we use one of the many possible
multi-class extensions of SVM: multiple binary SVMs which
are trained autonomously using the error-correcting output
codes approach. A Gaussian kernel is employed for the single
SVM for its proven effectiveness in dual-class signal classi-
fication problems [14].

D. KEY FACTORS FOR FEASIBILITY
Burst-based IDI is at the limit of the capability of COTS
hardware, thus proper setup of the radio front-end is strongly
recommended. We achieve rapid (<400 µs) (de)activation
of a IDI-mode at run-time such that the normal network
operation remains unaffected, while enabling the following
features.

1) FAST FREQUENCY-SWITCHING
The frequency-switching time 1Tsw given in Table 3 is
considerably smaller than the one reported in the literature
(e.g., [24]), which is often source of erroneous interpreta-
tion in spectrum sensing works [20]. As a matter of fact,
the 802.15.4 standard mandates firm tolerance on frequency
accuracy, i.e. ±40 ppm, which reflects in adequate settling
time (i.e., 294µs for CC2420 [24]) for the on-board VCO.
This constraint can be safely ignored while sampling SFs,
as there is no signal demodulation involved, and the reduced
VCO accuracy has negligible effect on SFs’ extraction.

2) NARROWER FREQUENCY RESPONSE
The extraction of SFs is in fact a method for spectrum
analysis, hence it benefits from higher frequency resolution,
especially when targeting narrow-band (i.e., 1 MHz-wide)
transmissions, such as 802.15.1. The 802.15.4 radios com-
monly perform channel selection via band-pass-filter (BPF)
in digital-domain, while in the CC2420 platform the band-
width of the BPF is also adjustable (see Fig. 6), allowing to
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FIGURE 6. Frequency response of CC2420 baseband BPF for different
values of normalized calibration capacitance Cf .

narrow the frequency response and therefore to improve the
frequency selectivity of the radio.

3) RSSI DATA INTEGRITY
According to [24], the automatic gain control (AGC)
employed in CC2420 receiver chain causes sporadic satu-
ration of the on-board analog-to-digital converter (ADC).
This reflects in incorrect RSSI readings, which potentially
jeopardize the integrity of all the extracted features. We avoid
this by using a solution similar to [24] for overriding AGC in
the amplifier stage.

IV. EXPERIMENTAL SETUP
A. HARDWARE IMPLEMENTATION
We implemented the proposed IDI solution including CT1
and CT2 classification variants in Contiki OS 3.0 port
for Crossbow TelosB WSN motes, which are based on TI
CC2420 [25] radio and MSP430 microcontroller. Note that
the employed WSN platform is relatively old; however, this
selection is deliberate to ensure portability of the solution
to wide range of WSN hardware. In order to log the online
classification results and the raw feature vectors for testing
offline reference methods (i.e., MSVM and RFCT), a serial
interface is utilized. Due to resource-constraints, MSVM and
RFCT are implemented in a dedicated laptop using Math-
works MATLAB libraries. In addition, National Instruments
USRP-2932 SDR [26] and Metageek Wi-Spy spectrum ana-
lyzer2 are used for validating the experimental setup and
for collecting support data. In some experiments, we used
Wireshark3 together with Intel AC7260 802.11 interface to
find reference IRN traffic statistics.

B. EXPERIMENTAL LOCATIONS
We collected the experimental data in four different environ-
ments. The description of each follows:
• Location A is an underground tunnel with no detectable
wireless interference. This controlled environment is

2https://www.metageek.com/products/wi-spy/
3https://www.wireshark.org/

exploited in all the experiments requiring isolation of the
studied interference sources.

• Location B is an office area with partly controlled inter-
ference due to resident 802.11 IRN and a 30 MHz free
portion of the spectrum, employed in experiments where
the IDI is performed on a limited number of channels.

• Location I1 is a 15 m x 25 m industrial ware-
house in L’Aquila (Italy) heavily cluttered with lathe
machines, with a resident 802.11n network operating
with hybrid 20/40MHz channel-width, overlappingwith
cZ ∈ [16, 23].4

• Location I2 is the 15 m x 15 m multi-room work-
shop with both production and office areas in
Sundsvall (Sweden) [14], with multiple 802.11 IRNs on
cW = {1, 6, 11}.

C. DESIGN OF EXPERIMENTS
The proposed solution is tested under controlled and
uncontrolled interference from real hardware. Specifically,
we generate controlled interference in locations A and B
for assessing the IDI performance with respect to the single
interference labels (experiments E1, E2, E4). Conversely,
locations with uncontrolled wireless sources are exploited to
test the overall capability of the IDI method in real-world
scenarios (experiment E3).

a: E1 - INTERFERENCE SPECIFIC IDENTIFICATION ACCURACY
A WSN node executes the proposed solution at locations A
and B and sequentially scans all the cZ channels, allowing
for frequency-domain performance assessment. We ensure
that the interference from all the target interference tech-
nologies includes 1) wide range of traffic patterns, 2) several
COTS devices/radios with different variants of standards, and
3) clear line-of-sight (LoS) path between the WSN node and
the interfering device. Distances in the range 0.5 m–2 m are
selected to ensure the collection of bursts with a wide range
of INR.

b: E2 - EFFECTS OF SPATIAL SEPARATION
AND OBSTRUCTIONS
We investigate whether and how spatial separation and
LoS/NLoS affects identification accuracy via specific exper-
iments in Location A. The examined distances span in the
range of 0.3 m–15 m, depending on the detection capability
of the devices.

c: E3 - REAL-WORLD EXPERIMENTS
Preliminary investigations and measurements at locations
I1 and I2 showed that interference was exclusively due to
802.11 IRN, providing Internet connectivity to personnel.
The node with IDI operated in multiple points of I1 and I2 for
an overall time of 3 h during the production hours, in order to
ensure variability of interfering traffic.

4Henceforth, we define cl as the generic channel for the interference
technology with label l ∈ LI . We refer to Table 1 for channel numbering.
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TABLE 4. Rate (%) of predicted interference labels and standard deviation σA (%) for bursts with INR ≥ 20 dB. The TPR accuracy is in boldface.

d: E4 - CONCURRENT INTERFERENCE
Controlled interference from multiple sources is generated at
Location B, in order to test the capability of the IDI to isolate
and extract label-specific traffic distribution.

D. SIZE OF DATASETS
In E1 and E2, the IDI system detected and classified over
84000 interference bursts of known origin. The experimental
campaign E3 in industrial environments enriched the data set
with over 2 h of observations yielding about 20000 inter-
ference bursts. Finally, the E4 experiments have led to over
9000 bursts, while the labeled dataset S t , used for training the
SL-classifiers, is engineered with approximately 5000 bursts,
distributed unevenly among the interference labels.

V. RESULTS
A. INTERFERENCE-SPECIFIC IDENTIFICATION ACCURACY
In this section, we present the results of experiment E1,
where the accuracy of each identification scheme for single
interference sources is evaluated in terms of true positive
ratio (TPR). TPR is the ratio between the number of cor-
rectly identified bursts and the number of detected bursts.
A summary of the results is given in Table 4. In gen-
eral, we observe that the higher complexity of MSVM and
RFCT provides a certain performance edge over CT meth-
ods, while CT2 performs consistently better than CT1 for
its deeper classification tree. Nevertheless, the elementary
decision strategy of CT1 provides a good benchmark on the
goodness of the feature selection, reflecting on the degree of

separation among interference classes already in the feature
space.

All the methods show good accuracy in identifying
802.11 interference, with average TPR of 89.20% (CT1),
92.74% (CT2), 94.60% (MSVM) and 96.42% (RFCT). The
offline classifiers also ensure a remarkably limited variance
over different 802.11 variants. The classification accuracy
of 802.15.4 transmissions is exceptional as well, where all the
methods maintain the average TPR≥ 96%. In this case, even
CT1 performs better than MSVM, because the FCCA feature
enables strong separation in the feature space (i.e., 97.86%
of detected 802.15.4 bursts resulted in a negative CCA),
which limits the advantage of more elaborate classification
methods.

When it comes to discerning BLE from 802.15.1 signals,
there is a noticeable difference between the offline and online
methods. While offline RFCT and MSVM misclassify only
2% or less of BLE bursts as traditional 802.15.1, the mis-
classification is 10 times higher for online methods. This
behavior is caused by the strong similarity between the two
technologies at the PHY layer (i.e., both utilize GFSK mod-
ulation), which leads to very similar spectral footprint. This,
in turn, produces subtle differences at the SF-level, and thus
mandates specialized classification methods. The identifica-
tion of 802.15.1 bursts follows a similar trend, where the
TPR gap between the best online and offline methods is 6%.
Interestingly, in RFCT the rate of false negatives between
802.11 and 802.15.1 signals is 90% and 97% respectively,
meaning that more than 9 out of 10 of 802.15.1 misclassified
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bursts are confused as 802.11 and vice versa. The cause of
this behaviour is elaborated in Section VI.

FIGURE 7. Execution time (TP ) of the proposed burst identification
methods for offline and run-time (TelosB) implementations.

In Fig. 7, we show the execution time of the classification
methods in their online and offline implementation in TelosB
and MATLAB, respectively. Both CT1 and CT2 benefit from
a simple structure and an optimized implementation, showing
sub-ms execution times and approximately 1 ms worst-case
delay. Considering the high accuracy of CT2 in identifying
each interference burst with real-time constraints, this is a
promising outcome. Whereas, the slightly better accuracy of
MSVM and RFCT comes at a cost of significantly higher
processing time with respect to offline CT methods.

B. FULL-SPECTRUM PERFORMANCE
We analyze the effect of relative frequency offset between cZ
and cW on the identification of 802.11 bursts, using the exper-
imental methodology E1. Fig. 8 shows the channel-specific
TPR for different versions of the 802.11 standard. It can be
observed that when cZ overlaps with the central region of
cW the TPR is consistently high, whereas a drop occurs on
the leftmost cZ , suggesting a possible lack of separation in
the SF sub-space. Furthermore, all the methods show rather
poor performance for 802.11b interference on this channel,
whereas MSVM and RFCT ensure some performance gain
for the g/n versions of the standard. We explain the behav-
ior noting that the 802.11b and 802.11g/n standards imple-
ment different PHY, leading to spectral masks with relevant
differences around ±10 MHz regions from the central fre-
quency [27]—it perfectly matches our observations consid-
ering the 5 MHz-width of cZ . However, due to spectral shape
of 802.11 signals, the percentage of bursts captured on this
side-channel is limited, meaning that the impact of this local
drop of overall identification performance is minimum.

We repeat the analysis for 802.15.1 interference, and per-
form IDI on all available cZ channels. The TPR shown
in Fig. 9 is generally consistent across the spectrum, except
CT1 which suffers performance inconsistency on the extreme
sides of the ISM band. In addition, we observe a slight
performance drop on cZ = {11, 15, 26}, likely due to the
fact that these channels are overlapped by BLE broadcast
channels cL = {37, 38, 39}, which are used in BLE beacon
applications. CT2,MSVM, and RFCT show higher capability

to cope with the additional BLE class on these channels,
minimizing false negative rate and reflecting in overall better
performance.

In Table 4, we include a stability measure of the iden-
tification methods in frequency domain for 802.11 and
802.15.1 interference, by means of the full-spectrum stan-
dard deviation for channel classification accuracy σA(%).
As expected, we observed limited 3% gap among the first
three classification approaches, which highlights the solid
full-spectrum performance of CT2.

C. PERFORMANCE IN REAL ENVIRONMENTS
In Table 5, we show the results of experiments E3 in two
heterogeneous office/industrial environments. In each envi-
ronment, we collected the data traces at four different loca-
tions. Due to the presence of uncontrolled 802.11 interference
only, the IDI performance is mainly influenced by the ratio
between the burst detected in the central part of the band and
on the leftmost in-band-cZ , as previously analyzed. All IDI
variants show performance comparable to what we achieve
in controlled environment, while CT2 matches, and in some
cases even improves, the accuracy of offline methods. This is
mainly explained with the fact that CT2 performs remarkably
good with 802.11n interference, which was a predominant
choice for the networks found at the experimental sites.

TABLE 5. Experiments E3 in Real Environments: Average accuracy for
identification of 802.11x bursts.

D. INFLUENCE OF DISTANCE AND
INTERFERENCE-TO-NOISE RATIO
We also evaluate the impact of distance between the interfer-
ence source and the sensing node in LoS/NLoS conditions
on the classification accuracy. The experiments, repeated for
802.11 and 802.15.1 interference, show that the CT2 classi-
fication performance does not deteriorate with the distance,
whereas the shape of the extracted features is also unaf-
fected by the LoS/NLoS conditions (see Fig. 10). The result
indicates that CT2 classifier can nicely compensate for the
influence of multipath-fading on the extracted features. The
apparent increase in its accuracy is due to the reduced influ-
ence of the side parts of the spectrum, that is, the burst sam-
ples from the side parts fall below the selected INR threshold.
Intuitively, a low INR means a limited distance between
bursts of different classes in the the SF-feature space, and thus

VOLUME 7, 2019 843



S. Grimaldi et al.: Real-Time Interference Identification via SL: Embedding Coexistence Awareness in IoT Devices

FIGURE 8. Per-channel identification accuracy and ratio of identified bursts for 802.11 interference on channels cW = 2 during experiment E1.

FIGURE 9. Per-channel identification accuracy and ratio of identified bursts for 802.15.1 interference during experiment E1.

FIGURE 10. Classification accuracy for CT2 with respect to the distance
and the LoS/NLoS between source of interference and WSN node. The
percentage and the mean RSSI of identified bursts is shown.

a reduced identification accuracy. Therefore, the threshold
selection plays a significant role in the trade-off between the
sensitivity and the accuracy of the IDI system.

This trade-off is analyzed in Fig. 11, which shows how
different methods respondwith respect to INR threshold γT in
terms of identification accuracy. These results are obtained by

FIGURE 11. Identification accuracy of the different supervised
classification methods, for various minimum allowed INR.

averaging the identification accuracy for all the interference
classes. The figure shows that the RFCT is a good choice
for any value of γT , while CT2 performs even better than
MSVM if γT ≤ 12 dB. In general, the gap among clas-
sifiers reduces with the increase in INRs. This result gives
important insights on which IDI variant to use or which
threshold to employ for a required detection/identification
performance. In the next section, we analyze the physical
reasons of the dependence between TPR and INR, and pro-
vide an analytical model to predict the related performance
improvement.
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VI. ANALYSIS OF SPECTRAL FEATURES
In this section, we extensively investigate the properties of the
SFs, in order to ensure, a) an appropriate (instead of heuristic)
selection of the frequency parameters for the extraction of
SFs, and b) a rationale behind their impact on IDI by estimat-
ing an upper bound on the SF-driven identification accuracy
gain. The analysis is based on the assumption that the vari-
ation of the spectrum within each interference labels l ∈ LI
(due to different modulation techniques and data-rates) is less
relevant that the variation among the different interference
labels. Since the latter is governed by rigid standard-related
spectral masks, our analysis only requires knowledge of the
spectra of target interfering signals Xl(f ), ∀l ∈ LI and the
frequency response of the employed radio front-end H (f ),
together with the basic concepts from signal theory.

A. PHYSICAL BACKGROUND
The first step is to represent SFs in terms of Xl(f ) and H (f ).
Assuming both Xl(f ) and H (f ) centered at the same fre-
quency fc, we can write their spectral convolution as

Yl(1f ) =
∫
∞

−∞

Xl(f )H (1f − f )df (4)

which represents the total power received by the radio
front-endwith frequency responseH (f −1f ) for any possible
1f -wide shift, in MHz, around the central frequency. In this
case, the SFs defined in (1) are simply given by FS =
Yl(fc) − Yl(fc ± 1f ), with Xl(f ) and H (f ) centered at fc and
the SFs calculated at ±1f . However, considering that the
channel allocation layout differs among target technologies,
the offset (δf ) between the central frequencies of channel used
for sensing (cZ ) and the interference channel (cl) must be
taken into account. This leads to express the SFs as

FS = Yl(fc + iδf )− Yl(fc + iδf ±1f ) (5)

with i ∈ Z. Since the minimum spacing between the center
frequency of two generic channels cl is 1MHz, δf is governed
by the minimum frequency-step of employed hardware.5

Similarly, the frequency shift used for SFs’ extraction can
be selected in a discrete fashion as 1f = jδf where j ∈ Z.
Considering the effect of INR (γl) of Xl(f ), we can define an
SF-variation function as

v(l)j,γ (i) = wi,γT [Y
(γl )
l (f0 + iδf )− Y

(γl )
l (f0 + (i+ j)δf )] (6)

where wi,γT are weighting coefficients defined as

wi,t =

{
1 if Y (γl )

l (f0 + iδf ) > PT + γT
0 elsewhere

(7)

where γT is the eventual INR-based thresholding employed
in the IDI system.

From (6), we note that for each choice of interfer-
ence label l, SF shift j and INR of burst γl , the function
v(l)j,γ (i) yields a vector with variable number of elements, by
means of the index i. We can see each of these vectors as the

5This value is commonly 1 MHz for 802.15.4 radios (see Table 3).

FIGURE 12. First two moments of the SF-variation RV for 802.11 (l =W )
and 802.15.1 (l = B) signals for two distinct INRs γ (l ).

realization of a random variable (RV) v(l)j,γ with mean µv(l)j,γ
,

variance σ 2
v(l)j,γ

, but unknown distribution.

In Fig. 12, we show µv(l)j,γ
and σ 2

v(l)j,γ
for B and W inter-

ference labels and two different INRs γl . For this analysis,
we use signal spectra captured with SDR hardware, while
H (f ) represents the frequency response of CC2420 radio in
IDI-mode, as shown in Fig. 6. Fig. 12 highlights the influence
of the employed frequency shift 1f on the characteristics of
SFs. For instance, we can observe that the asymmetry ofH (f )
around f = 0 has limited influence on the RVs, especially on
their mean value. Overall, this analysis gives a first insight on
the existence of SF-level differences between the two interfer-
ence labels, meaning that the introduction of SFs is expected
to bring a certain INR-dependent identification gain.

B. FREQUENCY SHIFT SELECTION
In this section, we use the SF-variation model in (6)
for optimizing the selection of the frequency shift. First,
we strengthen our model to include the effect of bursts
with different INR, and introduce an appropriate similarity
measure among interference labels that must be minimized.
For this purpose, finding the exact distribution of the RVs
v(l)j,γ appears unnecessarily demanding. Instead, we assume

that vj,γ can be approximated with a Gaussian probability
distribution function (PDF) i.e., v(l)j,γ ∼ N (µv(l)j,γ

, σ 2
v(l)j,γ

). Then,

we can introduce a similarity measure between any two inter-
ference labels A and B, with INR γ (A) and γ (B) respectively,
by a SF-similarity function Sj(γ (A), γ (B)), defined as the over-
lapping area of the PDFs of v(A)j,γ and v(B)j,γ , that is

Sj(γ (A), γ (B))=1− Q

xc − µv(B)j,γ

σv(B)j,γ

+ Q
xc − µv(A)j,γ

σv(A)j,γ

 (8)
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where xc is the intersection point of the two PDFs. The
measure Sj(γ (A), γ (B)) represents the similarity of the SFs
extracted with frequency offset 1f = jδf . Note that the INR
of interference bursts can vary unpredictably according to
e.g., distance, LoS, transmission power. Therefore, the sim-
ilarity function must be calculated for each feasible combi-
nation of INR of the two interference classes under analysis.
Assuming the bursts with uniformly distributed INR in the
feasible dynamic range, the definition of SF-error function
E (A,B)
j follows as

E (A,B)
j =

1
KAKB

KA−1∑
m=0

KB−1∑
n=0

wm,nSj(γ (A)
m , γ (B)

n ) (9)

where the weighting coefficients wm,n are taken with unitary
values, based on uniformly distributed INR, and the interfer-
ence label l is observed with Kl-discrete INR values γ (l)

m in
the range [γ (l)

0 , γ
(l)
Kl ]. The function E

(A,B)
j ∈ [0, 1] represents

the probability of misclassification of the interference labels
A and B in the SF-feature space.

FIGURE 13. SF-error function Ej for interference labels W and B
computed for different values of the frequency shift 1f .

In Fig. 13, we plot the error function for the labelsW and B
in the INR range 1 dB–30 dB for three different INR filtering
thresholds γT . This analysis clearly shows the effect of differ-
ent frequency offsets for SFs’ extraction on the classification
error. In practice, we observe that |jδf | > 2MHz does not
bring any improvement in terms of reducing error probability.
Also, the higher values of jδf should be avoided since the
required central frequency might be out of the capability of
the employed hardware6 when scanning the channels at the
boundaries of the ISM band (i.e. cZ = {11, 26}).

We also investigate the effect of increase in γT , which
is expected to reduce error probability however at the cost
of a loss of sensitivity for low-INR bursts. The analysis
shows that for γT ≤ 10 dB the filtering causes instead a
slight increase in error probability. Conversely for larger γT
values, the error probability shows a 10%–15% reduction,

6e.g., CC2420 radio allows only a −5 MHz and +3.5 MHz excursion
over the first and last cZ , respectively, while other hardware, such as TI
CC2538 shows wider frequency range.

giving some insights on the impact of INR threshold in real
scenarios. We investigate the reason and the impact of this
effect in detail in next Section.

Finally, we acknowledge that a complete analysis of
the SF-space would require the calculation of E (A,B)

j ,

∀(A,B) ∈ LI , and the solution of the related minimization
problem.Anyway, this analysis only aims to understand phys-
ically meaningful parameters to employ for SFs’ extraction
without claims of optimality, therefore leading to the selec-
tion of 1fu = 1fd = 2MHz.

C. ESTIMATING THE IDENTIFICATION ACCURACY GAIN
In this section, we estimate an upper bound on the mean
classification gain due to the introduction of SFs, in particular
for interference labels W and B. From the error function
in (9), note that Ēj

(A,B)
= 1 − E (A,B)

j represents the aver-
age probability of correct identification between the generic
classes A and B. Therefore, we can estimate an upper-bound
for the mean identification accuracy (MIA) for a generic
classifier C employing only SFs as

Â(A,B)C (γT ) = A(A,B)C (0)+
(
1− A(A,B)C (0)

)
Ēj

(A,B)
∣∣∣
γ≥γT

(10)

where A(A,B)C (0) is the MIA of C without INR thresholding
(i.e., γT = 0) while γT is used to investigate whether the pro-
posed model can predict the increased identification accuracy
of bursts with higher INR observed in Section V. To validate
the model, the employed classifiers are also trained to operate
in two additional modes: a) only with SFs, and b) without
SFs. The mean TPR is then evaluated over the experimental
datasets including B and W interference sources, according
to the procedure in Section V.

In Fig. 14, we show a comparison between the estimated
MIA upper-bound using (10) and the experimentally-
evaluated MIA for offline MSVM and online CT2 classi-
fication methods. The proposed model appears to closely
reflect the results in Section V, with MSVM ensuring
higher MIA than CT2. The gap between upper-bound and
experimentally-derived MIA of the classifiers employing
only SFs is also tighter for MSVM. This implies that the
offline method can exploit the information conveyed by the
SFs more efficiently. The same is also evident from SFs
accuracy gain in Fig. 14, showing the difference between
the experimental MIA without SFs and with only SFs, while
MSVM is benefiting more, especially for high INR. With
this respect, we observe the phenomenon of slight decrease
in accuracy for γT ≤ 10 dB, which is predicted by the error
model in (9) and visible in Fig. 13.

To investigate how close the each proposed IDI vari-
ant can get to the theoretical MIA upper-bound obtainable
with SFs, we use the estimator (10) with all the candidate
classification methods. In Fig. 15, we show the difference
between the experimental MIA and the upper-bound in terms
of mean and standard deviation. It shows that there is a gap
of 5% between online and offline methods, which highlights
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FIGURE 14. Estimated mean identification accuracy (MIA) upper bound
Â(A,B)

C (γT ) for the interference labels W and B compared with the
experimental results from two classification methods. (a) CT2 classifier.
(b) MSVM classifier.

FIGURE 15. Capability of the different classifiers to approach the
estimated upper bound of mean identification accuracy (MIA).

different capability to exploit the SFs information due to the
different structure of the classifiers. In particular, MSVM and
RFCT perform equally well, ensuring extremely limited<2%
average gap from the theoretical bound. It suggests that, with
complex classification strategies approaching to maximum
performance, the improvement in IDI performance must be
addressed by augmented feature space or an enhanced obser-
vation system.

VII. A USE CASE
A. REAL-TIME ESTIMATION OF INTERFERENCE
TRAFFIC DISTRIBUTION
The inherent capability of the proposed IDI in isolating bursts
from multiple concurrent IRNs opens up new opportuni-
ties for coexistence modeling and enhancement [8], [28].
Although devising a coexisting strategy is not in the
scope of this work, we demonstrate IDI’s effectiveness
in extracting the traffic statistics of an interference traf-
fic that is interweaved with other concurrent heterogeneous
interference. To this end, by employing the experimen-
tal setup E4, we expose the WSN node to 802.11 and
802.15.1 interference. The node senses a fixed channel cZ
and by using IDI autonomously isolates interference-specific
traffic i.e., packet interarrival-time cumulative distribution
function (IT-CDF) or packet on-air-time CDF (OAT-CDF),
alternatively.

1) REAL-TIME ESTIMATION OF IT-CDF
Fig. 16 compares the estimated IT-CDF—using IDI—
and accurately measured IT-CDF—using Wireshark—of a
802.11 IRN for different channel activity factors ρ. It shows
that, despite the contrasting capability of the two mea-
surement systems, IDI is able to estimate a reasonably
close representation of IT-CDF. To quantify the close-
ness of the measured and estimated IT-CDFs, we adopt
Kolmogorov-Smirnov (K-S) distance measure DK , defined
as DK (FA(x),FB(x)) = supx |FA(x) − FB(x)|. We utilize
the K-S to find the parameters (the RSSI level and packet
OAT) that minimize the DK distance between the measured
and estimated CDFs. It also serves as an additional bench-
mark for the detection performance of our IDI. The results,
as shown in Fig. 17, indicate that DK is minimum when the
minimum RSSI and OAT are −70 dBm and 250µs–350µs,
respectively. These results clearly reflect the physical limits
of the COTS-platforms: i.e., 1) the different sensitivity and

FIGURE 16. Estimated vs 802.11 HW-extracted IT-CDF for 802.11g
network with different activity factors ρ under mutual 802.15.4, 802.15.1,
and BLE interference.
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frequency response of the 802.15.4 radio, showing ≈ 20 dB
offset with respect to the 802.11 interface and, 2) the con-
straint on 324µs on minimum OAT of identifiable bursts,
as shown in Table 4, due to the minimum time required to
extract at least one SF.

FIGURE 17. Kolmogorov-Smirnof distance between estimated and
measured IT-CDF of 802.11 packets, as function of minimum power and
packet duration thresholds.

An IT-CDF is also estimated for the 802.15.4 traffic,
where a WSN node periodically generates 32 B-payload
packets every 60 ms on a specific cZ channel. The results
of two experiments showing the estimated IT-CDF for nodes
operating with different retransmission strategies are avail-
able in Fig. 18, including different LoS condition and two
interference scenarios. The employed MAC methods are a
CCA-enabled strategy with random back-off retransmission,
and a TDMA approach, meaning that the transmission hap-
pens every 60ms but in pre-determined slots only. The effects
of the heavily crowded spectrum are visible in the IT-CDF
in Fig. 18a suggesting frequent CCA-fails, while the result
from interference-free scenario shows a steeper CDF, due to
the absence of back-off retransmissions.

FIGURE 18. Estimated IT-CDF for 60 ms-periodic 802.15.4 packets
transmitted with different MAC protocols under heavy interference
(B,W ,Z ) and no concurrent interference (Z ). (a) CSMA-CA MAC. (a) TDMA
MAC.

2) REAL-TIME ESTIMATION OF OAT-CDF
The estimation of IT-CDF is simplified when the IRN oper-
ates on a fixed wide-band channel, such as 802.11. However,
in the case of 802.15.1 IRNs a new narrow-band channel cB
is selected every 625µs in a pseudo-random manner (FFH)

FIGURE 19. Estimated OAT-CDF for 802.15.1 and BLE for different service
profiles, under mutual 802.11 and 802.15.4 interference.

and the estimation of interference IT-CDF is non-trivial.
Therefore, we leave the study of an intelligent scanning
strategy for frequency hopping systems as a future work.
Whereas, in this work, we employ the IDI with a simple
linear-spectrum channel scanning strategy and collect statis-
tic on the 802.15.1 packet lengths. Fig. 19 shows the esti-
mated CDF for a number of 802.15.1 applications, including
high quality audio-streaming (employing A2DP profile with
different bit-rates), headset-quality audio streaming (HSP
profile), file transfer, and BLE beacons.

We compare the estimated OAT-CDF in the light of
a priori known range of on-air-time of 802.15.1 packets. For
instance, file transfer and audio streaming mainly employ
high data-rate packets DH1, DH3 and DH5 which have maxi-
mum on-air-time of [1, 3, 5]× 625µs respectively. Whereas,
HSP and BLE beacons are on the threshold of identifiabil-
ity, due to their shorter on-air-time. In general, we observe
that the applications requesting high-bit rates usually utilize
multi-slot packets and thus result in higher channel occu-
pancy. Although the extraction of IT-CDF for 802.15.1 inter-
ference appears rather unrealistic, these results show that the
proposed IDI is able to reasonably infer the nature of traffic
generated in heavily interfered environments, suggesting its
employment in mechanisms for coexistence and interference
mitigation.

VIII. CONCLUSION
In this paper, we developed a proactive yet lightweight inter-
ference detection and identification scheme for COTS radios,
which can empower a network of battery-operated devices
to coexist reliably with other interfering networks in massive
IoT environments. In the design process, we secure that the
routine network operation remains unaffected by exploring
the trade-offs between performance and complexity. To this
end, first, we propose the powerful but lightweight signal
features by exploiting the physical properties of the target
interference signals and the employed observation system.
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Second, we carefully investigate a scalable supervised-
learning (SL) identification system such that the level of com-
plexity remains under strict control.We force this by targeting
an implementable solution for a 15-years oldWSN-hardware.
In performance, the proposed method enables autonomous
and real-time detection and identification of signal bursts,
showing >90% accuracy even in heavily multi-technology
interference scenarios. We employ offline machine-learning
methods as a reference benchmark, showing that our online
implementation exhibit very limited performance gap, while
ensuring 20-fold shorter processing delay. What makes our
solution gaining in identification accuracy are the innova-
tive spectral features, which we backed up by developing
an analytical model. This model is utilized to estimate an
upper bound on the identification gains, and to show the
efficiency of the proposed method in exploiting the available
spectral information. Finally, a realistic use-case is shown
by means of an autonomous system capable of isolating and
estimating traffic distributions of concurrent heterogeneous
interfering networks. Our system is a strong candidate for
real-time adoption in many existing cognitive approaches
hunting channel idle-times for transmissions.
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