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ABSTRACT Mobile crowd-sensing (MCS) is a new sensing paradigm that takes advantage of the extensive
use of mobile phones that collect data efficiently and enable several significant applications. MCS paves the
way to explore new monitoring applications in different fields such as social networks, lifestyle, healthcare,
green applications, and intelligent transportation systems. Hence, MCS applications make use of sensing
and wireless communication capabilities provided by billions of smart mobile devices, e.g., Android and
iOS-based mobile devices. The aim of this paper is to identify and explore the new paradigm of MCS that
is using smartphone for capturing and sharing the sensed data between many nodes. We discuss the main
components of the infrastructure required to support the proposed framework. The existing and potential
applications leveragingMCS are laid out. Furthermore, this paper discusses the current challenges facing the
collectionmethodologies of the participants’ data in taskmanagement. The recent issues in theMCSfindings
are reviewed as well as the opportunities and challenges in sensing methods are analyzed. Finally, open
research issues and future challenges facing MCS are highlighted.

INDEX TERMS Mobile crowd-sensing, smartphone, data sensor management, Internet of Things, location
privacy.

I. INTRODUCTION
Smart phones are ubiquitous mobile devices expected to
proliferate rapidly, and their penetration is estimated to be
in the order of billions worldwide. Delivery applications
such as mobile application stores (Apple AppStore, Google
Play Store, etc.) and social media have transformed mobile
phones into intelligent computing devices using the instant
download of applications [1]. Smartphone vendors are con-
tinuously increasing the number of built-in sensors, a fact
thatmakes them an excellent contextual information provider.
Thus, smartphones can be used for large scale sensing of
the physical world at low cost by leveraging the available
sensors on the phones. With the proliferation of smartphones,

several sensing approaches have emerged such as mobile
phone sensing [2]. To enhance the user experience, many of
the applications that come installed or can be downloaded
from the online application delivery platforms take advan-
tage of sensors available on the phone. The fixed sensors
on the smartphone offer the chance to develop innovative
applications in many sectors such as environmental monitor-
ing, healthcare, and transportation [3]. In such applications,
smartphones play the role of base sensor nodes and gateways
depending on the availability of the mobile phones within
a region of interest. Similarly, sensors deployed in today’s
smartphones are witnessing a continuous improvement of
their hardware and software capabilities Smartphones can
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gather process and transfer data between users. Eventually,
smartphones, similar to static nodes are capable of sensing,
computing, and communicating [4], [5]. However, the main
difference is that smartphones are moving and repositioning
themselves in the network all the time. In such innovative
sensory networks, smartphones can collaborate with tradi-
tional sensor nodes to form a global-scale network formed
by billions of sensor nodes that are dynamically deployed,
to support the needs of a variety of applications and ser-
vices. The embedded sensors in mobile phones are leveraged
for various sensing tasks for MCS applications of particular
interest [6].

MCS takes advantage of large number of smartphone
devices to collect data efficiently enabling several significant
applications [1]. MCS refers to the use of smartphones owned
by a diversity of participants to gather and share data of
incidents of common interest. The basic idea ofMCS is trying
to consolidate the sensing idea with a ‘‘collective’’ sensing
view The sensed data collected using fixed sensors in tradi-
tional sensing techniques is substituted by data collected from
citizen-generated content within social media or applications
using smartphones [7], [8]. This creates a great amount of
information, which complements sensor data with the opin-
ions and experiences of citizens [9].

MCS allows a large number of smartphones to be used for
activities that have a large public impact and the exchange
of information between their users and can be supported
by the cloud. With the support of the cloud, data fusion
techniques can be applied on the information collected from
the smartphones. This allows mobile sensing to be a mul-
tipurpose platform that can replace static sensing infras-
tructure to support a comprehensive range of applications
from smart city applications and safety to monitoring the
environment [10]. An emerging sensing paradigm is mobile
crowd-sensing [13] which comes in a variety of modes:
(i) opportunistic sensing [11], [12], (ii) participatory
sensing [11], and (iii) people/human-centric sensing [11],
[14], [15]. The traditional sensor network supports a single
use case, while crowd-sensing data may contribute to various
use cases [16].

Mobile sensing devices are extensively available and are
a rich and inexpensive source of sensing data. Recently,
varieties of sensors exist in most smartphones for different
purpose. iPhone users represent 59.6 million in one database
with embedded sensors including GPS, accelerometer, gyro-
scope, ambient light, proximity, microphone, and camera
sensors. Light sensors are used for fine-tuning the screen
brightness. Both proximity and light sensors permit the phone
to complete simple forms of context recognition linked with
the user interface. The GPS allows the phone to localize
itself and enables regional or location aware searches, navi-
gation, and mobile social networking applications [17], [18].
Both compasses and gyroscopes determine direction and ori-
entation, improving location based applications depending
on the GPS [19]. The accelerometer has a different role,
it can be used to identify several activities such as running,

walking, and standing. The most powerful sensors found
in any smartphone today are the camera and microphone,
which are possibly the most global sensors on the planet [20].
The camera on the front of the phone can also be used for
conventional tasks such as tracing the user’s eye movement
as an intermediary to start applications [21], [22]. In addition
to traditional purposes for the aforementioned sensors, more
advanced applications are developed to further utilize the
sensors. The mode of transportation of a user can be detected
by a combination of accelerometer data and location from
the GPS sensor This combination of sensor readings allows
us to detect if the user is riding a bike, a car, a bus or even
walking or running [23]. The sensors allow new applica-
tions in a wide diversity of domains, such as healthcare
that uses accelerometer to measure the user’s activities [24];
safety and environmental monitoring which uses GPS for
location data collection [25]; transportation which also uses
GPS [17], [26]; social networks based onWi-Fi and GPS [17]
These can open new areas of research called mobile phone
sensing. The MCS research is focused on the possibility of
growing pervasive urban and individual mobile technologies
to support citizen daily life. The evolution of mobile phones
has often been paired with the introduction of new sensors.
For example, accelerometers have becomemore popular after
being utilized to enhance photos captured by the camera and
after using it in graphical user interface [19]. Sensors are
used to automatically determine the orientation of the mobile
phone screen and use that information to mechanically switch
the display between landscape and portrait or properly orient
the photos taken.

Mobile crowd-sensing can be considered as crowdsourcing
where the resource provided by the crowd is their sensing
capabilities. Crowdsourcing is a group of outsourcing tech-
niques that utilizes independent, volunteer, and paid human
resources to complete a specific task [27]. It is also a process
in which a task, a project, or a problem is performed by
a group of private and geographically isolated participants.
The participating members are compensated or provided
with recognition once the problem is solved or the task is
completed. Smartphone-based crowd-sensing take advantage
of the tremendous growth in network-monitoring applica-
tions. Several smartphone based crowdsourcing applications
use the call data records (CDR). The CDRs of social net-
work refers to the information on communications between
a large number of people at a certain time, which contains
actual observations of communications between people and
is stored by all telecom operators, though data semantics
vary slightly among them [28]. Faggiani et al. [29] discuss
the most important opportunities offered by crowdsourcing
and the associated key challenges. Portolan, a smartphone-
based crowdsourcing system, has been built to demonstrate
possible benefits of crowdsourcing. For a large number of
clients, the Portolan server is used to coordinate the activities
of data collection. Portolan is able to build signal coverage
maps and produce a graph of the Internet at the autonomous
system (AS) level. Furthermore, Ren et al. [27] focus on
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the use of crowdsourcing for data collection to address
numerous solid challenges in widespread computing systems
such as participatory urbanism that encourages new meth-
ods and approaches for individual citizens to become active
participants within their city, neighborhood, and urban self-
reflexivity. Another example is the use of mobile phones
as environmental sensing platforms that support community
action to enforce positive societal change. Rosen et al. [30]
proposed a Mobile Crowdsourcing Network for wireless net-
workmanagement (MCNet). This tool permits users to imple-
ment crowdsourcing of WiFi performance measurements.
Wi-Fi was used to communicate between mobile devices
such as smartphones or tablets and many access points that
are fixed in a university or organization setting. Few hun-
dred users used the MCNet application tool, where at a
certain time at least 20 mobile devices should be connected
to the network to guarantee an efficient crowdsourcing of
measurements. They deployed this tool in one corporate
and one university WLAN. They worked together with the
network IT engineer to enhance the latency and through-
put to as high as 37% and 38%, respectively. Their results
showed that MCNet is an effective, practical system for
crowdsourced Wi-Fi performance measurements in large and
complex WLANs.

A. POSITIONING THE PROVIDED SURVEY
There are several surveys in the litreture that address the broad
topic of mobile crowd-sensing. The survey in [1] focuses
on existing work on mobile crowd-sensing strategies with
emphasis on reducing the resource cost and achieving high
Quality-of-Service, however it did not address sensing tech-
niques and applications. Lane et al. [19] give an overview
of the sensors on the phone and their potential uses The
paper targets novice or practitionars new to the field of MCS.
Finally, the survey in [5] addresses the use of mobile phones
in detectingmovements and actions. To the best of our knowl-
edge, all the reviewed surveys did not consider the most com-
mon mobile crowd application modes such as participatory
and opportunistic modes that are used in most of the mobile
crowd-sensing applications. In this work, we address mobile
crowd-sensing applications focusing on the participatory and
opportunistic modes. The detailed objectives of our contribu-
tion are listed below:
1) Present a comprehensive literature review of mobile

crowdsensing, demonstrating the shift from traditional
sensing paradigm towards MCS paradigm, and intro-
ducing several research work done in this field using
smartphone sensors.

2) Describe the current techniques and frameworks
for MCS.

3) Discuss the significant research findings of MCS and
identify the application areas considering both the two
urban sensing namely participatory and opportunistic
sensing

4) Explore applications of crowdsensing in areas such
as healthcare, environment, smart city, infrastructure,

social networking, tourism, Sports and public safety and
military applications (as shown in Figure 1).

5) Discuss the challenges and explore new research areas in
MCS deployment such as enhancing the collected data
accuracy.

We believe this work can open doors to more research
on this vital topic inspiring designers to develop attractive
mobile crowd-sensing systems while considering privacy of
the participants before system deployment.
The remainder of this paper is structured as follows:

Section 2 contains the MCS paradigm and overview.
Section 3 describes the MCS framework with its components
such as data collection; communication media; data aggrega-
tion; and data storage and classification. MCS applications
including healthcare, environmental, smart city, infrastruc-
ture social networking, tourism, sports and public safety and
military applications; are described in Section 4. A discussion
of extensive investigations of MCS is presented with open
research issues and challenges are described in Section 5, and
finally, the paper concludes in Section 6.

II. MCS APPLICATION MODES AND PARTICIPANT
SELECTION
Human participation in MCS varies depending on the appli-
cation mode. There are two application modes of sensing
data collection which are active (participatory) and passive
(opportunistic) [15].

A. APPLICATION MODES
The participatory (active sensing mode) depends on the par-
ticipants in performing some actions. In this method, the par-
ticipant willingly takes the responsibility of entering the
information. The active mode requires the user’s participation
and even the user’s involvement in the operation [31]. For
example, incident reporting requires the user to move to the
incident’s location, to take videos and photos, and finally send
them to the monitoring center.
The opportunistic (passive sensing mode) depends on a set

of applications installed on the users smartphones performing
a set of predefined actions. In this way, the application gathers
data without notifying the user. This method should meet
the application requirements and automatic data collection,
such as collecting a user’s geolocation information [8], [32].
In the passive participant mode, the MCS applications do
not require any involvement from the user of the mobile
device except downloading the mobile application and allow-
ing his/her mobile device to cooperate and participate in the
MCS operation [31]. For instance, an application that moni-
tors the environment in an urban area can rely solely on smart-
phones for data collection without the user’s involvement.
Figure 2 shows a comparison between the steps involved in
participatory and opportunistic sensing.
Jayaraman et al. [33] presented the Mobile Sensor Data

EngiNe (MOSDEN) as a collaborative mobile crowd-sensing
framework to develop and deploy opportunistic sensing appli-
cations. The framework was used for an environmental
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FIGURE 1. MCS application areas.

monitoring scenario (e.g. noise pollution) in smart cities.
The framework scenario has three steps. Initially the remote-
server registers for the required data to be collected from
the concerned users. Then, the smartphones collect the data
using their embedded sensors, preprocess the data and send it
to the remote-server. Finally, the crowd-sensing applications
gets the data from the remote-server for further processing
and visualization. The authors implemented and evaluated the
framework performance on an Android-based mobile to val-
idate the possibility and efficiency of running collaboratively
inmobile opportunistic sensing applications. Theymentioned
that MOSDEN performs well under load in collaborative
environment.

B. PARTICIPANT SELECTION
To perfectly select the participants in mobile crowd-sensing
paradigm, several points need to be covered such as par-
ticipant location, participant privacy, participant incentive,
and participant connectivity Nowadays, a huge amount of
research has been initiated to appropriately consider the
following concerns regarding participant location, privacy,
incentives and connectivity:
1- Participant location: The work-organizer selects some

participants whose locations are almost independent,

assuming that there is sufficiently number of participants
available [34]

2- Participant privacy: Several privacy techniques require
the locations of various participants to be uncorrelated to
protect the participant location [35]

3- Participant incentive: Mechanism in an MCS archi-
tecture framework needs incentives in order to increase
the human participant’s motivation to take part in the
MCS tasks and cover their mobile data cost. Without the
incentives mechanism, the participants will be reluctant to
collect and deliver the high-quality data [36].

4- Participant connectivity: Usually mobile devices are
equipped with numerous wireless communication inter-
faces such as Bluetooth, Cellular, ZigBee, WiFi, and
other interfaces maintained by several wireless technolo-
gies. Cellular data provides long-range communication
infrastructure, while WiFi is the mid-range of commu-
nication, and ZigBee and Bluetooth provide short-range
communication [31].
For example, to obtain information for participant selec-

tion, crowdsourcing application that uses CDR collected
from every user on the communication network can be used.
CDR includes a detailed record containing extensive spec-
trum of related information: the telephone numbers, tower
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FIGURE 2. MCS paradigm for participatory and opportunistic sensing [15].

TABLE 1. Sample of CDR data fields.

location, calling start time, calling duration, and calling and
receiving terminals as well as an international standard-
ized unique number to identify a mobile subscriber called
International Mobile Subscriber Identity (IMSI) [28], [37].
CDRs may contain a large amount of information on how,
when, and with whom one communicates, hence increase the
charges from the mobile phone operators. In addition, most
CDRs contain location, and customer’s external data such as
age or gender, and both information on voice calls and text
messages. However, to combine both portions of information
into one simple measure is not yet clear. Moreover, it seems
that there is a difference in the use of messages or priority
between texts and voice calls contained in measures, which
takes into account one type of communication [38], [39].
Such collection of personal data makes CDRs a very rich
source of data for researchers. Finally, the structure of a
social network from CDRs should be continuous, taking into
consideration that there is no one-size-fits-all technique avail-
able. CDRs are generated in real-time so it can exist almost
instantaneously for mining, whereas billing data is available
only monthly. Typical CDR data fields are shown in Table 1.

Ren et al. [27] propose a Social Aware Crowdsourcingwith
Reputation Management (SACRM) scheme for participant
location. To choose the perfect participant location for the
sensing task based on a fixed task budget, the authors pro-
pose a participant location selection scheme that is used to

evaluate the confidence and cost performance ratio of mobile
users for participant location selection. Social elements, task
delay, and reputation are all considered. The results show
that the proposed reputation management scheme reduces the
crowdsourcing cost using the cost performance ratio of the
participants for reputation evaluation.

MCS brings some concerns about participating users’ pri-
vacy. Thus, data privacy mechanisms should be enforced
on both the mobile devices and the monitoring center to
protect private data, such as the user location, the presence
of some people at a given place, and the driving patterns of
vehicle drivers. As demonstrated in Figure 2, data privacy
enforcement step is applied after data collection regardless of
whether participatory or opportunistic MCS. Wang et al. [40]
proposed a privacy-preserving reputation framework based
on blind signatures. While, Christin et al. [41] proposed
an IncogniSense anonymous reputation framework, which
generates a repeat alias by blind signature and then transfers
the reputation between these aliases.

For participant incentives, Yang et al. [42] described two
incentive mechanisms to stimulate mobile user participation
in platform-centric and user-centric mobile sensing, respec-
tively. To exploit the utility of the platform, the authors
presented a Stackelberg game in [43] based on an incen-
tive mechanism to represent the platform-centric model. For
the user-centric model, the authors design an auction-based
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FIGURE 3. An overview of the MCS framework.

incentive mechanism that is demonstrated to be computation-
ally efficient, individually balanced, profitable, and truthful.
Meanwhile, Wen et al. [44] proposed an incentive approach
based on a quality-driven auction with a Wi-Fi fingerprint-
based indoor localization system. This model incorporates
a theoretical framework into the practical MCS system.
Because MCS allows a broad range of mobile applications,
the authors introduce a probability model to evaluate the
reliability of the provided data. In the best approach of MCS,
the worker is paid off based on the quality of data sensed
instead of the working time. The authors presented extensive
experimental results and proved that the approach is true,
reasonable, and public. Moreover, Yang et al. [42] addressed
the problem of motivating people to participate in a crowd-
sensing experiment, with a game theoretic analysis of human
behavior and the suggestion of an auction-based approach for
incentives. This approach is extended by Koutsopoulos [45]
to provide the intention of an ideal compensation portion that
reduces the cost of the incentive provided to participants.
However, the incentives are not always possible, and a large
number of research applications of the crowdsourcing idea
rely on people voluntarily helping in the research project [46]
or being given non-financial incentives.

For participant connectivity, there exist several communi-
cation media that have different types of wireless protocols
such as ZigBee (IEEE 802.1.5.4), Bluetooth (IEEE 802.15.1),
and WiFi (IEEE 802.11b) as well as Cellular data. Details
of some of these protocols are presented later in the paper.

Some research have been done on optimizing these protocols,
for example Zhang et al. [47] propose TrMCD, which is
a robust route estimation strategy to extenuate the negative
impact of abnormal crowdsourced user routes and recognize
normal and abnormal users, as well as to attenuate the effect
of the location-unbalanced crowdsourced routes.

III. MOBILE CROWD-SENSING FRAMEWORKS
In a traditional sensing framework, the sensing level relies
on a network of dedicated and fixed sensing nodes. The
framework introduces many drawbacks such as higher
cost, inefficient sensing coverage, maintenance issues and
lack of scalability. The new paradigm shift towards MCS
addresses the aforementioned drawbacks by replacing the
dedicated sensing nodes with the MCS level. The remaining
MCS framework levels resemble the corresponding levels in a
typical wireless sensor network. Figure 3 shows an overview
of the MCS framework, which is divided into several levels:
crowd-sensing, data transmission, data collection, and appli-
cations on the server side.

1. The crowd-sensing level consists of the crowd-sensing
elements, which represent the devices that are selected
to be connected to large networks. These devices collect
two types of data, mobile sensing data and mobile social
network data. The raw data is transferred to the server for
information extraction, and the users can decide on which
category the data should be pooled. A quick discussion on
mobile sensing elements is provided in Table 3.
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TABLE 2. Comparisons between sensing groups.

TABLE 3. Impact of Zigbee, Bluetooth, Wi-Fi, and GSM/GPRS on MCS.

2. Data collection level is responsible for collecting the data
from the selected crowd-sensing elements and offers pri-
vacy mechanisms to the volunteers. Detailed discussion
on data collection is provided under the infrastructure
Subsection 3.1.1.

3. The data transmission level defines several mobile
networks and communication techniques such as ad
hoc or wireless networks [48] (e.g., Bluetooth, Wi-Fi) and
infrastructure-based networks (e.g., cellular) that can be
leveraged by MCS. The participant uploads the data to the
server, where all the applications and services are located.
This data transmission should be tolerant to network con-
nectivity outages. Data transmission is further discussed
under the communication part in Subsection 3.1.2.

4. The application level consists of a variety of potential
applications and services enabled by MCS, such as data
visualization. A comprehensive discussion on different
MCS applications is provided in Section 4.
In a sensor network, each node has three branches; first,

the sensor will sense the environment; second, it performs
some local computation on sensed data; and third, it is respon-
sible for message exchange, which is communication [49].
Several classes of sensor groups are used in the MCS appli-
cations. Table 2 shows a comparison between these sensor

groups, their types, communication environments, and appli-
cations used [32], [50].

In the following, we discuss some of the existing MCS
enabling platforms that can be deployed on the MCS frame-
work. Medusa is one of the most popular MCS applications,
which is a mobile sensing framework that has been classified
in [51] as a multi-purpose mobile sensing system that intro-
duces a significant performance improvement compared to
a standalone system. It allows the use of the opportunistic
approach within the crowd-sensing paradigm and enables
data collection on the cloud component of theMedusa frame-
work. As soon as the data collected is transferred to the
server side, there is no room for monitoring or even amending
the timeframe of the data collection process. However, syn-
chronization between multiple sensors is not necessary and
not recommended due to data privacy and communication
security on smartphones.

Another popular MCS application is Hive, which is a
general software application framework that enables third-
party developers to integrate their products in one applica-
tion. These products include several operations such as data
handling, user interactions, mobile or server analytics, and
managing user participation [52]. Hive specifies new MCS
tasks with minimized development effort that can simply
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FIGURE 4. Infrastructure required to support the MCS framework.

spread its functionality. Thus, it allows developers to focus
only on the novel characteristics of the mobile crowdsourcing
application. A practical yet a challenging feature of Hive is to
recognize the framework’s future generality and extensibility.
However, Hive framework is a little less flexible thanMedusa
in terms of the type of tasks that can be identified and this is
due to the consecutive workflow that is only supported by this
framework.

A research group from IBM [53], University of Illinois,
and University of Minnesota has developed a middleware
MCS platform that is called Citizen Sense. This platform
allows individuals to propose, design, and manage dis-
tributed crowd-sensing campaigns. Another MCS applica-
tion was developed by Google, which is called Science
Journal (SJ) [54]. The Science Journal application acquires
data from natural sources and apply real-time analytics by
utilizing different built-in sensors in smartphones to pro-
duce useful information about natural phenomena of interest
to the user. SJ allows users to investigate and participate
with the world through several onboard sensors in Android
phone and Chromebook along with well-matched peripheral
sensors.

Restuccia et al. [55] developed a new framework to define,
survey and analyze the current state-of-the-art of the quality
of information (QoI) in mobile crowd-sensing. Information
quality is the amount of information received in a period
of time and it is specified in reports received during one
hour.

The collected data from mobile devices suffer from
inaccuracies, noise, and errors. Hence, data aggregation and

filtering is needed to improve the accuracy. Indeed, one of
the main challenges of dealing with MCS data is related
to the problem of separating the characteristic signal from
the background noise contaminating the data sets generated
by spatially separated sensors. The solution to this problem
is to apply the essential redundancy of such simultaneous
parallel MCS data sources, which is suitable for the cross-
correlation analysis expected to reduce the local background
noise, while revealing the true signal simultaneously present
in all parallel data sets. However, even if such data pre-
processing approaches successfully filter out all unwanted
interfering signals, to perform an accurate modal analysis of
the frequency response of the system, one still has to address
the essential statistical fluctuations affecting the power spec-
tral density (PSD) estimates obtained by Fast Fourier trans-
form (FFT) analytically.

A. INFRASTRUCTURE REQUIRED FOR THE PROPOSED
MCS FRAMEWORK
The proposed mobile crowd-sensing framework mandates
an infrastructure composed of four main components [7],
[8], [56], which are data collection, communication media,
data source aggregation/fusion, and data storage and clas-
sification. Figure 4 shows the MCS infrastructure and its
main components. The explanation of each component can
be introduced as the following:
1- Data collection, with the help of an expert group to

maintain larger participant base and deliver the required
verification of the usability of the collected sensing
data.
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2- Communication medium, which could be 3G/4G/GSM,
WiFi or Bluetooth depending on the required range of
transmission.

3- Data aggregation/fusion, which is the process that collects
the data from different sensor nodes, and based on a
decision criterion pre-processes the data and transfers it
to another node/base station

4- Data storage and classification, which is mandated by
combination of human and machine intelligence resulting
from the participation of human in sensing data. Based on
the wealth of data, both human and machine intelligence
can be used for data processing.

B. MCS DATA COLLECTION
In MCS, there are two different data source types: mobile
sensing and user-generated data in mobile social network
services. Mobile sensing is a method of data collection using
participatory sensing, while mobile social networks rapidly
bridge the gap between online interactions and physical ele-
ments [47]. Maji and Sen [37] developed a mechanism to
store CDR data in appropriate data warehouse schematic
and analytically process the data using On-Line Analytical
Processing (OLAP) server tools to understand the prepaid
customer’s usage and spending and provide appropriate mar-
keting offers. The system also analyzes the telecom data,
such as CDR billing, and proposes customer reporting cri-
teria based on ON net and OFF net call frequency to clas-
sify appropriate cutomers for different promotional action
types. Authors mentioned that the result shows a percentage
of retention and attracts other customers from competitors.
Wang and Zhang [57] used approach of agglomerative hier-
archical clustering to distinguish the abnormal users from
normal ones. Authors studied the proposed scheme based
on the data of CDR for 10,000 subscribers provided by
Chinese telecom operator, which are sampled randomly for
one month. The result shows that the abnormal users are
distributed in an urban area and normal centralized area.
Silva et al. [58] proposed a visualization technique called
City Image that captures typical transition between Points of
Interest (PoI) in a city using publicly available data. Based on
the people mobility, the technique provides a visual summary
of the city dynamics. Moreover, it explores urban transition
graphs to user’s movements between city locations. Even-
tually, City Image is a promising technique that allows for
a better understanding of the city dynamics, and helps to
visualize the common routine of its citizens.

Social networks have become extremely popular in infor-
mation technology in recent years because of the proliferation
of online social networks sources such as Facebook, LinkedIn
and MySpace. These sources can provide information about
human mobility, air quality, traffic patterns, and geograph-
ical data. The data are gathered by smartphones, vehicles,
machinery, medical equipment, and other machines and then
sent to the remote server. In this regard, the large-scale
user-contributed data opens a new window to understand
the dynamics of the city and society, which constitutes the

other data source for mobile crowd-sensing There exist sev-
eral approaches that attempt to use crowdsourcing utilizing
diverse data collection techniques. Some of these approaches
focus on actions of the services and actions of the citizens in
very critical or different time situations. CrisisTracker (CT) is
an online system that captures the distribution state of aware-
ness reports based on social media activities throughout large-
scale events such as natural disasters. It tracks a huge pool of
keywords on Twitter social media and builds stories by gath-
ering tweets that contain these keywords. CT system is used
for exploring Twitter with pre-filters based on tweets related
to specific disaster and location to provide social awareness
from public tweets. It is an open-source web platform and
does not use any other social media sources or civil reactions
for its sensing [59]. Another open-source crisis-mapping plat-
form called Ushahidi was used on January 12, 2010, when a
7.0-degree magnitude earthquake struck Haiti. Ushahidi pro-
vides a way to capture, organize, and share information about
dangers coming immediately from Haitians. Ushahidi col-
lects information from two sources, text messages received
via mobiles phones, and social media (e.g., Twitter, Face-
book, blogs). Eventually, it tries to serve expert organizations
with possibilities for demanding citizens or digital support-
ers to collect important data or to share information [60].
Wu et al. [61] present an innovative framework for collecting
critical information in a particular disaster area from end-
users and mobile devices in order to support timely suit-
able contextual reconstruction and rescue operations. Both
crowdsourcing and crowd-sensing pose the challenge of han-
dling excessive amount of data which requires leveraging
big data processing techniques [62]–[64]. Ludwig et al. [65]
prototyped a crowd monitoring system based on the concept
of mobile phone crowd-sensing approach. The design and
implementation of the concept of crowd monitoring com-
bine monitoring of physical activities of local citizens with
digital social media activities. In addition, it assigns tasks
to citizens for emergency services. The tasks can vary from
filling sandbags for example to collecting crisis-related infor-
mation. The authors explored the impact of citizen-generated
content on social media during a specific emergency event.
They also explored on-site and off-site citizen involvement.
Eventually, it led to the implementation of a web-based
application called ‘‘CrowdMonitor’’ to use the observed find-
ings to support assessment and collaboration between citi-
zens and emergency services. Finally, with the help of this
approach, emergency services can collect information from
social media or from local citizens and could obtain a better
overview of the event.

C. MCS COMMUNICATION MEDIA
MCS have grown from small-scale with specific applica-
tions to large-scale ubiquitous data collection for a wide
range of applications. However, a large-scale network is
sometimes not achievable due to many factors including
economical factors due to high cost associated with large
number of sensors, and difficulty of full coverage due to

VOLUME 7, 2019 3863



K. Abualsaud et al.: Survey on MCS and Its Applications in the IoT Era

large area. It will need many relay nodes to maintain a com-
plete field coverage and communication connectivity. This
will be hard to implement due to both the expensive sensor
cost and the distribution, as well as the maintenance cost [66].
Most of the communication technologies in wireless sen-
sor nodes (WSNs) are radio-frequency wireless network-
ing technology-based. WSNs have some limitations such as
low processing power, low processing speed (approximately
8 MHz clock speed) [67] very limited storage (few hundred
kilobytes), a short communication range and high power
consumption. The sensor has a small form factor (mm3).Min-
imal energy sources such as batteries have a finite lifetime,
and passive devices provide limited energy due to protocol
constraints.

Recently, researchers are considering the benefits of
mobile sensor networks as an operational and reasonable
solution to large scale sensing networks. However, there are
several differences between the two sensing techniques [32].
First, MCS relies on mobile devices and smartphones, while
WSNs use tiny sensor nodes. This difference allows MCS
to perform local processing, as mobile devices and smart-
phones have more processing power, memory, and energy.
Additionally, mobile devices and smartphones use charge-
able batteries, which makes local processing for MCS less
power-limited (compared with local processing in WSNs).
The second difference is the larger scale of MCS (hundreds
of thousands or millions of devices and phones across a city
or a country) compared with WSNs, which typically have
hundreds, or at most thousands, of sensor nodes. Deploying
sensors for traditional WSNs at the city-wide level requires
at least tens of thousands of sensors. In [3], it was shown
that 90,000 sensors and 1,000,000 relays are required to
perform citywide (about 900 km2) environmental monitor-
ing to maintain full area coverage and communication con-
nectivity. The third difference is the human involvement
in MCS, which brings some issues such as concerns about
user privacy but also brings some opportunities such as the
ones emerging from using human involvement in a way
that makes the system smarter. Human involvement also
brings the issue of incentive policies to ensure user partic-
ipation in the MCS operation. The fourth difference is the
dynamic nature of MCS due to the user mobility, variation
of power levels, and changes in user behavior and participa-
tion. Finally, the fifth difference is that in traditional WSNs,
the sensors are usually stationary whether deployed in deter-
ministic or random locations, while in MCS, the sensors
(embedded in mobile devices and smartphones) are mobile
and move randomly and independently. This paper presents
two of the widely used MCS communication media: wireless
access communications network and IP-based core network

For the communication used in the MCS framework, there
are two levels of communications: 1) Access communications
network 2) IP-Based Core network. The access communi-
cations network is part of a telecommunications network
that connects customers to their service provider directly.
It ranges in diameter from a few hundred meters to several

miles and includes all devices between the core network
and the user terminal. The core network uses a fiber-optical
structure due to its high transmission rate. A core network is
the essential component of the telecommunications network
that provides several services to customers who are connected
by the access communications network. Servers, computer
accessories, and applications represent the core network in
this study. The following points will present a brief descrip-
tion of the two media and will show in detail the inside
and outside communication media that are used in the above
framework [66].

1) ACCESS COMMUNICATION NETWORK
In access communication networks, the communication
media have different types of wireless protocols such as
ZigBee (IEEE 802.1.5.4), Bluetooth (IEEE 802.15.1), and
Wi-Fi (IEEE 802.11b) as well as Global system for
mobile communications (GSM)/general packet radio service
(GPRS). In the following, we will present a brief description
of ZigBee, Bluetooth, and Wi-Fi, as well as 3G/4G/5G as
sensor communications media

Zigbee is one option enabling the crowd-sensing connec-
tivity through technology based on IEEE 802.15.4 and oper-
ates on 2.4 GHz [67]. ZigBee is typically used for low data
transfer rate, low power consumption due to low physical data
rate, and low-cost wireless applications. It can accommodate
up to 264 nodes in the network [68]. Cai and Liang [69]
used ZigBee to design and implement an intelligent sys-
tem for remote health monitoring electroencephalograph
(ECG) analysis and diagnosis. ZigBee is designed for self-
recovery network acknowledgements, and it can automat-
ically interpret data messages routed in different areas of
a network with different radios without user intervention.
Gad-ElRab et al. [70] propose a flow coverage scheme
based on using a modified localization method that relies on
less GPS usage and employs ZigBee technology to cover a
specific street and complete the coverage requirements. The
scheme uses ZigBee technology in order to communicate
with the neighbor nodes and estimate the distance between
these nodes using Time of Arrival method. The experimental
result shows that the flow coverage scheme and localiza-
tion reduce the usage of location sensors and demonstrates
that the proposed coverage scheme reaches the coverage
requirements, and finally achieve high localization accuracy.
The ZigBee technology is simpler and less expensive than
Bluetooth technology. Arai et al. [71] defined and measured
ZigBee’s Received Signal Strength Indicator (RSSI). They
analyzed a time-series of RSSI in indoor space to acquire
information about crowd behavior (CB). They showed three
CB features, which are: density, velocity, and specific pat-
terns. Despite the extended area covered when using the
ZigBee technology, it is not supported by modern
smartphones [72].

Bluetooth is a wireless technology designed to connect
different wireless devices such as telephones, notebooks,
PDAs, printers, and computers. Bluetooth provides a short
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range of 10, which can be increased up to 100 meters, and
operates in the 2.4 GHz band with a transmission speed
(data rate) of 800 kb/s [73]. Stopczynski et al. [74] express
the structural design of the Android mobile operating system
that allows the Bluetooth sensor approach to obtain partic-
ipatory data. The approach is used to map the mobility of
crowds in large-scale events. The approach is deployed in a
large music festival with 130,000 attendees, where a small
subset of participants installed Bluetooth sensing apps on
their own smartphones. However, this approach has limited
scalability and limited spatial coverage. More recent utiliza-
tion of the Bluetooth technology in crowd-sensing can be
found in [75] where the authors have proposed a new context-
aware approximation algorithm to find vertex cover that is
tailored for crowd-sensing tasks. Authors design human-
centric preface strategies to collect information about the
participants using sensors. The sensing task refers to the task
of collecting opportunistic Bluetooth contacts, or wireless
contacts, in mobile ad hoc networks. You et al. [76] pro-
posed an MCS application to collect opportunistic sensing
data in a limited area using Bluetooth based on Community
Information-Centric Networking technology. The application
feature supports data integrity and uses IP-less communica-
tion as a simple communication model. Several sensors have
been deployed with Raspberry Pis and Bluetooth across a
building to collect data when a participant walks and draws
a map for sensors‘ location in the building. The application
fundamentally supports privacy and data integrity of partic-
ipants. The work in [77] proposed an opportunistic location
discovery method that fills the gaps in a user’s location trace
by deriving location data from other users employing the
power of mobile crowd-sensing. Authors used a hierarchical
cluster merging approach, which looks for other users using
Bluetooth and Wi-Fi scans to detect closeness of users. How-
ever, Bluetooth has a very short range that requires higher
participants’ density for same sensing accuracy requirements.

Wireless Fidelity (Wi-Fi) refers to certain types of wire-
less network protocol 802.11b standards that enable devices
to communicate with each other without cords or cables.
Wi-Fi enables a better range from the base station, a faster
connection, and better security than Bluetooth. Wi-Fi uses
the super ultra-low noise S-band (2.4 GHz) to extend the
range [78], uses frequency-hopping techniques to connect
multiple devices together, and has a range of approxi-
mately 1000 feet outdoors [79] Average data transmission
rates is 54 Mb/s. Wi-Fi differs from Bluetooth in that it
covers greater distances and provides higher throughput, but
it requires more expensive hardware and may present higher
power consumption [22], [50]. Wu and Luo [78] present a
WiFiScout advisory system that integrates a gamification-
based incentive system to compensate users who give the
most important data based on variety and amount of the
contributed data. The proposed system supports three ways:
1) offline search, which allows a user to search around
for WiFi, 2) online review, user can use his smartphone
to submit a review about his experience on that WiFi, and

3) gamification-based WiFi map, which shows all WiFi
access points on a city map. Using Wi-Fi in the MCS is very
important, an iSense novel framework has been proposed
in [80] for decreasing the unnecessary energy overhead on
participatory devices. iSense entirely offloads the localization
burden to the crowd-sensing servers. Thus, it reduces the con-
sumed energy at themobile devices. iSense employs the exist-
ing network signaling. Wi-Fi is the most common technology
available onmobile devices; however, the infrastructuremode
is more technologically developed compared to the Ad Hoc
mode. Whereas Ad Hoc mode is typically more suitable for
MCS especially in areas not covered by Wi-Fi access points.

Cellular communication technology, GPRS supports
mobile data service on the 2G (GSM) and 3G cellular com-
munication systems [50], [79] Moreover, 4G offers joint
services such as voice, data, and multimedia at data rates
of up to 100 Mbps as well as pervasive mobile access to
a wide variety of user devices and independent networks.
Foremski et al. [81] propose a location-tracking algorithm
that improve crowd-sensing data for modeling cellular net-
works. To measure human location and signal strength in
cellular networks, a practical application has been developed
to perform the measurements of human mobility and signal
levels without user interference and with minimum power
utilization. However, authors mention that many users are
not willing to participate in crowd-sensing experiments. They
also mentioned that their system decreased the battery life-
time by around 20%. Another research in [82] discusses the
challenges that face cellular providers as the number of cyber-
physical system (CPS) devices trying to access the cellular
spectrum increases dramatically. This work presents a device-
to-device (D2D) communication technology for CPS com-
munication over current network infrastructure through the
use of fifth generation cellular networks. Masek et al. [83]
develop a next-generation traffic management system in
a smart city environment that incorporates the Internet of
Things (IoT) technologies with low-power and long-range
5G embedded devices. They started by data sensing that
utilizes heterogeneous road monitoring tools that measure,
and send the traffic information, vehicle speed, etc. to the
traffic management entity. The results show that the use of
modern devices, such as Raspberry Pi2, satisfies the require-
ments for future traffic management systems in smart cities.
Sun et al. [84] present a secure and privacy protective object
finding application via mobile crowdsourcing using 4G/5G.
They proposed an approach called SecureFind that obtains
the finding request from the service provider. Hence, 4G and
5G cellular networks authentication and privacy schemes are
required to protect user identity, and location privacy among
others. Another interesting system utilizes location-based
social network (LBSN) on Cellular systems is called Check-
Inside [85]. This system provides a fine grained indoor local-
ization. It leverages the crowd-sensing data collected from
mobile devices during the check-in operation. In addition,
it extracts knowledge from the LBSN to connect a location
with a logical name and a footprint. The system uses Wi-Fi in
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TABLE 4. Technology characteristics for Zigbee, Bluetooth, Wi-Fi, and cellular.

two modes: ON and OFF.When theWi-Fi is ON, this leads to
a higher accuracy compared to the use of cellular localization.
Experimental results show that the CheckInside system can
achieve the actual participant’s location. Even though cellular
is costly, it is the most widely used technology. Costs are
expected to drop with the advent of 5G and its support for IoT
through the massive machine type communications (mMTC)
paradigm. Table 3 and Table 4 show the comparison between
ZigBee, Bluetooth, Wi-Fi, and Cellular in terms of impact on
MCS and technology characteristics [22], [82], [86]–[88].

2) IP-BASED CORE-NETWORK
The core network is the vital component of a telecommu-
nications network that offers several services to customers
who are connected to the access network. Usually, the term
core network is used for service providers. It offers routes to
exchange information between different sub-networks. Gen-
erally, it denotes the high-capacity communication facilities
that interconnect fundamental nodes [68].

The core network offers several features like aggrega-
tion, authentication, switching, charging, service invoca-
tion, and gateways. The core network consists of IP-based,
cloud, or long-haul networks based on microwave, opti-
cal, or satellite technologies. IP is the internet protocol (IP)
that refers to part of the TCP/IP protocol. Cloud is a type
of computing that depends on sharing resources rather than
having dedicated local devices to manage applications [89].
In other words, it describes services delivered over a network
by a group of remote servers. There are three benefits for
cloud computing: 1) Self-service Supplying: for any type of
workload, particularly on-demand, the end user could turn
up the computing resources; 2) Flexibility: depending on
computing needs, companies can increase or decrease their
available infrastructure as needed; 3) Pay per use: allowing
users to pay only for resources needed for their current work-
load. Finally, long-haul networks are groups of commonly
distributed computers that are connected through a collective
communication network. Communication in such systems is
moderately slow and changeable, normally through telephone
lines, microwave links, and satellite channels [90]. However,
several services are provided through long-haul networks for
users. These services include the capability to send or mail
information from one site to another and post news on bulletin
boards so that any user can read them

D. MCS DATA SOURCE AGGREGATION/FUSION
MCS also explores the data fusion from different sen-
sor nodes acting as spatially distributed data sources [91].
Therefore, using MCS, both online and offline-denoted data

can be leveraged by participants exploring through-space data
fusion to develop modern applications. Several distinctive
research challenges grow from the mobile crowd-sensing
paradigm such as proper incentive mechanisms, data collec-
tion, and through-space data fusion. Moreover, MCS rep-
resents a mixture of human and machine intelligence that
is not explored so far. A data fusion node collects the data
from numerous nodes, and based on a decision criterion,
it fuses the data with its own and transfers it to another
node. The advantages are that it reduces the traffic load and
conserves the battery of the smartphone. The data comes
from different sensors, databases, or more accurate data sets.
The data fusion algorithm is very important for any mobile
monitoring system [92], [93]. Finally, data fusion takes place
closer to the sensors, especially for raw sensor data, to reduce
the network load resulting from many sensors collecting data
from different locations.

Data fusion significantly improves accuracy of the sta-
tistical model by combining specific information of sev-
eral heterogeneous sensing systems, where the datasets are
represented in different feature spaces. This makes it hard
to investigate relationships between the heterogeneous data,
even in case the datasets are related to each other. A statistical
approach to data fusion combines sensor datasets in a robust
way as they benefit from variances between devices and their
complementary features [94]. Castrignanò et al. [95] com-
bined multiple sources of information in a statistical frame-
work. The main advantage of the statistical framework is that
straightforward probability models are used to describe the
different relationships between sensors, taking into account
the uncertainty behind it and the change of support. However,
there are several statistical methods that analyze heteroge-
neous data based on Bayesian and machine-learning meth-
ods. Other research work in [96] introduces a novel model
using heterogeneous data fusion through a fully convolutional
neural networks to acheive semantic labeling. The authors
presented the residual correction as a way of learning how
to fuse predictions from a dual stream structure. The result
shows that the residual correction is capable to recognize
accurately, which stream is trusted for different classes.

E. MCS DATA STORAGE AND CLASSIFICATION
APPLICATIONS
This section discusses data storage, preprocessing, feature
extraction, detection, and classification to measure the data
accuracy.

The data storage and classification application on the
server side is a very important element of MCS, to detect
and classify the collected data accuracy. The architecture
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framework has two parts, the client or mobile sensing node,
where the acquiring client application runs, and the server,
where the collected raw data are stored and kept for future
use. The client application regularly acquires the data, applies
simple preprocessing, and transfers it to the server over a
secure Internet connection. On the other side, the server
immediately places the received data into a queue that is later
processed in a separate thread. Local storage and processing
modules manage the acquired raw data from the sensor. This
allows nodes to support an off-line mode for temporary local
storage. When network connectivity is accessible, the locally
stored data is transferred to an external server for further
processing [88].

Processing of raw collected data is very important to
reduce the transferred data size, which ultimately increases
the sensor battery lifetime. However, the normal readings
from sensors may not be proper for direct use by applications,
depending on the quality of the raw data and the needs of
the application. There is a need for local analysis of data to
perform specific processing of raw data on the mobile sensor
node. This analysis produces intermediate results, which are
transferred over the core network to the storage. There are
two motivations for such local sensor analysis. First, this
processing eventually will reduce the transmitted data there-
fore less energy consumption and less bandwidth during the
transmission. Second, it decreases the amount of processing
that is performed at the server side [91]. Data processing has
been simplified and reorganized in recent years using data
centers and high-speed cloud computing capabilities. Data
processing is automated to the extent that heavy processing
applications such as pattern recognition and image process-
ing are executed in near real-time [92]. Before saving data
to databases, stream computing technology has evolved to
provide real-time analysis of huge size of data to help with
timely decision-making. Some continuous streams of data
may originate from sensors, cameras, news feeds and a vari-
ety of other sources to be classified, filtered, interconnected,
and transformed into informed decisions.

Feature extraction is a process that produces a set of
the most relevant features that represents the information
for analysis and classification in an efficient way. Feature
extraction plays a significant role in identifying most data.
Obtaining useful and discriminant features depends largely
on the feature extraction method used [92]. The objective
of feature extraction is to increase the performance and effi-
ciency of the analysis and classification. This can be achieved
through removing redundancy and variability in the data that
is of little or no value in the classification or discarding
entire data sets if applicable. Another option is restructuring
the data in the feature space to optimize the performance
of the classifier [92]. Finally, it is possible to extract spatial
information, which is critical to target similarity or identi-
fication. The main advantage of these features is the reduc-
tion of the dimensions of the cross-correlation sequences for
use as inputs into individual classifiers. The motivations of
these processes are to minimize the number of features and

maximize pattern discrimination. As the increased number of
features is not necessarily good; because they increase the
redundancy in the features which might confuse the classi-
fier, so the ideal case is to generate a minimum number of
discriminant features. Feature extraction techniques can gen-
erally be categorized into time-domain or frequency-domain-
based according to the features used. These techniques were
used in several research work [50], [97], [98]. Time-domain
features are easily computed, and their time complexity is
usually manageable [98]. While, Frequency-domain features
are obtained by transforming data from time into their basic
frequency components using FFT [99].

Detection and Classification play an essential role in
timely analyses. There are two types of detection such as
event detection and object detection. The event detection is
used to detect the occurrence of a certain event and the sig-
nificance of the occurrence, while an object detection, detects
the existence of an object and possibly some of its properties
such as size, color... etc. A classification is an ordered group
of correlated categories used to organize data according to
its similarities. Each class must have easily recognizable
features that should be few and not overlapping with those of
other classes. The overall accuracy of the classifier represents
the degree of closeness of the measured results to the true
values [100]. Specificity and sensitivity are two factors that
affect the classification accuracy, defined as functions of the
true and false positives and negatives. A false positive (FP)
refers to the condition in which the results are incorrectly
perceived as positive, while true positives (TP) are test results
that show correctly perceived results [50]–[98].

Similarly, a true negative (TN) is defined as the correct
behavior to detect the normal condition; while a false negative
(FN) is the incorrect detection of the normal condition [50].
Specificity in classification refers to the ability of an asses-
sor to measure a particular substance [98]. Specificity, also
known as a class precision, is defined as the percentage of
true negative tests within the total number of negative tests.
The sensitivity, also known as a class recall, in classification
testing represents the smallest amount of a substance in a
sample that can be accurately measured by an assessor. Sensi-
tivity is defined as the percentage of true positive tests within
the total number of affected (positive) testes. Therefore, the
specificity, sensitivity, and overall accuracy of the classifier
can be defined as [50], [98], [100]

Specificity =
TN

TN + FP
, (1)

Sensitivity =
TP

TP+ FN
(2)

and

Accuracy =
TP+ TN

TN + FP+ TP+ FN
× 100, (3)

where TP, FP, TN, FN are the true positives, false positives,
true negatives, and false negatives, respectively. Both positive
and negative terms are denoted as the classifier’s predic-
tion or expectation and true and false refer to whether that
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FIGURE 5. Feature extraction and classification.

TABLE 5. Crowd-sensing types of measured phenomena [32], [66], [69].

prediction corresponds to an external judgment/observation.
Consequently, these terms compare the results under the
test of the classifier with trusted external judgments. The
procedure of feature, detection and classification is shown
in Figure 5

IV. MOBILE CROWD-SENSING APPLICATIONS
In this section, we will introduce a brief summary of available
mobile crowd-sensing applications, describe their character-
istics, demonstrate several research challenges, and finally
discuss possible solutions. Generally, MCS applications can
be classified into two groups based on the type of phe-
nomenon being monitored: personal and community sensing
applications. In personal sensing applications, the phenom-
ena pertain to an individual, while community-sensing appli-
cations apply to monitoring large-scale phenomena that are
not easily measured using an individual application. These
applications link computing devices together, share data,
and then extract information to map phenomena of common
nature, which generally belongs to one of the following four
types: healthcare, environmental, infrastructure, and social
life [66].

In healthcare monitoring, smartphones are capable of
connecting patients with medical services through mobile

communications networks for sensing and diagnostic capa-
bilities. In environmental applications, some of the main
phenomena to be sensed are water levels in creeks, air pol-
lution in a city, and wildlife habitats in order to monitor
their behavior for further study. In infrastructure applications,
the main phenomena to be sensed are traffic congestion,
road conditions, parking availability, and outages of public
works Finally, social life, where individuals share sensed
information between themselves. For instance, individuals
can share their exercise time in a day and compare their
daily exercise routines. Another example is that individuals
can share their exercise data and then compare their exercise
levels with those of the rest of the community [32]. Moreover,
the individuals can use this comparison to help enhance their
daily exercise routines. Table 5 shows the summary for the
four different crowd-sensing types of measured phenomena.

Mobile sensing and smartphone devices deliver an appro-
priate platform for the four categories of MCS monitoring
applications listed in the Table 5.

A. HEALTHCARE
Healthcare monitoring uses sensors to monitor patient
vital signs both locally and remotely. It offers enhanced
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patient care through early detection of adverse health con-
ditions. It can influence patients’ behavior to improve their
health [101]. For a wide range of patient conditions, biosen-
sors offer point-of-care monitoring. These sensors read some
specific measurements such as heart rate, blood pressure and
body temperature; and monitor certain medical conditions
such as diabetes or seizures. The medical data collected
from biosensors of the patient is forwarded to medical facil-
ities or specialists for analysis and diagnosis Smartphone
manufacturers are increasingly interested in healthcare appli-
cations, which led to the integration of more sensors in
mobile phones. These devices are widely accessible and
continuously connected to the network. They also have pro-
cessing capabilities that exceed all of the traditional sensors
used in WSNs. The combination of the powerful process-
ing and connectivity of smartphones offers low-cost access
to health services from an increasing range of healthcare
applications [21], [48], [50], [98].

According to mobile research specialists (research2
guidance), smartphone applications for the mobile health
industry are successfully installed and have reached 500 mil-
lion of the total 1.4 billion smartphone users in 2015.
Presently, there are more than 17,000 mHealth applications
in major app stores [102]. Research in the domain of remote
health monitoring over the past few years can be categorized
into three main streams: how data is collected, how data is
communicated, and where is the data processing performed.
Foremski et al. [81] the research focuses on the role of mobile
phone devices and their related technologies to monitor the
patients. This role was limited to amobile client terminal used
to browse healthcare records. However, with the extensive
availability of smartphones a range of new smartphone-based
medical applications became available. These tools provide
the user as well as the care provider with essential tools that
help monitoring and diagnosing certain health situations that
requires continuous care.

In the aforementioned scenarios all the discussed health-
care applications are personalized rather than belonging
to MCS. However, we envision that MCS can serve the
healthcare sector from the point of view of medical practi-
tioners’ clinical research and treatment assessment statistics,
which is a major pillar of medical advancement. An example
of using MCS in medical clinical research is the TrackY-
ourTinnitus project [103], where MCS has been used with
data anonymization to provide datasets on large numbers of
patients on daily basis with low cost enabling ubiquitous
clinical trials research. The same model can be applied to
clinical trials related to any of the various smartphone-based
sensing applications discussed earlier in this Subsection.
Thus, MCS would allow the transfer of the collected personal
mHealth information to a centralized cloud, after appropriate
anonymization (as discussed in Section V.B). Then, big data,
cloud computing, and data analytics could be used on a
collective level to study the population’s health status, gather
information about disease proliferation, and take appropriate
measures.

B. ENVIRONMENTAL
A few years ago, the trend towards clean world technolo-
gies led to a large flood of environmental senor technolo-
gies. The environment needs to be sensed and monitored to
deliver information about the variation of environmental con-
ditions such as temperature, humidity, carbon-dioxide levels
as well as all pollution sources. Increased industrialization
and extensive agricultural activities due to the growth of
population, have led to deterioration in the air quality due
to emission of undesired materials into the atmosphere. The
effect was not limited to air but it also affected the water
quality which reached unprecedented levels of pollution in
decades. Hence, natural life and environment is negatively
affected. A mixture of fixed localized sensors and mobile
smartphone sensors can provide a monitoring context from
both personal and local perspectives. This includes many
motivating technologies that have become more and more
important [6]. The demand on wide range of applications
in environmental sensors has increased in recent years. The
environmental sensing category could be divided into three
different groups: physical sensors, chemical sensors, and bio-
logical sensors. Physical sensors measure physical quantities
such as dynamic forces, light, temperature, sound, mag-
netism, and electromagnetism. Chemical sensors measure
humidity, gas, ions, CO, as well as chemical process and oil
refining products. Finally,Biological sensors measure immu-
nities, microorganism, tissues, bacteria, viruses, proteins, and
enzymes [33].

Motion sensors and air pollution sensors are integrated
into the air quality monitoring for both indoor and outdoor
environments. The exposure to air pollution while being on
the move in cities relies heavily on the choice of the means
of transportation as well as the route chosen. High levels
of air pollution are easily identifiable by the human sensory
system (e.g. eye, nose). Similarly, human ears can sense high
noise pollution levels [104]. Because people are able to easily
sense the air pollution with smartphone devices while being
on the move within the city, this may have an impact on
mobility behavior as well as their awareness of air pollution.
An increased awareness of air pollution will lead to people
examining their own mobility behavior with the resulting
impact on air quality [105]. Sensing air quality in real-time
and providing it as an online service will lead to a crowd-
sensing city-wide air pollution map. However, to obtain a
robust and extensive database of the air-quality in the city,
the crowd-sensed data stream must be accompanied with
measurements from official air quality monitoring devices
as well as measurements from small sensing devices fixed
on public transportation vehicles that move across a city
regularly [106]. The research team in [107] developed an
iPhone application called CreekWatch in order to monitor the
local crisis with the support of crowdsourced data about the
quantity of water, rate flow, amount of trash, and depiction of
the channel. Each single user plays a key role in enhancing
the quality of water resources by sharing captured data with
water control panels.

VOLUME 7, 2019 3869



K. Abualsaud et al.: Survey on MCS and Its Applications in the IoT Era

FIGURE 6. Schematic of an integrated air quality monitoring network, with a single platform receiving data from multiple sources
of different types. Bottom Layer: MCS / Participatory sensing; Middle Layer: medium-sized sensor nodes ; Upper Layer: Large
standardized analyzer stations.

Consequently, to reach an integrated air quality monitoring
network targeting improved urban life quality, data needs to
be gathered from multiple sources of different types:
a. Reference analyzer based, standard compliant, large mon-

itoring stations, that can be deployed in limited numbers
due to cost and size constraints;

b. Medium-sized sensor nodes with acceptable accuracy and
reasonable cost, that can provide street level pollution
information in densely populated areas or localized details
at certain road intersections for example;

c. MCS/participatory sensing through the involvement of
people sending ‘‘personalized’’ pollution information.
This can be achieved through smartphone sensors or small
portable sensors that can be as small as the size of a wrist
watch. Although currently most of these sensors lack the
accuracy level of reference analyzers or medium sized
nodes, their performance is rapidly improving. They can
be used to monitor personalized pollution exposure and
track the impact of air quality on specific individuals.
The third category of sensors can be used in order

to give to the individual the possibility of becoming an
air quality observation platform, thus building a citizen
observatory through MCS. Collecting the data from the var-
ious sources (analyzers, WSNs, and MCS/participatory net-
work) under a single platform allows the implementation of
advanced quality assurance (QA) and quality control (QC)
methods: data from standardized analyzer stations can be
used to validate themeasurements of themedium scale sensor

nodes, and the measurements of these latter nodes can be
used to check/correct/validate the measurements from the
small portable sensors, which are the least accurate. Hence,
data validation techniques can be automated, with the sys-
tem receiving and integrating information from three layers,
as shown in Figure 6 (the layers correspond to the same
geographical area and overlap in reality. They are separated
in the Figure for clarity).

Consequently, MCS can pave the way towards more spa-
tially and temporally accurate environmental information that
will enhance the ability to prevent and mitigate air pollution
in urban areas. It will allow reaching very local environmental
scales based on small sensors, wireless networks and phone
applications. Furthermore, new information about temporal
and spatial variability of pollution may allow to more accu-
rately estimate both contribution of individual sources and the
effects on human exposure: this knowledge can then be used
to prevent pollution or mitigate the effects.

C. SMART CITY
A smart city aims to increase the quality of life in the
city by making it more convenient for the residents to
find information of interest and providing such informa-
tion in a way that is easily understood [108]. To form a
smart city, several interconnected systems are necessary to
provide the required services (healthcare, infrastructure, envi-
ronmental, social netwroking) based on intelligent tech-
nologies. According to Navigant Research report on Smart
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Cities [109] the worldwide smart city market is expected
to grow at $88.7 billion dollars by 2025 from $36.8 billion
in 2016. The report shows that this market was escalating
from the cooperation interconnection of five key industries
and service sectors: water, buildings, energy, mobility, and
government. The report shows that the worldwide revenue
forecasts for smart city technologies, divided by industry
and region spread through 2025. The report also studied the
significant market drivers and challenges correlated to smart
cities, key business models used to fund smart city projects,
and the competitive landscape. However, for a numeral of
technical, financial, and political barriers the Smart City mar-
ket has indeed started taking off. For realization of smart city
using Internet of Things (IoT) the research in [110] proposed
a unified framework includes a complete urban information
system. The system components vary from the sensors level
and network support through data management and Cloud
based consolidation of concerned systems and services, and
form a transformative part of the current cyber-physical sys-
tem. A taxonomy has been devised in [111] to bring the
best summary of the IoT paradigm for smart cities, network
types, and possible openings and major requirements. This
research also presented the up-to-date efforts in this filed as
well as focused on the current open source IoT platforms for
recognizing smart city applications.

Smart city emphasizes the collaboration between the gov-
ernment and the society in several fields that affects the
citizen in his daily life such as, economy, mobility, environ-
ment, and governance. The idea of a smart city can offer
high-quality services to the population to reduce the oper-
ational cost through information and communication tech-
nology [112]. A smart city needs to effectively use public
resources and enhance the quality of services, while decreas-
ing the public administration operational cost. Smart cities
need to consider people daily life conditions, environment
protection, safety, and city services as well as industrial and
commercial activities. All of the proposed solutions should
use collected data and a way to meet the demand for high
quality services [113]. The city services are registered and
reported through collected geo-content, such as waste dis-
posal, damage of car parking, road condition, and traffic
lights. Since the purpose of smart cities is enhancing the citi-
zens’ quality of life, the role of people in a smart city frame-
work through participatory sensing and MCS is of utmost
importance. For example, Smart City sensing is an applica-
tion that can sense, report, review, and discuss local problems
through social media and participatory sensing [114]. Mobile
crowd-sensing becomes a significant part of any smart city
by leveraging the national mobile services to monitor the city
provided services. MCS applications include monitoring the
city noise [115], [116], traffic congestion [117], emergency
incidents [118], weather [119], population density [120], and
even detecting earthquakes [121]. Mainly, these applications
depend on mobile sensors available with users or installed in
vehicles, however, the user’s privacy will be at risk at such
locations and times. Nowadays, smartphones with powerful

embedded sensors have facilitated new applications such as
real-time road-traffic monitoring, air and noise pollution,
crime control, and wildlife monitoring through pervasive
Internet connectivity.

As a case study, TreSight [122] is an example of smart city
big data application that uses data analytics and Internet of
Things (IoT). Authors used the concept of smart and con-
nected communities for a community to live in the present,
plan for the future, and remember the past by highlighting
MCS as the most important IoT technology. TreSight was
proposed to develop the smart tourism and sustainable cul-
tural heritage in the city of Trento, Italy.

Gao et al. [123] the research work proposes a system
called Jigsaw that reconstructs a floor plan by integrating
data crowdsensed from mobile users such as place of image
capturing, accelerometer, and gyroscope data. This data is
integrated to figure accurate indoor floor plans that increase
localization performance. Zhang et al. [124] proposed a self-
contained indoor navigation system (GROPING) isolated
from any infrastructure support. GROPING utilizes MCS
to build floor maps without the need for digitized maps of
individual places. GROPING was able to deliver adequate
accuracy for localization and provided smooth navigation
through 20 participants in each floor in a big shopping mall.

D. INFRASTRUCTURE
Infrastructure comprises the essential facilities, such as roads,
water supply, bridges, and telecommunications, as well as
all other structures serving a country, city, or region [125].
This can be defined as the real components of related systems
to provide services to sustain, or enhance people daily life
conditions. The evaluation of the condition of civil infras-
tructures and critical facilities is especially important after
natural disasters such as earthquakes, hurricanes, ormanmade
disasters, namely terrorist attacks [126] Two of the most
common infrastructure MCS applications are drive sensing
and structure health monitoring. In the following we provide
detailed description for the latter.

1) DRIVE SENSING
Traffic monitoring is a significant participatory sensing
application, where GPS enabled smartphones can offer
priceless information about traffic conditions. It can sense
driver/vehicle activities and behavior, sudden traffic events
and risky/aggressive driving. It can also sense the traf-
fic status (dynamic travel time, traffic congestions, etc.).
Eventually, it will monitor the road conditions including
potholes, road bumps, and slippery roads (using sensors
attached to vehicles), vehicle fuel consumption, and emis-
sions. Moreover, authorities can perform analysis of the col-
lected data in terms of the detection of real-time traffic events,
dynamic black spots, and can generate profiles for bad driving
habits [17], [26]. Other recent work, Basudan et al. [127] sug-
gest a new idea for privacy preserving for vehicular crowd-
sensing. The idea is to introduce a certificateless aggregate
signcryption scheme, (technique to accomplish both
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encryption and signature in one logical step), which is highly
efficient in term of low communication overhead and fast
verification. The authors developed a road surface condi-
tion monitoring system consisting of a control center, smart
devices, and a cloud server.

2) STRUCTURE HEALTH MONITORING (SHM)
Structural health monitoring research is based on the use
of sensors to detect and localize damage through structural
responses as well as patterns of vibrations induced in the
structure. SHM itself is not a new concept. A close look at
civil infrastructures everywhere and their importance shows
how essential it is to use new technologies to monitor these
structures on social and economic life. That leads to a great
need for advanced methods for monitoring such structures
and detecting (or even predicting) the damage [128]. Unfor-
tunately, the normal practice these days is to detect/predict
the damage based on visual inspection using very traditional
methods such as nondestructive testing, reinforcement detec-
tors, and using hammers to check for delamination. Not only
are these tasks labor-intensive, but they are also carried out
infrequently. Moreover, the traditional methods use personal
computers cables that need to be deployed at the inspection
site. This will increase the cost as well as the complexity of
installation and maintenance. Researchers tried to save the
cost by using wireless sensor networks (WSNs) as their main
technique, which improved and facilitated the deployment of
these WSNs. Compared with conventional methods, the use
of WSNs in SHM provides the same functionality at a much
lower cost, which enables much more efficient monitoring.
Hence, SHM based on WSNs has recently gained growing
interest, due to its efficiency and accuracy. Several structural
health-monitoring techniques have been studied and investi-
gated in the last three decades [129], [130]. These approaches
include vibration-based and time-frequency wave propaga-
tion [129], localization in wireless sensor networks [130],
fiber-optic sensors and networks [131], optical inspection
methods [132] and optoelectronic scanning [133]. However,
there are still several significant research challenges in SHM
using WSNs that need to be investigated.

One of the infrastructures that need continuous moni-
toring are bridges as they are vulnerable to natural wear
and their collapse leads to disasters. Monitoring structural
health of bridges is one of the goals of infrastructure
monitoring [125], [126]. Elsersy et al. [128] proposed
SHM model using WSNs to monitor and detect the damage
condition of the real bridge. The model have several compo-
nents such as sensor nodes, shaking table with its amplifier,
and real concrete bridge. The sensors were fixed on the scaled
down bridge that is fixed on the shaking table. The experi-
ment was conducted in the case of normal bridge, single-side
damage, and double-side damage. The mode has detected
the damage in terms of acceleration on different nodes at
a particular excitation frequency. One of the challenging
problems, is the identification of the modal parameters of
civil engineering structures, mode shapes, from ambient

excitation It can be addressed by sophisticated techniques
such as the basic frequency domain (BFD) and frequency
domain decomposition (FFD) methods [134] or the signal to
model ratio (SMR) statistical estimator [135].

MCS allows complementing the role of traditional WSNs
in SHM by using the sensors in the drivers’ smartphones to
monitor the structural health of bridges. In fact, smartphones
present an important opportunity to form a low-cost citizen
wireless sensor network and introduce big data formonitoring
structural reliability and safety under operational and extreme
loads. The research work in [136] presents a SHM platform
integrating smartphone sensors, the web, and crowdsourcing
for a prospective crowdsourcing-based SHM platform. They
developed an iPhone (iOS) application to allow citizens to
use their smartphones sensors for measuring structural vibra-
tions, and then upload the data to a central server. They also
developed a web-based platform to automatically collect and
process the data then store the processed data. However, some
challenges were noticed related to citizens such as location,
connection conditions, and sampling length. After a major
event such as an earthquake for example, the collected data
could be very useful for performing a quick assessment of
structural damage in a large urban setting. For measuring
structural vibration, the research work in [128] and [137] dis-
covered that smartphone accelerometers could monitor struc-
tural vibrations under normal and extreme loads. They tested
smartphones under sinusoidal wave excitation with varying
frequencies in a range of civil engineering structures. The
experiments for normal and heavy loads show that the ref-
erence and the smartphone sensor measurements are close to
each other in time and frequency domains. They also demon-
strated the smartphone sensor’s ability to measure structural
responses ranging from low-amplitude ambient vibrations to
a high-amplitude seismic response. Another research in [132]
proposed a cluster-based data aggregation architecture to
facilitate application development for efficient SHM. The
authors developed a modular middleware on sensor nodes
and an SQL-like user interface to configure the SHM in run-
timemode. A three-level structure was built to filter unwanted
samples and extract features from raw measurement data.
The multiple measurements are then combined from different
locations.

E. SOCIAL NETWORKING
Social can be categorized into two categories: social network
and social sensing information. In social network, the users
can share their information between each other by utilizing
many systems like LinkedIn, Twitter, Facebook, and Yahoo!
Answers [138]. A large number of individuals connected in a
social network can deliver best answers to complex problems
as compared to a single individual.

While in social sensing, the MCS application collects
data about personal activity and sends it to the remote
server for further processing. In such system, the users
can share their information only among certain groups of
friends or community for privacy purposes. Since most of
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the data are sensitive information such as personal health,
location, pictures and videos; the community approach is the
best one to collect and integrate data from several people [5]
Morgan-Lopez et al. [139] examine the single and joint pre-
dictive validity of linguistic and metadata features in pre-
dicting the age of Twitter users. Authors created a dataset
that describes Twitter users across several groups of ages
such as youth, young adult, and adults, then collecting their
birthday. Finally, examine the predictive validity of the fol-
lowing features: language only, metadata only, language and
metadata, and phrases from other age-validated dataset. The
result suggested that examining linguistic and Twitter meta-
data features for prediction may be helpful for public health
and evaluation research.

In [140], an application called MobiGroup, combining
mobile computing with social networks, is a group-aware
system that delivers assistance during several group activ-
ity organizational stages. MobiGroup is a smartphone sens-
ing system to endorse current activities based on user
activity distance and interaction dynamics in a community.
Also, it uses smartphone sensing to capture online/offline
social events and enables group formation and management.
Bulut et al. [141] present a crowd-sensing application for
observing and predicting the waiting time to enter a coffee
shop called LineKing. LineKing is used on daily basis to
monitor and estimate the wait time for hundreds of users at a
coffee shop in the University at Buffalo, SUNY. In addition,
it uses uninterrupted streams of accelerometer data provided
by participants to detect the waiting time of users. Another
MCS application is FlierMeet [142] that applies crowd-
powered sensing system to collect and share public informa-
tion in cross-space using the built-in sensors of smart mobile
phones. Authors utilize several contexts (e.g., flier publish-
ing/reposting behaviors, spatio-temporal info, etc.) and writ-
ten features to group and categorize related reposts. FlierMeet
application captures the data through 38 recruited participants
and 2,035 reposts during eight-weeks. The results proved that
FlierMeet is an effective and convenient application for flier
category tagging.

Another interesting discussion is how to correlate informa-
tion extracted from smartphone data with other information
from demographics or socio-economical status to predict and
anticipate better results for the individual user. The study of
the population based on several factors such as race, gender,
age, education, income, marital status, job, religion, birth
rate, death rate,.., etc. is called demographics. Frequently,
demographical studies are used by governments, corpora-
tions, and non-governments to learn more about population
characteristics for several purposes, plus policy development
and economic market research [143]. The factors of family
demographics help in describing the level of human cap-
ital in a family. In [144] the work assesses the separate
and common predictive of lingual authenticity and metadata
approaches to predict ages. The work was based on both
Al Zamal et al. [145] and Nguyen et al. [146] research work
which inspects the common prediction of annotation age and

labeling. Their objective was to increase the validaty of age
prediction in Twitter.

F. TOURISM
Tourism could be significantly empowered by crowdsens-
ing, crowd management, context-aware and location-aware
services. In fact, these techniques allow tracking tourists for
safety purposes and also for providing contextual information
that can enhance their experience: information about the
nearest restaurants, coffee shops, shopping centers, and so
on. Furthermore, collected information can provide indica-
tions about the most popular sights and hence services could
be planned and provided accordingly. For example, an IoT
sensor can detect the location of a visitor standing in front
of a certain item in a museum, and then the information
relevant to that item can be forwarded directly to the visitor’s
smart phone using an appropriate communication technology.
Then, the frequency of visitors and the duration of their
stay in front of that item could be transferred to a central
server for future processing and analysis. This would lead to
determining the most popular items, and will provide useful
information for planning a smooth flow of tourists across the
museum (to avoid congestion in certain areas, etc.).

In addition, with information tracked via MCS, smart
loyalty and incentive programs can be devised, where a
universal platform for loyalty and rewards can be applied
through blockchain technology for example, enabling tourists
to collect points and redeem rewards across a given coun-
try or region for sites and attractions they visit, thus promot-
ing tourism activity [147].

G. SPORTS
Crowdsensing allows for crowd management through
context-aware and location-aware services. In fact, these
techniques allow tracking spectators in stadiums for safety
purposes and also for providing contextual information that
can enhance their experience. For example, a wireless sensor
network implementing IoT technology could be used to
manage the number of spectators in a football field. The
system could be used to balance the seating of participants
in different parts of the stadium. It could also be used to point
them to the most suitable exit route in case of an emergency.
Similarly to the Tourism case, smart loyalty and incentive
programs can be devised, where a universal platform for
loyalty and rewards can be applied through blockchain tech-
nology, enabling sports fans to collect points and redeem
rewards for visits to stadiums to support their favorite football
team for example.

Besides enhancing the experience for spectators,
MCS could be used to encourage commitment to sports activ-
ities on the personal level. Indeed, as per the discussion in
Sections 4.1 and 4.2, several devices such as fitness watches,
BAN sensors, and a multitude of wearable devices are avail-
able in the market. They allow a person to track his/her
exercise level, effort done, progress made, calories burned,
miles walked, etc. They are based on IoT technologies
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TABLE 6. Summary of the role of MCS in different applications.

with data analytics, coupled with mobile applications.
An interesting novel approach that could expand these activ-
ities using MCS, is to transfer this collected information to
a centralized cloud, and use big data, cloud computing, and
data analytics on a collective level to study the population’s
fitness level, and encourage commitment to personal health
through exercising. This information could also be used in
conjunction with the health data collected through the use
of MCS in the healthcare sector as discussed previously.
This would allow a detailed study of the correlation between
sports activities and certain illnesses, and could guide certain
awareness campaigns targeting a specific region or a specific
age range of the population.

H. PUBLIC SAFETY AND MILITARY APPLICATIONS
MCS, coupled with advanced communications and cyber-
security could allow reliable information transfer between
public safety teams or between military troops, in addi-
tion to securing communications between a command center
and the military forces deployed on the field or the pub-
lic safety teams deployed at an incident’s location. In fact,
new communications technologies designed for tactical use
are affecting the battlefield with game-changing capabili-
ties. Such technologies include Command, Control, Com-
munications, Computers and Intelligence (C4I) technologies
such as mobile and wireless networking, advanced antenna
systems, jamming/anti-jamming capabilities, and software
defined radios, among others [148].

WithMCS, IoT and cybersecurity, reliable information can
be collected from the field in real time and appropriate action
can be taken as needed. BAN sensors could provide informa-
tion about the health conditions of individual firefighters on
a fire scene, or of soldiers in a battlefield. Important aspects
to take into account are reducing energy consumption of
BAN sensors (to increase their longevity in harsh battlefield
conditions) and enhancing the efficiency of ad-hoc network
formation and communication (to reduce overhead and com-
munication time) when sensors and low power devices are
involved.

In addition, the above techniques can be extended to a sce-
nario with ground-to-air or air-to-ground communications.

In fact, Flying Ad-Hoc Networks (FANETs) are becoming
an integral part of public safety and of tactical networks.
They consist of networks of drones or unmanned aerial
vehicles (UAVs) [149]. In addition to their role in military
communications, FANETs can have an important role in pub-
lic safety applications such as maintaining security, border
surveillance, etc. They can be used to remotely monitor large
areas and transmit surveillance videos and various sensor
measurement data in real-time (e.g. pollution levels after the
explosion of a chemical plant), thus saving time and resources
while increasing the efficiency of the security surveillance
and monitoring system.

In the aforementioned discussion, the term ‘‘MCS’’ in the
context of military and public safety scenarios is used with
a slight abuse of the terminology. In fact, conversely to a
‘‘normal’’ MCS scenario where users are free to make the
decision to participate or not, soldiers or public safety person-
nel must participate in real-time data collection/tranmission
as this is the best way to ensure the most efficient operation
of their unit and to ensure maximum protection for their
lives. Nevertheless, the ‘‘usual’’ MCS can be used by civilian
citizens in a public safety scenario to complement the mea-
surement data sent by the public safety teams. For example,
using MCS for sending the carbon dioxyde exposure levels
caused by a fire, chemical exposure due a chemical plant
incident, localization information afer an earthquake, etc.,
will provide valuable information to the authorities about the
impact of these incidents on the affected population and will
signifiantly help in guiding the rescue efforts. A summary of
the role of MCS in different applications is given in Table 6.

V. DISCUSSION, CHALLENGES AND OPEN
RESEARCH ISSUES
Mobile crowd-sensing plays a key role in future smart cities.
Two fundamental areas that have a significant impact are
energy conservation and security. The main challenges in
MCS are hardware cost, system architecture, wireless con-
nectivity, programmability, and security. The current hard-
ware cost of smartphones capable of tracking human mobil-
ity and location is moderately high. Their system architec-
ture is capable supporting several applications on top of it.
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However, most of the applications and research examples
are vertically integrated to maximize performance. Although
MCS has great potential and offers many opportunities as
mentioned above, it also has several challenges. The main
challenges and open research issues facing MCS are the
following:

A. USERS PARTICIPATION
Mobile crowd-sensing research has many challenges that
need to be considered before deploying such systems on
a large scale. One of these research challenges is finding
an appropriate incentive mechanism that encourage users
to participate in such system. One of the main challenges
facing MCS is the availability of an adequate number of
participants for the required application. The requirement
can be also expressed in terms of participant geographical
distribution. Therefore, incentive strategies, such as monetary
or credit rewards, can be employed to increase the users’
participation in MCS [150]. Minimizing the effect of running
these applications on the performance of the smartphones
(Minimizing the energy consumption, processing needs and
network requirements) is also important tomaintain the users’
interest in the participation in MCS. The user participation
becomes evenmore challenging in active participation since it
requires more user’s involvement. The research work in [151]
discusses the barriers and shows that people are most likely
to help when a minimum effort is required at no additional
cost.

B. PRIVACY AND SECURITY
Another research challenge in MCS is the authenticity and
integrity of the data collected from different users participat-
ing in the system. Privacy and security are very important in
MCS applications that collect data related to the participant.
It can be categorized into two types, user security and system
security. From the system point of view, authentication and
integrity verification of the information provided is critical,
as this information will lead to decision making, which,
if wrong, could have negative impact on the whole sensing
platform. From the user point of view, this information is also
critical as it may affect the user’s privacy. Hence, it remains
secure at the back-end processor. Each one of the above
challenges could be a starting point for future research. In the
following we provide some examples of existing approaches
addressing both categories.

Due to human involvement, MCS brings some concerns
about the privacy of the user using the mobile phone as
well as the people surrounding the user. Thus, data privacy
mechanisms are needed at the mobile devices, the network,
and the remote server to protect private data such as users’
location, vital signs, images . . . etc. For example, GPS sensor
readings are utilized to have private information about the
participant, such as daily movements as well as home and
work locations. The collected GPS sensor data is shared
within the community and can be used in a given city to obtain
traffic congestion levels. Hence, it is very important to protect

or maintain the participant privacy by not sharing his sensitive
information [5], [105] while still enabling MCS applications.

To preserve privacy, anonymization is a technique to pro-
tect and secure the user’s personal data, which seeks to secure
the sensitive data and identity of record owners. It is the
process of either removing or encrypting the information
between participants and other parts to achieve the privacy
and remain anonymous. Nonetheless, without the support of
policies, processes, and people, the implementation of only
data anonymization will be insufficient. Some companies
fairly managed to implement data anonymization on a small
scale using SQL scripts efficiently to encrypt data [152].
Some other companies have failed after obtaining the best
data-masking tool [153]. Anonymization consists of tech-
niques and procedures for data processing, algorithms, keys,
and data life cycle. For privacy reasons, personal identifiable
information (PII) needs to be anonymous for testing and
analysis. There are several anonymization techniques such as
1) Generalization, which replaces the date of birth with
reduced data size, such as the year of birth only, 2) Replace-
ment such as using an alternative identification number,
3) Perturbation, introducing random changes to the data,
4) Suppression, which deletes from the released data partially
or completely. However, these techniques can be applied
only on at-rest or visible data i.e. logs, data exports, web
pages [152], [153].

When malicious participants contribute with inaccurate
sensor data (e.g., fake GPS readings), this could affect the
integrity of the data collected from the system, which is a seri-
ous problem that could lead to lack of trust in the MCS appli-
cation. Some researchers have worked on developing new
approaches to resolve this problem. Some of these approaches
depend on co-located infrastructure, while others depend on
participation from the fixed expensive infrastructure, which
could be expensive and not available sometimes. Another
approach is based on trusted sensor hardware (sign) on a
mobile device. These approaches need to be addressed to
make sure that the integrity of the sensor data generated
by the participants is reliable to provide significant deci-
sions from the aggregate sensor data [43], [84], [105], [114].
Trust-based scores can be used and updated dynamically in
order to quantify the trust level of each participant in MCS
and thus deal with malicious participants (or simply partic-
ipants sending erroneous measurements due to some sensor
defect). Several reputation and trustworthiness metrics could
be investigated [154]. Furthermore, distributed or localized
trust management can be performed to reduce the load on
the central server. For example, in [155], crowd-sensing in
a vehicular ad hoc network (VANET) is studied, and the
platoon head vehicle pre-processes the measurements from
platoon members based on trust scores before forwarding the
trustworthy ones to the server.

C. DATA SIZE
Big data techniques and data analytics algorithms can be
used to effectively manage the huge amount and variety
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TABLE 7. Summary of challenges realted to MCS and their diffrences/similarities with IoT challenges.

of sensed data [136]. Many applications may need to run
analytical aggregation at the backend to detect patterns in
the sensor data from various mobile devices. These patterns
denote the features and characteristics of the events or the
surrounding environment that are of interest to the user.
These patterns may occur over some spatial scale and within
some duration. For example, participants can report prob-
lems in public work facilities such as broken water pipes
and defective traffic lights. The maintenance crew need to
know the severity of the incident, and they can use this
information to help rank and identify priorities and schedule
repairs.

The large scale of MCS results in a large amount of data
traffic that may overwhelm the network. In fact, conversely
to networks based on IoT with purely automated sensor
transmissions, MCS, due to the human participation, can
sometimes generate unexpected traffic. Therefore, some tech-
niques need to be employed to reduce the amount of traffic.
This can be achieved by selecting certain users for sending
sensed data, local data aggregation and processing at mobile
devices and smartphones and having data traffic split over
different available wireless networks (e.g., WiFi, Bluetooth,
3G, and LTE).

D. DATA ACCURACY
Although increasing the amount of collected data improves
the accuracy of the monitored phenomenon or detected event,
collecting sensed data from a large number of users may
overload the communication network and remote servers.
Therefore, it is required to determine clear and accurate
relationships describing the dependence of the performance
metric of MCS on the size of the collected data. Then, these
dependencies and tradeoffs should be carefully considered
to balance between the data accuracy from one side and the
overloading of the communication network and servers on the
other side.

Mobile devices and smartphones are equipped with differ-
ent types of sensors from different manufacturers that may
vary significantly in their sensitivity and noise immunity.
Thus, there is a need to improve the data accuracy by identi-
fying devices that are likely to produce accurate sensing data,
performing global centralized data aggregation, and taking
into consideration the spatiotemporal mobility patterns of the
users of the mobile devices and smartphones [114], [127].

Although this challenge is common to both MCS and more
‘‘traditional’’ IoT networks, MCS faces additional issues. For
example, accuracy inMCS can be compromised intentionally
by malicious users. This issue was discussed in the paragraph
related to trust in MCS in Section V.B. Another problem
is that with MCS, there is less control on the type of used
devices, and thus an increased degree of variety of devices is
to be expected compared to IoT. This challenge is discussed
in the previous paragraph.

E. OTHER CHALLENGES
Wireless connectivity indoors is still unpredictable using
low-energy consumption radio frequency transceivers, par-
ticularly due to interference from electromagnetic fields
produced by elevators, cordless phones at home, machin-
ery, and computers among others. Another challenge is the
programmability and re-programmability (re-configuration)
necessary for energy conservation and node-to-node commu-
nication.

Researchers in [27], [151], and [156] are still faced with
major obstacles to widely perform experiments, in spite of
the huge demand for MCS applications for smartphones.
These obstacles include the 1) the time and energy costs
of resolving a robust, scalable, and visually attractive appli-
cation and infrastructure, 2) the limited retention of users
after using the applications for few weeks, and finally
3) human related issues such as privacy, incentives, and
quality of data. Although, the idea of scaling to millions of
devices is attractive, the widespread computing community
still relies on expensive and short-term user contribution
with small numbers of users. The work in [156] discussed
a business-to-business model to limit the effect of obstacles
facing mobile crowd-sensing. In [27] the battery size was
shown to be themain factor limiting the use of mobile phones.
Although energy consumption is a limiting factor in WSNs
in general, an additional factor in MCS consists of the human
user decision: Some users tend to refrain from participation
in order to save battery energy. The challenges related to
MCS are summarized in Table 7.

VI. CONCLUSION
Mobile crowd-sensing is an evolving topic with an exten-
sive variety of possible applications. However, the outcome
of MCS depends on the participation of people who might
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be concerned about their confidentiality. In particular, task
management, as a central component of the crowd-sensing
structure, poses several threats to participant privacy that
need to be identified and addressed. In this survey, the MCS
paradigm was reviewed for both participatory and oppor-
tunistic sensory. An overview of theMCS system architecture
was provided, which includes several levels: crowd-sensing,
data transmission, data collection, and applications. There is
also a discussion about the challenges in terms of the number
of applications in the market, the cost of mobile device, and
we presented one of the topics that limits its use, namely the
user retention. Some of the MCS architecture elements have
been discussed, including data collection, communication
media, data aggregation/fusion, as well as feature extraction
and classification. The review also covers the main MCS
applications such as environmental, infrastructure, and social.
Some mobile crowd-sensing challenges have been discussed,
such as user participation, privacy and security, data size, and
data accuracy.
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