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ABSTRACT The residual nonuniformity response, ghosting artifacts, and over-smooth effects are the main
defects of the existing nonuniformity correction (NUC) methods. In this paper, a spatiotemporal feature-
based adaptive NUC algorithm with bilateral total variation (BTV) regularization is presented. The primary
contributions of the innovative method are embodied in the following aspects: BTV regularizer is introduced
to eliminate the nonuniformity response and suppress the ghosting effects. The spatiotemporal adaptive
learning rate is presented to further accelerate convergence, remove ghosting artifacts, and avoid over-
smooth. Moreover, the random projection-based bilateral filter is proposed to estimate the desired target
image more accurately which yields more details in the actual scene. The experimental results validated that
the proposed algorithm achieves outstanding performance upon both simulated data and real-world sequence.

INDEX TERMS Infrared imaging, neural networks, image denoising, infrared image sensors.

I. INTRODUCTION
Infrared focal plane array (IRFPA) sensors, being an impor-
tant front end of internet of things (IOT) [1]–[5], often suf-
fer from the pixel-to-pixel nonuniformity response, which
induces fixed pattern noise (FPN) and causes serious decline
in image quality [6]–[8]. Nonuniformity correction (NUC),
being a cost-effective solution for FPN, is continually inves-
tigated and applied nearly all the infrared imaging systems.

Existing NUC algorithms are generally divided into
two primary categories: reference-based NUC (RBNUC)
and scene-based NUC (SBNUC) algorithm. The RBNUC
methods [9] remove the FPN in real time according to the
fixed correction parameters that calculated from the response
of particular radiation. However, RBNUC methods need to
update the correction parameters to compensate the inher-
ent temporal drift of detector characteristics, which will
periodically interrupt the normal operation of the imaging
system. In view of this, many SBNUC methods have been
proposed, such as neural networks (NN) [10]–[12], temporal
high-pass filter (THPF) [13]–[15] and constant-statistics (CS)
method [16]. Among the SBNUC methods, the NN-NUC is
a representative approach with balanced precision and com-
putational load.

Neural network nowadays is widely investigated in pat-
tern recognition and signal processing fields [17]–[20].

In Scribner’s proposed NN-NUC method [10], a retina-like
neural network consisting of linear neuron nodes with cor-
rected gain Gij(n) and corrected offset Oij(n) is designed to
calibrate the nonuniformity response of observation Yij(n)
and obtain the estimation of actual response as

X̂ij(n) = Gij(n) · Yij(n)+ Oij(n) (1)

According to the steepest descent algorithm, NN-NUC
method minimizes the square error function defined in fol-
lowing Eq. (2) and feed back to the neural network.

Eij(n) =
[
X̂ij(n)− Tij(n)

]2
(2)

where Tij(n) is the desired target image, n stands for the frame
index.

However, ghosting artifacts and over-smooth effects
resulted from the sudden deceleration of scene motion as well
as the slow convergence rate due to the inadequate regulation
of learning rate that degrade the correction performance of
NN-NUC method seriously [21]. In order to suppress ghost-
ing artifacts and eliminate the over-smooth effects with fast
convergence, we present a novel scene adaptive NUC algo-
rithm in this paper. Specifically, the proposed NUC method
employs the bilateral total variation [22] penalty to optimally
solve the overfitting problem. Moreover, a spatiotemporal
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feature based adaptive learning rate is presented to suppress
the ghosting artifacts and over-smooth effects as well as
accelerate the convergence. Besides, random projection is
introduced to optimize the bilateral filter and produce more
accurate target value to retain more high frequency details in
the correction results.

The remainder of this paper is organized as follows. The
principle of the proposed algorithm is detailed in Section 2.
Experimental results that illustrate the performance of the
algorithm with artificial corrupted sequences and real world
sequences are presented and analyzed in Section 3. Finally,
discussions and conclusions are provided in Section 4.

II. METHODOLOGY
A. SCHEME DESCRIPTION
In order to deal with the overfitting problem and pick a more
accurate solution, an additional regularization term is intro-
duced in our proposed NUC method. And then the objective
function can be expressed as

Jij(n) = Eij(n)+ λ · ϒ(X̂ij(n)) (3)

where the square error function Eij acts as a fidelity term
to prevent pattern distortion. The parameter λ is a scalar for
properly weighting the fidelity term against the regularization
term ϒ(X̂ij(n)).
To minimize the objective function Jij(n), the steepest

descent algorithm is used to search the optimum solution. The
iterative formulas of the correction parameters are

Gij (n+ 1) = Gij (n)+ µij (n) · DG
(
Jij (n)

)
(4)

Oij (n+ 1) = Oij (n)+ µij (n) · DO
(
Jij (n)

)
(5)

where µij(n) indicates the learning rate, DG (·) and DO (·)
respectively denote the partial derivative operation applied to
the gain and offset correction parameter and are represented
as

DG
(
Jij (n)

)
=
{
Fij (n)+ λ · Rij(n)

}
· Yij (n) (6)

DO
(
Jij (n)

)
=
{
Fij (n)+ λ · Rij(n)

}
(7)

where Rij(n) indicates the derivative of regularization term,
and Fij (n) represents the derivative of fidelity term calculated
by

Fij (n) = X̂ij (n)− Tij (n) (8)

In traditional NUC methods, the learning rate is either a
fixed global parameter for the whole correction process or a
variable still struggle to keep up with the change of scene,
which results in the slow convergence rate accompanied
with ghost artifacts and over-smooth effects. In this paper,
a spatiotemporal features based adaptive learning rate was
proposed to enhance the adaptability and agility of the cor-
rection. Moreover, the desired target value is estimated by an
innovative random projection based bilateral filter (RPBF),
which effectively solves the details loss caused by the mean
filter of NN-NUC method. According to the afore-described
theory, the complete scheme representing the whole process
of the proposed NUC method is presented in Figure 1.

FIGURE 1. Scheme of the proposed NUC method.

B. BILATERAL TOTAL VARIATION REGULARIZER
Total variation (TV) method is one of the most popular regu-
larization methods for image processing [23], [24]. However,
TV regularizer generally leads to the staircase effect in flat
region and detail loss in texture region. In order to overcome
the inherent defects of the TV regularizer, a spatially adaptive
regularizer called bilateral total variation (BTV) based on the
spirit of the bilateral filter [25] is presented to suppress the
artifacts and promote the structure preserving performance
without affording a heavy computational load. The BTV
regularizer is defined as

ϒBTV (X̂ (n)) =
P∑

l=−P

P∑
m=0︸ ︷︷ ︸

l+m≥0

α|m|+|l|
∥∥∥X̂ (n)− S lxSmy X̂ (n)∥∥∥1 (9)

where S lx and Smy represent the operations of shifting X̂ by
l and m pixels in horizontal and vertical directions, respec-
tively. The scalar weight α(0 < α < 1) is applied to give
spatially decaying effect to the summation of the regulariza-
tion terms, P is the radius of the search window.
According to the objective function in Eq.(3), we introduce

the BTV penalty to be the regularization term. Followed
that the correction parameters solved by the steepest descent
method are expressed as Eq. (6) and Eq.(7), in which the
derivative of BTV regularizer is represented as

Rij(n) =
P∑

l=−P

P∑
m=0︸ ︷︷ ︸

l+m≥0

α|m|+|l| ·
[
I − S−lx S−my

]

· sign
(
X̂ij(n)− S lxS

m
y X̂ij(n)

)
(10)

where S−lx and S−my define as the transpose of matrices S lx
and Smy , respectively, and sign (·) is a symbolic function, I
indicates the identity matrix.

C. IMPROVED ADAPTIVE LEARNING RATE
The fixed learning rate generally leads to over-smooth effects
and ghosting artifacts when the scene motion is insufficient.
Therefore, many kinds of adaptive learning strategies were
proposed to promote the precision of the correction and
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decrease the scene data dependence [26]. However, spa-
tiotemporal information contained in the image sequence is
still inadequately exploited and fused in the learning strat-
egy [27]. In view of this, we further extract the spatiotempo-
ral feature and present an innovative adaptive learning rate
defined as

µij(n) = kst ·
σ Tij (n)

1+ σ Sij (n)
(11)

where kst is the spatiotemporal constant, σ Sij (n) is the local
spatial standard deviation of the input image Yij(n), and the
fluctuation of error function in temporal domain is quantified
by

σ Tij (n) = D
[
∇Eij(n),∇Eij(n− 1), . . . ,∇Eij(n− m+ 1)

]
(12)

where m is the temporal parameter, D [·] indicates the stan-
dard deviation operation. The gradient of error function can
be define as

∇Eij(n) = Eij(n)− Eij(n− 1) (13)

In this spatiotemporal learning strategy, the learning rate
depends on both of the spatial domain and temporal domain
features. As for the contributions of temporal domain fea-
tures, we can comprehend the mechanism via the following
situations. With the faster scene movement, the increased
fluctuation of error function would increase the learning rate
and bring a faster tracking. On the contrary, the leaning rate
drops to nearly zero when the scene motion paused.

As for the spatial domain features, in dynamic regions with
high spatial variance that means the high frequency details
need to be preserved, the corresponding learning rate should
assume a smaller value. Instead, higher learning rate is taken
in flat image regions to boost the convergence speed.

The abovementioned adaptive learning rate strategy sig-
nificantly declines the over-smooth effects, suppresses the
ghosting artifacts and accelerates the convergence speed.

D. BILATERAL FILTER WITH RANDOM PROJECTION
Traditional NN-NUC methods adopt the local mean fil-
tering approach to obtain the desired target image. How-
ever, the mean filter tends to smooth the textures and
produce blurry corrected results [28]. In view of this,
Rossi and Diani [29] employed bilateral filter (BF) to acquire
more accurate target value and suppress the nonuniformity.
Random projection [30] approach containing the thought of
dimension reduction [31] is successfully introduced to pro-
mote the accuracy and reduce the computational load of the
nonlocal means filter in [32]. Motivated by the abovemen-
tioned ideas, we proposed a random projection based bilateral
filter (RPBF) to obtain more accurate desired target image.
Since accurate target image is benefit for preserving the
edges and details in the corrected image, the proposed RPBF
will undoubtedly contribute to the promotion of correction
precision.

In RPBF, we introduce random projection to perform
dimension reduction for each neighborhood vector. As for
the random projection process, the d × d patch with the
center of (i, j) in the observation Y is projected to a l × d
dimensional subspace by using a l × d random matrix R,
which is formulated as

f PRl×d (i, j) = Rl×d · Yd×d (i, j) (14)

According to the afore-described theory, the desired image
acquired by RPBF (l = 1) can be defined as

T (i, j) =

d∑
k=−d

f PR1×d (i, j+ k) · ws(i, k) · wr (i, k)

d∑
k=−d

ws(i, k) · wr (i, k)

(15)

where ws(i, k) and wr (i, k) respectively denote the spatial
weight and range weight and are defined as

ws(i, k) = exp
(
−
k2

2σ 2
s

)
(16)

wr (i, k) = exp

(
−

∥∥f PR1×d (i, j)− f
PR
1×d (i, j+ k)

∥∥2
2σ 2

r

)
(17)

where σs and σr are the smooth parameters controlling the
decay of the two weight factors.

III. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, several experiments were performed to com-
pare the performance of the proposed NUC method with
NN-NUC [10], FA-NUC [26] and TV-NUC [33] on artifi-
cially corrupted sequences and real infrared sequence, respec-
tively. In order to perform the comprehensive performance
verification, the proposed RPBF and traditional BF are
employed to generate the desired image in the proposed NUC
method so called BTV+RPBF and BTV+BF, respectively.
For each NUC method, we initialize the corrected gain Gij(0)
and offset Oij(0) with one and zero for each neural node,
respectively. In all of the following experiments, the learning
rates are fine-tuned to pursuit the best performance with a
trade-off between convergence speed and stability.

A. PARAMETER SENSITIVITY ANALYSIS
In this simulation, the sensitivity analysis of the hyper param-
eters will be conducted on different selections of the spatial
weight α and the balance scalar λ. The goal is to find out the
optimum configuration of α and λ for seeking the optimal
performance of the proposed NUC method and further give
the corresponding theoretical explanation. The PSNR curves
of different selection of α and λ are shown in Figure 2.
By comparing with the relevant results, we can clearly find
that higher spatial weight yields faster convergence rate but
with more instability, while balanced scalar is help to achieve
satisfied performance. Moreover, different combinations of α
and λ produce varied convergence rate but nearly coincide to
similar PSNR after 1300 frames of iterations.
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FIGURE 2. Correction performance of various parameter selections for the proposed NUC method.

In terms of principle, α acts as a spatial weight for different
scales of derivatives, larger α considers a larger neighbor-
hood, but a too large α may remove the point like details
from the image as the TV prior do and causes more unde-
sired smoothing. In contrast, a too small α prefers to sharply
decay the weight with the expansion of neighborhood, which
weakens the noise reduction performance and causes slower
convergence. As for the balance scalar λ, a larger λ increases
the impact of regularizer and gives rise to agile tracking, while
a smaller λ tends to stress the regularizer and provides stable
convergence.

According to the abovementioned analysis, we can find
that a proper selection of α yields satisfied noise reduction
effect and an appropriate assignment of λ balances the sta-
bility and agility. In general, the selection margin for α and
λ is sufficient, which reduces the difficulty of parameter
tuning.

B. PERFORMANCE ASSESSMENT WITH SIMULATED
SEQUENCES
In this section, two infrared sequences corrupted by artifi-
cial fixed pattern noise are employed to evaluate the per-
formance of different NUC methods. Sequence 1 consists
of 1600 frames of 512× 384 sized infrared images collected
from RTD3172C imager (IRay, Yantai, China). Sequence
2 consists of 4000 frames of 471 × 358 sized images col-
lected byA615 camera (FLIR Systems, Inc.,Wilsonville, OR,
USA). To simulate the nonuniform response of the detec-
tors, the stripe gain noise with mean 1 and standard devia-
tion 0.15 as well as offset noise with mean 0 and standard
deviation 12 generated as realizations of independent and
identically distributed (iid) Gaussian random variables are
applied to both of sequence 1 and sequence 2.

In the following experiments, PSNR [34] and roughness
index [35] are utilized to assess the quality of the final cor-
rected image. The roughness index can be calculated by

ρ =

∥∥∥h1 ⊗ X̂∥∥∥
1
+

∥∥∥h2 ⊗ X̂∥∥∥
1∥∥∥X̂∥∥∥

1

(18)

where h1 is the horizon vector and be set as [1,−1], and
h2 = hT1 is the vertical vector. The operator ‖·‖1 indicates the
L1-norm.

1) ANALYSIS OF CORRECTION ACCURACY AND
CONVERGENCE RATE
Figure 3 presents the correction performance of each
nuc methods upon artificially corrupted sequence 1. from
Figure 3(a), we can find that both of the psnr curves of
btV+RPbf and btV+Bf method converge faster and take the
lead to reach a higher level. moreover, the btV+RPbf method
achieves nearly 0.8db promotion over btV+Bfmethod, which
is benefited from the much richer details preserved in the
desired target image by using the proposed rpbf. as can be
seen clearly from the roughness curves plotted in Figure 3(b),
the proposed btV+RPbf method obtains lower roughness
value. even though tv-nuc converges faster than btV+Bf
method in the former 400 frames, the btV+Bfmethod obtains
lower roughness in the rest of the sequence, this fact indicates
that the corrected results of our proposed nuc method remove
the fpn noise more efficiently.

Performance assessed with average PSNR and roughness
of each entire correction processes are listed in Table 1, where
the proposed BTV regularized NUC methods (including
BTV+BF and BTV+RPBF method) outperform the existing
NN-NUC, FA-NUC and TV-NUC. In addition, the proposed
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FIGURE 3. Correction performance of various NUC methods for artificially corrupted sequence 1. (a) PSNR (dB) and (b) Roughness (ρ).

TABLE 1. Mean psnr and roughness index for sequence 1.

BTV+RPBF method obtains obvious improvement in both
of PSNR and roughness index, which validates the joint
contributions of the BTV regularization and RPBF approach
for the promotion of correction accuracy.

2) COMPARISON OF DEGHOSTING PERFORMANCE
In this section, the deghosting performance of different NUC
methods is verified with artificially corrupted sequence 2.

Figure 4 shows that the proposed BTV+RPBF and BTV+BF
method grow faster and achieve higher PSNR. For the
TV-NUC method, the PSNR curve keeps a slow increase
during the first 900 frames. Thereafter, the performance
promotion of the TV-NUC shows large fluctuation in PSNR.
The main reason is that the TV-NUC is very sensitive to the
frequent scene switching, which sometimes interrupts and
restarts the convergence process.
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FIGURE 4. PSNR curves of various NUC methods for artificially corrupted sequence 2.

TABLE 2. Mean psnr and roughness index for sequence 2.

Figure 5 shows the visual effects of various NUC meth-
ods for 1210th frame (motion restarted after the halt) of
sequence 2. Figure 5(b)-(f) shows the corrected results
using the NN-NUC, FA-NUC, TV-NUC, BTV+BF and
BTV+RPBF method, respectively. From Figure 5(b)-(c),
we can clearly observe serious ghosting artifacts in the
NN-NUC results and FA-NUC results, which resulted from
the inaccurate estimation of desired image by using local
mean filter. In view of this, the TV-NUC suppresses the
ghosting artifacts by minimizing the TV of the estimated
irradiance but resides amount of nonuniformity for its sensi-
tivity of scene switching. In contrast, our proposed BTV+BF
and BTV+RPBF method estimate the desired image with
more accurate spatial filter named BF and RPBF, and then
employ BTV penalty to produce a more optimal estimation
of correction parameters, furthermore, present a spatiotem-
poral feature based adaptive learning rate to agilely track
the scene change and suppress the ghosting artifact more
effectively. The visual effect presented in Figure 5(e) shows
that BTV+BF method reduces most of the ghosting artifacts
as well as eliminates the nonuniformity obviously. As shown
in Figure 5(f), BTV+RPBF method can further promote
the deghosting performance for the substitution of BF with
proposed RPBF.

Themean PSNR and roughness index of thewhole iterative
process are shown in Table 2. It is worth to note that the
PSNR of the TV-NUC doesn’t exceed FA-NUC due to the
frequently scene switching. FA-NUC method gains better
deghosting performance than NN-NUC by employing adap-

tive learning rate strategy to update the correction parameters
swiftly. Similar with the experimental results of sequence 1,
the proposed BTV+RPBF method obtains the highest PSNR
and smallest roughness index, and this further proves the
outstanding performance in both of ghosting suppression and
nonuniformity correction.

C. APPLICATION TO REAL INFRARED IMAGE SEQUENCE
In order to evaluate the practical performance of the proposed
method, 1970 frames of real infrared data (named sequence
3) collected by a 384 × 288 ULIS Pico384 camera (ULIS,
Veurey-Voroize, France). In these experiments, the roughness
index is employed to illuminate the nonuniformity correction
performance of varies NUC methods. Note that, only the
roughness index cannot assess the correction performance
integrally. In the normal NUC process, the roughness index of
the corrected image will decrease to a proper level, extremely
small roughness index indicates the image is over-smooth.
Therefore, we consider the over-smooth suppression as well
as nonuniformity elimination and deghosting in the perfor-
mance assessment.

1) COMPARISON OF OVER-SMOOTH SUPPRESSION
To verify the over-smooth suppression capability after the
scene motion paused (from 940th frame to 1110th frame),
we apply various NUC methods upon sequence 3 and plot
the roughness curves of the correction results in the Figure 6.
It is worthy of note that the roughness curves of NN-NUC,
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FIGURE 5. Visual effect of corrected results for 1210th frame in sequence 2. (a) Corrupted image; (b) Corrected results of NN-NUC; (c) Corrected
results of FA-NUC; (d) Corrected results of TV-NUC; (e) Corrected results of BTV+BF; (f) Corrected results of BTV+RPBF.

FIGURE 6. The roughness index curves of sequence 3.

FA-NUC and TV-NUC all sharply descend and reach a
concave point, which indicates these methods still imple-
ment high strength correction even in pause stage and pro-
duce over-smooth image (this phenomenon can be observed
in Figure 8(b)-(d)). In contrast, the roughness curves of our
proposed method change comparatively gently in halt stage,
which demonstrates the proposed method avoiding the over-
smooth effects more successfully.

In order to further evaluate the effectiveness of the pro-
posed adaptive learning rate strategy in over-smooth suppres-
sion, the learning rate curves of FA-NUC and the proposed
method are compared in Figure 7 to show the self-regulation
ability. Accordingly, NN-NUC and TV-NUC with fixed
learning rate are not included into comparison. As shown
in Figure 7, the FA-NUC method adjusts the learning rate
slightly and relieves the over-smooth effects to a certain
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FIGURE 7. The learning rate curves of FA-NUC and the proposed method.

FIGURE 8. Corrected results of varies NUC method of 1046th frame in sequence 3. (a) Raw image; (b) Corrected results of NN-NUC; (c) Corrected
results of FA-NUC; (d) Corrected results of TV-NUC; (e) Corrected results of BTV+BF; (f) Corrected results of BTV+RPBF.

extent. By contrast, our proposed adaptive learning rate per-
forms better adaptability, which rapidly decreases nearly to
zero and almost suspends the update of correction parameters
in the scene motionless stage.

In addition, the subjective visual effects of the corrected
1046th image (a frame in a halt of sequence 3) are introduced
to assess the effectiveness of the abovementioned NUCmeth-
ods. The corrected results of NN-NUC, FA-NUC, TV-NUC,
BTV+BF and BTV+RPBF are shown in Figure 8(b)-(f),

respectively. It can be seen clearly that NN-NUC method
produces the most serious over-smooth results and FA-NUC
method preserves most of the obvious edges but still dam-
ages the textures severely. The TV-NUC method further
suppresses the over-smooth effects but fails in the discrim-
ination of details and residual nonuniformity. As for our
proposed BTV+BF and BTV+RPBF method, the corrected
results simultaneously preserve rich high-frequency details
and remove the nonuniformity more thoroughly.
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FIGURE 9. Corrected results of varies NUC method of 1155th frame in sequence 3. (a) Raw image; (b) Corrected results of NN-NUC; (c) Corrected
results of FA-NUC; (d) Corrected results of TV-NUC; (e) Corrected results of BTV+BF; (f) Corrected results of BTV+RPBF.

2) COMPARISON OF DEGHOSTING EFFECT
After the scene motion resumed (after 1110th frame), the
NN-NUC method produces serious ghosting artifacts for the
following 50 frames at least (this phenomenon could be
observed in the following Figure 9(b)). Note that the learning
rate of the proposed method in Figure 7 recovers immediately
after the resume of scene motion. The larger learning rate
updates the correction parameters quickly to adapt to the
switching scene. By this way, our proposed learning rate
strategy can suppress the ghosting artifacts well.

In order to observe the ghosting artifacts, the 1155th
frame in sequence 3 is used as an example. As can be seen
in Figure 9, the NN-NUC and the FA-NUC suffer from
serious ghosting artifacts marked out by red boxes. The
TV-NUC method suppresses partial ghosting artifacts while
letting a certain amount of residual nonuniformity off (existed
especially on the highest building and sky region in Fig-
ure 9(d)). The proposed BTV+BF and BTV+RPBF elimi-
nate the nonuniformity thoroughly and pay same attention to
ghost suppression, which is validated by the sharply visual
effect of Figure 9(e) and (f).

IV. CONCLUSIONS
While many scene adaptive NUC approaches had been pre-
sented to suppress the FPN in the infrared images, they
are not able to solve the ghosting artifacts accompanied
with over-smooth effects. To this end, we introduce a BTV
penalty into the objective function to reduce the ghosting
artifacts as well as suppress nonuniformity response, and then
present a spatiotemporal adaptive learning rate strategy to fur-
ther remove the ghost, eliminate the over-smooth effect and

accelerate the convergence rate.Moreover, random projection
based bilateral filter is proposed to preserve the details in
the corrected images. Experiments with both of simulated
data and real scene have demonstrated that the proposed
NUCmethod achieves higher correction precision with faster
convergence rate. In addition, the correction results of our
proposed method have a sharper visual effect without percep-
tible ghosting artifacts and over-smooth effects.
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