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ABSTRACT In this paper, we provide a holistic overview of the aspect of electromagnetic radiation
(EMR) and its efficient control in wireless communication networks. Especially, we focus on the emerging
technology of wireless power transfer (WPT). Our global perspective is to suggest methods for the effective
control of EMR while keeping at high levels the QoS experienced by users as well as the charging efficiency
of WPT. First, we provide formal definitions of EMR in wireless communications and propose related
performance metrics and EMR evaluations in wireless communication networks. Then, we focus on EMR
control in efficient wireless power transfer, under different WPT models. For the well-known scalar model,
we assume finite energy reserves and batteries, and introduce the low radiation efficient charging problem.
For this problem, we identify its computational complexity and provide efficient algorithms and heuristics.
A vectorial model of WPT is then employed, allowing a more precise management of radiation, via directly
exploiting interesting super-additive and cancellative phenomena of received power; we provide algorithms
which achieve satisfactory tradeoffs of charging efficiency and radiation. Then, we present a more futuristic
model and the method of peer-to-peer wireless power transfer where no strong, central charger stations
are used, thus keeping radiation at almost zero levels. Another method of controlling EMR in the case
of mobile nodes is adapting the charger change in a dynamic, on-line way so as to avoid unnecessarily
large fixed changing ranges. Finally, we discuss some future challenges and related research directions,
toward efficiently combining high WPT provisioning and low EMR. Such directions include the effective
management of mobility in the network, the use of diverse WPT signal phase-configuration as well as
efficient chargers’ scheduling strategies.

INDEX TERMS Energy management, wireless power transfer, radiation control, power management, vector
model.

I. INTRODUCTION
Rapid advances in embedded systems and the wide use of
portable devices in everyday life, have motivated significant,
novel research in wireless distributed systems and ad hoc
wireless communication networks. However, due to the inher-
ent limitations and constraints of such devices (size, cost
and form), the effective management of energy remains a
fundamental challenge. Energy consumption in such systems
has a significant effect on important operational aspects, such

as the longevity of the network and its robustness, as well as
the quality of service offered to users.

At the same time, recent technological developments in the
topic of Wireless Power Transfer (WPT) create new potential
for the effective and efficient energy management in modern,
power-hungry wireless systems. Active research is already
considering new, suitable network models abstracting these
new technologies. In general, every WPT system includes
two kinds of modules; the first, called wireless transmitter is
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equipped with a large pool of energy that can be transferred
via rf signals and has the same functionality with a common
charger. The second entity, called receiver (node or mote) is
equipped with an antenna that enables the energy harvesting
from rf signals produced by chargers. In particular, modern
technology of very efficient WPT becomes available for
energy harvesting over near and far field applications. Using
strong coupled magnetic resonances, we can achieve a 40%
efficiency in applications where 60 Watts can travel over a
distance ofmore than 2meters [1]. At the same time, commer-
cial prototypes and products become available, improving the
efficiency up to 75% for chargers that transmit with 60 Watts
power while at the same time reach 1 meter distance [2].
Nowadays, plenty of products enabling WPT technology can
be purchased from the market. Finally, the Wireless Power
Consortium [3], mobilizing diverse partnerships including IC
and smartphone manufacturers as well as telecom operators,
are established towards WPT international standardization.

However, potentially problematic implications of WPT in
modern wireless systems have not received yet the level of
attention needed. WPT introduces new sources of electro-
magnetic radiation (EMR) on top of many other already exist-
ing wireless technologies that have been used extensively
in everyday life such as Wi-Fi, Bluetooth, etc. Continious
exposure to high electromagnetic radiation, has been proven
that can cause irreparable problems to human health. Partic-
ularly for WPT, high radiation levels can be found due to the
coexistence of many fields coming from different sources.
So far, electromagnetic radiation is the one side of the wire-
less technologies coin. For us, it is more than essential to
understand and control it in a way that the trade of with the
wireless communication quality of service coin side can reach
a balance. Our wish is to have adaptive systems with respect
to radiation awareness and provide fundamental principles in
both algorithmic and networking designs.

In this paper we aim for a global, systematic study of
the topic of Electromagnetic Radiation (EMR) and how to
efficiently control inmodern wireless networks.We choose to
particularly concentrate on the emerging technology of WPT,
due to its potentially high impact to the cumulative EMR. Our
aim is to propose methods for the effective control of EMR
without affecting much the QoS enjoyed by system users as
well as the efficiency of WPT charging.

To this end, abstract yet precise definitions of EMR in
wireless networks and related performance metrics are pro-
posed. Using these definitions and metrics we evaluate EMR
in common wireless topologies.

As discussed, we choose to focus on EMR in efficient
WPT systems. Different WPT models of diverse precision
and applicability are provided. Typical scalar models (based
on the well known Friis law) are not ignored; however we
impose to them much more realistic assumptions, such as
finite energy sources at the chargers and finite batteries at
the receivers. Under these modeling assumptions, we intro-
duce the LowRadiation Efficient Charging Problem, bringing
together the aspects of efficient charging and EMR control.

We study the computational complexity of this problem and
provide efficient algorithms and heuristics.

Then we move to a vectorial modeling of WPT, allowing a
very precisemanagement of radiation, on the basis of interest-
ing phenomena of EMwaves interactions (super-additive and
cancellative) on received power. Such accurate management
of EMR offers us a good basis for effective trade-offs between
charging efficiency and radiation. Subsequently, even more
futuristic models are considered, assuming capabilities of
peer to peer wireless energy charging in the lack of any
powerful, central chargers; this facilitates keeping radiation
at negligible levels.

We conclude by identifying selected emerging and future
challenges and relevant major topics of new research. Such
major topics include the impact and management of diverse
mobility of network nodes, as well as the employment of
phase-configuration in WPT waves and signals.

A main message this paper wishes to convey is the need for
a diverse suite of abstract yet precise models, as well as the
necessity of rigorous foundations and efficient algorithmic
for the emergingWPT technology to achieve its full potential.
Also, we wish to highlight the emerging need to seriously
address potential implications of this fascinating technology
in terms of the EMR it creates, via the proper management of
charging efficiency and radiation control trade-offs, towards
offering the users of modern wireless systems high quality yet
safe services.

II. FORMAL DEFINITION OF RADIATION IN WSN
In what follows, we assume that we have a Wireless Com-
munication Network N consisting of m wireless power
devices or wireless chargers that operate within an area of
interestA (typically insideR2). As a result, every point inside
A is exposed to Electromagnetic Radiation (EMR), which is
loosely defined as the quantity of ‘‘electromagnetic level’’ it
is exposed to. In this paper, we follow the usual assumption
that the electromagnetic radiation is linearly related to the
power at that point:
Definition 1 (Electromagnetic Radiation (EMR)): Let N

be a Wireless Communication Network operating within an
area A and let x ∈ A be a point. If PN ,x(t) is the power
caused by N to x at time t, then the Electromagnetic Radia-
tion x is exposed to at t is given by

RN ,x(t) = γ · PN ,x(t), (1)

where γ is a constant that depends on the hardware of the
wireless devices of N and the environment.

Notice that RN ,x(t) (and therefore also PN ,x(t)) is a func-
tion of t , since wireless devicesmay become active or inactive
during different time intervals. It is also evident from the
above the definition that, RN ,x(t) refers to the radiation rate
that point x is exposed to; to find the total radiation a point
is exposed to during a time interval [τ1, τ2], we simply write

RN ,x([τ1, τ2])
def
=

∫ τ2

τ1

RN ,x(t)dt =
∫ τ2

τ1

γPN ,x(t)dt (2)
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Path radiation. We extend the above definitions on trajec-
tories within A as follows: W denotes a (finite, connected)
route in A. Assume that an individual moves on W with
constant speed. Let W[τ1, τ2] be the part of W that the
individual traverses between time τ1 and τ2. We also denote
by Wt the individual’s location at time t . The path radiation
that the individual walking onW is exposed to during [τ1, τ2]
is

RN ,W ([τ1, τ2])
def
=

∫
W[τ1,τ2]

RN ,Wt (t)dt (3)

Given a time duration τ , we also define the maximum path
radiation that an individual walking on W is exposed to
during [τ1, τ2]:

maxRN ,W ([τ1, τ2], τ )
def
= max

τ1≤t≤τ1−τ
RN ,W ([τ1, τ2]). (4)

Notice that maxRN ,W ([τ1, τ2], τ ) is a function of τ (as well
as N ,W and [τ1, τ2]) and it is different than the maxi-
mum radiation (rate) that the individual is exposed to during
[τ1, τ2], the latter being equal to maxτ1≤t≤τ2 RN ,Wt (t).

Upon inspection of Definition 1, we point out that, to get a
mathematical formula for RN ,x, we first need to have a math-
ematical formula for the power PN ,x. There are two prevalent
approaches in the literature, which roughly correspond to
macroscopic and microscopic study of electromagnetism.

A. SCALAR MODEL
The usual assumption here is that, the (absolute) power cre-
ated by a wireless device u ∈ N at a point x of A at time t ,
given that only u operates in N is constant and equal to

Pu,x(t) =
a · r2u

(1+ dist(u, x))2
, (5)

where ru is a constant expressing the operation level of u, a
is a parameter depending on the environmental settings and
the hardware of u, and dist(u, x) is the Euclidean distance
among the location of u at time t and point x. We note
that, up to constant multipliers, equation (5) expresses Frii’s
formula for the received power by a single receiver under the
constraint that there are no other receivers within a certain
area. It is also worth mentioning that, there are cases in the
literature, the exponent in the denominator is allowed to take
values other than 2 so that the dependence on the distance is
either emphasized or suppressed. Additionally, some authors
use a cut-off bound D, meaning that the power created by u
becomes equal to 0 for all points further than D from u.
The crucial assumption in the scalar model, which makes

it more tractable than others, is that power from different
sources is additive. In particular, for any subset S ⊆ N ,
the cumulative power created by S to x at time t is calculated
by

PS,x(t) =
∑
u∈S

Pu,x(t). (6)

Therefore, by Definition 1, the cumulative electromagnetic
radiation x is exposed to at time t because of N is

RN ,x(t) =
∑
u∈N

Ru,x(t). (7)

We note that, even though the assumption that power from
different sources is additive may seem naive at first, never-
theless it gives quite good approximations, especially when
distances between wireless devices of the network and points
of interest x are large compared to the inverse of the frequency
of operation of the wireless devices, namely the wave length
of the corresponding electromagnetic wave. This is the reason
why this case corresponds to a kind of macroscopic study of
radiation.

B. VECTOR MODEL
The vector model is a generalization of the Friis’ formula
which is a single-dimension abstraction and allows a more
detailed study of the power created by wireless devices and
thus also electromagnetic radiation, at the cost of increased
analytical difficulty compared to the additive power model.
Particularly, the electric field from a wireless source device
u, working in maximum level of power, at some point x is a
2-dimesional vector given by

Eu,x
def
= β ·

1
dist(u, x)

· e−j
2π
λ
dist(u,x)

= β ·
1
d
·

 cos
(
2π
λ
dist(u, x)

)
− sin

(
2π
λ
dist(u, x)

)
, (8)

where λ is the wavelength which depends on the transmit-
ter’s frequency band, and β is a configuration parameter that
describes the transmitter’s hardware and the environmental
conditions.1

An important assumption in the vector approach, that
distinguishes it from other more tractable but less realistic
models in the wireless power transfer state of the art, is that
the sum of the electric field created by a wireless networkN
at a point x is the vector-sum of the corresponding individual
electric fields, which is

EN ,x
def
=

∑
u∈N

Eu,x. (9)

Furthermore, the total available power at x is given by

PN ,x = δ · ‖EN ,x‖
2, (10)

where ‖ · ‖ denotes the length (2-norm) of the vector. The
constant δ depends on the hardware of the transmitter and the
RF-to-DC conversion efficiency.

1Actually, the detailed formula in [4] for the electric field is Eu,x
def
=√

Z0 GuPu
4πdist(u,x)2

· e−j
2π
λ
dist(u,x), where Z0 is a physical indicator for the wave-

impendance of a plane wave in free space, Gu denotes gain and Pu is the the
transmitter’s output power. Therefore, the constant β actually depends on u.
Nevertheless, when all wireless devices in N are identical, we can assume
that β is a constant.
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The above model has been proven to be able to describe
with great precision phenomena that were not previously
possible, and this by using physic’s rules and more specif-
ically superposition of electromagnetic field rules. In addi-
tion, besides intuition, we got a better understanding and we
can study particular situations such as constructive (super-
additive) and destructive (cancellation) cases [5]–[7].
A Basic Assumption: Upon closer inspection of equation

(8), we notice that, the length of the vector of the electro-
magnetic field becomes arbitrarily large when we consider
points x very close to u. In the additive power case, this
issue was fixed by adding 1 to the denominator, which is
acceptable since (as mentioned before) this model gives a
good approximation provided dist(u, x) is large, and thus 1+
dist(u, x) ∼ dist(u, x). In fact, the two models are equivalent
when N consists of a single wireless transmitter u and we
consider points x far away from u.

The truth behind the limitation in equation (8) is that the
equation only holds for points x for which dist(u, x) ≥ λ,
and more complex laws apply otherwise. To avoid confusion
and to avoid introducing models that are too complicated
to analyse, we thus assume that the placement of wireless
devices and points of interest satisfies the aforementioned
inequality. Mind that, in the majority of the cases if not all
of them, λ does not exceed some centimeters. Hence, those
deployment restrictions will not be too restrictive for current
wireless devices.

III. LOW RADIATION CHARGING IN WIRELESS
NETWORKS
Low radiation charging results in a WSN under the scalar
model are presented in this section. The overall setting is as
follows: The network N consists of n rechargeable nodes
P = {v1, v2, ..., vn} and m wireless power chargers M =

{u1, u2, . . . , um} located in theA ⊆ R2 plane. For both charg-
ers and nodes we assume that their operational parameters
and locations are defined at time 0 and this holds for the rest
of the time.
E (t)
u is the given amount of energy that a transmitter umakes

use to charge receivers inside a specific radius ru. For every
transmitter u ∈ M the radii ru, is static in the meaning that
it can be set at time 0 and hold this value from that time on.
Moreover, by C (t)

v is denoted the residual amount of energy
of a node v ∈ P at t time-slot (mind that the energy of node
v is C (0)

v at time 0).
For the charging model, we employ the scalar model with

cut-off ru, but we also consider the energy availability of the
charger and the capacity of the nodes. In particular, a receiver
v ∈ P receives energy by a transmitter u ∈ M with power
given by

Pu,v(t) =


αr2u

(1+ dist(v, u))2
,

if E (t)
u ,C

(t)
u > 0, dist(v, u) ≤ ru

0, otherwise,

(11)

where α > 0 defines the environmental conditions and the

hardware configuration of a transmitter and a receiver. Par-
ticularly, this equation measures the harvesting power of
the receiver v from a transmitter u if the first is inside the
radii of the latter. This holds by time that either u is out of
energy or v cannot be further charged. Besides the depen-
dencies regarding the topology of u and v, power Pv,u(t)
takes into account time t . Hence, for a receiver v ∈ P
having less than ru distance from a transmitter u, power equals
to αr2u

(β+dist(v,u))2
between [0, t∗u,v] time slots and 0 otherwise.

Equation (11) implies that at time slot t∗u,v where Pv,u(t)
equals to 0 means that either v is fully charged (that also
depends on the number of transmitters which have v inside
their radii) or u is out of energy. Îďherefore, t∗u,v value differs
on the whole network, i.e. the initial energy storage capacity
and topology of each receiver and the radii, initial energy pool
and topology of the receivers. However, we can use the ideas
presented in Section III-B by using a trivial modification
of ObjectiveValue algorithm to find t∗u,v value. Thus,
it looks like we cannot provide a ‘‘nice’’ closed formula for
t∗u,v.
Following the characteristics of the scalar model, we also

assume that the nodes received energy is constructive. Hence,
receiver v harvests a total amount of energy in a time slot
[0,T ] is given by

Hv(T ) =
∑
u∈M

∫ T

0
Pv,u(t)dt. (12)

By equations (11) and (12), we have that
∑

u∈M E (0)
u ≥∑

v∈P Hv(T ), for any T > 0, i.e, the nodes’ total energy
received is upper bounded by the sum of the transmitters’
initial energy. Furthermore, the total energy that can be stored
by all nodes is never less than the total harvested energy,
i.e.,

∑
v∈P C (0)

v ≥
∑

v∈P Hv(T ), for any T > 0.
Related Work: Electromagnetic radiation concept has

recently attract research community attention from many
diverse research fields has been drawn by the impact of .
Therefore, in Wireless Networks, radiation related problems
have been studied by researchers. In [8], it is presented how
we can keep low radiation levels for an agent moving around
a wireless sensor network. Authors study and mathematically
evaluate the above concept in both random typologies and
other well known networks. An evaluation via simulations
has also been conducted for the proposed online algorithms
and the corresponding heuristics, achieving a near optimal
solution given by an offline algorithm. Angelopoulos et al.
[9] aim in maintaining low amounts of radiation created
by different wireless transmissions while they offer efficient
quality of service in wireless sensor networks regarding data
propagation latency. Oblivious routing and greedy heuristics
are presented with respect to radiation effects. Afterwards,
they enhance their approaches by adopting temporal back-
off schemes that make use of network’s local knowledge and
aim to distribute radiation under a spatio-temporal manner.
In [10], it is presented a work that considers a problem of
covering. More specifically, a group of facilities is located
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inside a defined area, while they aim to minimize the number
of stations in a way that there is no point in the region out of
the radii of a station. At the same time the dangerous range
of a station prevent building to be included. Those concepts
are network’s devices oriented regarding radiation, and do not
address transmitters setups.

Recently lots of work has been conducted regarding Wire-
less Power Transfer combined with electromagnetic radiation
awareness in networks configurations. Dai et al. [11] provide
a scheduling strategy which guarantees that there is no loca-
tion in the planewhere electromagnetic radiation (EMR) level
is higher than a given value, while stationary transmitters aim
to maximize the energy fueled in the network. The authors
provide a design that that followsmultidimensional 0/1 knap-
sack problem and a Fermat-Weber problem. The method
includes bounded EMR function approximation, reduction
and constraint conversion, a tailored Fermat-Weber heuristic
and area expansion and discretization. For evaluation pur-
poses, the authors created a testbed which consist of eight
transmitters. Dai et al. [12] again consider the scheduling of
stationary transmitters, in order to increase as possible the
charging utility of the transmitters, while keeping electro-
magnetic radiation distribution at any given point inside a
specific area below a threshold value. In this instance of the
problem transmitters are able to adjust their contribution and
power. A new discretization technique is presented that aims
to help re-formulating the problem and make it possible to
be solved by a linear program. Further, the authors propose a
distributed redundant constraint reduction schema to reduce
the computational load of the problem by decreasing the
number of restrictions. Even thought the subject of [12] is
related to the work of this section, nevertheless our approach
of the topic of efficient charging with respect to radiation is
completely different. This results from the fact that we define
a different power transmitting model, which considers both
hardware constrains of the transmitters and receivers of the
network. Those restrictions imply non-linearity for our case
that did not show in [12] approach.
Contribution: Assuming the above scalar charging model

(with cut-ff), in [13] we studied the Low Radiation Effi-
cient Charging Problem (LREC), in which we aim to max-
imize the utility of energy harvested by the receivers from
the transmitters (under threshold radiation value restriction).
Fundamental properties of the problem have been presented
while giving indications of its hardness in the idealized power
transfer no lossy case. Nevertheless, our algorithmic solutions
and model can be easily generalized to accommodate more
realistic lossy scenarios.

We also presented a relaxation of LREC, namely the Low
Radiation Disjoint Charging Problem (RLDC), which makes
easier the function of finding the maximum electromagnetic
radiation inside a field where transmitters and receivers are
located. Although this seems a simpler version of our main
problem, is shown to be NP-hard, by reduction from the
Independent Set Problem in Disc Contact Graphs. Neverthe-
less, LRDC admits an integer program formulation, which we

solve after a suitable linear relaxation and rounding and we
use the solution as a lower bound for LREC.

Finally, we proposed a repetitive local improvement
heuristic for LREC, which has been evaluated through exten-
sive simulation process and runs in polynomial time. The
advantage of the mechanism is that it decouples the com-
putation of the maximum radiation from the computation of
the objective function and also is independent from the exact
formula used for the computation of the electromagnetic
radiation in each point of the network, achieving good trade-
offs between radiation control and charging efficiency; it also
exhibits good energy balance properties. We provide exten-
sive simulation results supporting our claims and theoretical
results.

A. PROBLEM STATEMENT AND FIRST RESULTS
Generally, we aim to maximize the transmitters’ efficiency
in a way that the radiation level is maintained inside an
acceptable range. More specifically, we study the following
computational problem which is called as Low Radiation
Efficient Charging (LREC):
Definition 2 (Low Radiation Efficient Charging (LREC)):

Assume we deploy inside A plane a family of rechargeable
motes P and a family of transmitters M. Assume also, that
every mote v ∈ P has initial energy capacity C (0)

v and
every transmitter u ∈ M initially has an energy pool E (0)

u .
Configure to every transmitter u ∈ M a radii ru, so that
the electromagnetic radiation in every location ofA does not
exceed ρ threshold while we maximize the cumulative usable
energy of the network’s motes.

Let r = (ru : u ∈ M),E(0)
= (E (0)

u : u ∈ M) and
C(0)
= (C (0)

v : v ∈ P). The objective function that we want to
maximize in the LREC problem is:

fLREC
(
r,E(0),C(0)

)
def
=

∑
v∈P

(
lim
t→∞

C (t)
v

)
(13)

=

∑
u∈M

(
E (0)
u − lim

t→∞
E (t)
u

)
.

The last equality holds cause we assume a non-lossy energy
transfer setup from the transmitters to the motes (extension
to lossy case can be easily done, but it is not considered in
[13]). In fact, we only need to consider finite values for t ,
because the energy values E (t)

u will be unchanged after time

t∗
def
= maxv∈P,u∈M t∗u,v, where t

∗
u,v is the time at which either

the energy of u is depleted or v is fully charged, and so Pv,u(t)
becomes 0. Therefore fLREC

(
r,E(0),C(0)

)
=
∑

v∈P C (t)
v =∑

u∈M

(
E (0)
u − E

(t)
u

)
, for any t ≥ t∗. In fact, the following

upper bound holds, which is independent of the initial radius
choice for each charger:
Lemma 1: t∗ can be at most

T ∗ =
(1+maxu∈M,v∈P dist(v, u))2

α(minu∈M,v∈P dist(v, u))2
max

u∈M,v∈P
{E (0)

u ,C (0)
v }.

As will be clear later, given r,E(0) and C(0), the exact
value of fLREC

(
Er, EE (0), EC (0)

)
can be computed by using
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Algorithm 1 ObjectiveValue

Input : Initial configuration 6(0)
= (r,E(0),C(0))

1 Set t = 0
2 while[⋃

v∈P

{(
C (t)
v > 0

)
AND

(∑
u∈M(t)

v
E (t)
u > 0

)}]
do

3 Set

tM = minu∈M\M(t)
∅

{
t ′ : t ′

∑
v∈P (t)

u
Pv,u(t) = E (t)

u

}
4 Set

tP = minv∈M\P (t)
∅

{
t ′ : t ′

∑
u∈M(t)

v
Pv,u(t) = C (t)

v

}
5 Set t0 = min{tM, tP }
6 For all u ∈M\M(t)

∅
, set

E (t+t0)
u = E (t)

u − t0
∑

v∈P (t)
u
Pv,u(t)

7 For all v ∈ P\P (t)
∅
, set

C (t+t0)
v = C (t)

v − t0
∑

u∈M(t)
v
Pv,u(t)

8 Set t = t + t0 and updateM(t)
∅

and P (t)
∅

Output:
∑

u∈M(E (0)
u − E

(t)
u )

Algorithm ObjectiveValue in Section III-B). However,
the optimal choices for the radii of the chargers is not so easy
to determine, as the following result highlights.
Lemma 2: The function fLREC

(
r,E(0),C(0)

)
is not neces-

sarily increasing in r. Furthermore, the optimal radius for a
charger is not necessarily equal to the distance from some
node.

B. COMPUTING THE OBJECTIVE FUNCTION
Here, we present an algorithm which given the motes’ energy
capacities, transmitters’ radius and the residual energy of the
transmitters, computes the energy amount provided to the
motes from the transmitters (which is our objective func-
tion). In particular, assume that each mote v ∈ P can store
C (t)
v amount of energy and each transmitter u ∈ M has

residual energy E (t)
u at a specific time t . The tuple 6(t)

=

(r,E(t),C(t)), where r = (ru : u ∈ M),E(t)
= (E (t)

u : u ∈
M) and C(t)

= (C (t)
v : v ∈ P), is called the configuration

of the network at time t . Let M(t)
∅

def
= {u ∈ M : E (t)

u = 0}
be the family of transmitters that ran out of energy by time t .

Furthermore, let P (t)
∅

def
= {v ∈ P : C (t)

u = 0} be the family of
motes that are in full energy by time t . For every v ∈ P let

M(t)
v

def
= {u : v ∈ P (t)

u ,E
(t)
u > 0} be the family of transmitters

that have v inside their radius and still have available energy

at time t . For every u ∈ M, let P (t)
u

def
= {v : dist(v, u) ≤

ru,C
(t)
v > 0} be the family of motes inside ru radius from u

that have not reach full capacity at time t .
The following algorithm aims to compute the objective

function. We can figure out which is going to be the next
transmitter or mote that will run out of energy or will reach
its energy capacity respectively and when, given the system’s
configuration at time t . The algorithm continuous as long as
there are motes that can still be charged, which happens either

when all transmitters that can reach it still have energy (i.e.∑
u∈M(t)

v
E (t)
u 6= 0) or they have not reached yet their capacity

limit (i.e. C (t)
v 6= 0).

Mind that, algorithm ObjectiveValue, in each loop
sets to 0 the capacity or the energy level of at least one
transmitter or mote. In fact, the result holds that bounds the
number of while-iterations (and thus also the running time up
to a multiplicative 2(max{m, n}) factor):
Lemma 3: Algorithm ObjectiveValue terminates in

at most n+ m while-iterations.

C. COMPUTING THE MAXIMUM RADIATION
One of the challenges that arises in the LREC problem under
the scalar model with cut-off radius is the computation of
the highest radiation value inside plane A, as well as find-
ing the point (or points) where this maximum is achieved.
In particular, it seems that some kind of discretization of A
is needed as it is not clear the location the highest radiation
level is placed inside our plane. In fact, in the experimental
evaluation conducted in [13], the following generic MCMC
procedure was used: for sufficiently large K ∈ N+, choose
randomly and uniformly K points fromA, compute radiation
on each of these points and return the maximum value. This
procedure is efficient, since the calculation of the EMR at any
point takes O(m) time, as it is a matter of the distance of this
particular point from each of the m transmitters.
The drawback of the method mentioned above is that the

approximation it achieves depends on the value of K (which
equals to the discretization level) for computing the maxi-
mum radiation. Indeed, there could exist a better algorithm
that considers also the spatial electromagnetic radiation dis-
tribution given by Definition 1 and equation (11). On the
other hand, the latter is also one of the strengths of the overall
approach; indeed, the iterative algorithm IterativeLREC
which is presented in Section III-D is independent from a
specific formula for the EMR, and this is legitimate in some
cases (particularly for scientist’s understanding of radiation,
as is still at an early stage).

D. A LOCAL IMPROVEMENT HEURISTIC FOR LREC
In view of the above, we now have all the required tools for
describing a heuristic to approximate by LREC the optimal
solution, which was given in [13]. Therefore, notice that, for a
transmitter u ∈M, we can approximately (the approximation
factor depending on a parameter l) define the radii ru of u in
order to achieve the highest objective function value, given
fixed radii for all other transmitters r−u = (ru′ : u′ ∈M\u)
as follows: Define rmax

u to be the largest distance of any point
in A from u and let l ∈ N+ be a sufficiently large integer.
For i = 0, 1, . . . , l, set ru = i

l r
max
u and compute the objec-

tive function value (using algorithm ObjectiveValue) as
well as the maximum radiation (using the method described
in Section III-C). We assign to u the radii that satisfies
the radiation restrictions of LREC and performs the best
objective function value. Given that the discretization of A
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Algorithm 2 IterativeLREC
Input : Charger and node locations

1 counter = 1
2 repeat
3 Select u.a.r. a charger u ∈M
4 Find (an approximation to) the optimal radius for u

given that the radii of all other chargers are fixed
5 counter = counter + 1
6 until counter = K ′

Output: Er = (ru : u ∈M)

used to compute the maximum radiation has K points in
it, and using Lemma 3, we can see that running time of
the above procedure to approximately determine the best
radius for u is O (l(n+ m) max{n,m} + mK ). We mention
here that the above procedure can be easily generalized to
approximately compute optimal radii for any set of (a con-
stant number) c chargers, in which case the running time
becomes O (lc(n+ m) max{n,m} + mK ). In fact, for c = m
we would have an exhaustive-search algorithm for LREC,
but the running time would be exponential in m, making this
solution impractical.
IterativeLREC follows the below main idea: in each

loop, uniformly and randomly pick a transmitters u and con-
figure (an approximation to) the optimal radii for u given
that the radius of the rest of the transmitters are fixed. The
algorithm breaks the loop when a predefined number of steps
K ′ ∈ N+ has been reached. Therefore, the running time of
IterativeLREC is O

(
K ′(l(n2 + m2)+ mK )

)
.

E. A RELAXATION OF LREC
It appears that the main obstacles for finding an exact solution
to LREC problem are the following: (a) Firstly, it is not
obvious that there is a closed formula as a function of the
radius and the locations of the transmitters for the maximum
radiation inside the A plane. (b) Subsequently, following the
suggestion of Lemma 2, there is no obvious potential function
that can improve the objective function value by providing
directions inside Rm.
In view of the above difficulties, we apply the following

relaxation to the LREC problem,which circumvents the prob-
lem of finding the maximum radiation caused by multiple
sources:
Definition 3 (Low Radiation Disjoint Charging (LRDC)):

Assume P is a family of receivers and M is a family of
wireless transmitters which are located insideA interest area.
Assume also that each receiving mote v ∈ P has C (0)

v initial
energy capacity and every transmitter u ∈ M initially has
E (0)
u available energy. Configure each transmitter’s u ∈ M
radii ru, in order to maximize the total usable energy fueled to
the network’s receivers while the electromagnetic radiation
in any point of A respects ρ threshold. We suppose that rf
charging starts at time 0 and the model we follow is the scalar
model with cut-offs ru. Finally, we impose the restriction

that no receiver should be charged by more than a single
transmitter.

Note that LRDC is very similar to LREC, except for the last
constraint. By using a reduction from the Independent Set in
Disc Contact Graphs [14], we can prove the following (which
is also a strong indication for the hardness of LREC):
Theorem 1: LRDC is NP-hard.
LRDC can be formulated as an integer program (called as

IP-LRDC) as follows: Initially mind that, for every trans-
mitter u ∈ M, the distance of points/receivers in P from
u configures a (complete) ordering σu in P . Particularly, for
a transmitter u ∈ M and for any two receivers v, v′ ∈ P ,
holds that v ≤σu v

′ if and only if dist(v, u) ≤ dist(v, u). For
every transmitter u, we denote by i(u)rad the receiver that has
the bigger distance from u and can be charged by u while
u respects the regulations of radiation limit which is than ρ
value. In the same way, let i(u)nrg be the furthest receiver from
u with the difference that if u has radii at least dist(i(u)nrg, u),
then u’s energy will run out. Assuming we break ties in σ
arbitrarily, receivers i(u)rad and i

(u)
nrg are uniquely defined for any

transmityter u. IP-LRDC is given below.

max
∑
u∈M

E (0)
u xi(u)nrg,u

+

∑
v≤σu i

(u)
nrg

(xv,u − xi(u)nrg,u
)C (0)

v


subject to:

∑
u∈M

xv,u ≤ 1, ∀v ∈ P (14)

xv,u − xv′,u ≥ 0, ∀v, v′ ∈ P, ∀u ∈M :
v ≤σu v

′ (15)

xv,u = 0, ∀v ∈ P, ∀u ∈M :
v >σu i

(u)
rad or v >σu i

(u)
nrg (16)

xv,u ∈ {0, 1}, ∀v ∈ P, ∀u ∈M. (17)

In the above IP, the indicator variables xv,u are equal to
1 if and only if u is the (unique) transmitter that reaches v.
Constraint (14) guarantees that exists at most one transmitter
per receiver in a feasible assignment of LRDC. Furthermore,
(15) guarantees that if a receiver v′ can be reached by u, then
u can also reach all receivers that are closer to it. Finally, (16)
makes sure that the radiation regulations hold and have been
taken into account and also suggests that there is no need for
a transmitter to try to reach receivers further than i(u)nrg.
Concerning the the objective function of IP-LRDC,

we note that, for any tyransmitter u ∈M, if ru ≥ dist(i(u)nrg, u)
(which implies xi(u)nrg,u

= 1), the useful energy transferred from

u to the nodes of the network will be exactly E (0)
u . Indeed,

E (0)
u xi(u)nrg,u

+
∑

v≤σu i
(u)
nrg
(xv,u−xi(u)nrg,u

)C (0)
v = E (0)

u , when xi(u)nrg,u
=

1, since, by constraint (15), we have that xv,u = xi(u)nrg,u
, for

any v ≤σu i
(u)
nrg. On the other hand, when xi(u)nrg,u

= 0, charger
u will not be able to transfer all of its energy, because the
nodes it can reach cannot store it all. This is also captured
by the objective function, since E (0)

u xi(u)nrg,u
+
∑

v≤σu i
(u)
nrg
(xv,u −

xi(u)nrg,u
)C (0)

v =
∑

v≤σu i
(u)
nrg
xv,uC

(0)
v , when xi(u)nrg,u

= 0, which is
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FIGURE 1. Network snapshot using 5 chargers. (a) ChargingOriented. (b) IterativeLREC. (c) IP-LRDC.

equal to the total energy that the nodes reachable from u could
harvest in total.

In the experimental evaluation, we find a solution LRDS
by first solving a linear relaxation to IP-LRDC and then
rounding the solution so that the constraints (14), (15) and
(16) are satisfied. Clearly, the value that we compute this way
is a lower bound to the optimal solution of the LRECproblem.
This bound is used to evaluate the performance of the iterative
algorithm IterativeLREC (see Section III-D).

F. PERFORMANCE EVALUATION
In our simulations, we compared IterativeLREC,
IP-LRDC (after the linear relaxation) and an additional
transmitter configuration scheme in which each transmit-
ter u sets its radii equal to dist(u, i(u)rad ). This new config-
uration is referred to as ChargingOriented because
it assigns the maximum radii to each transmitter, without
individually violating the radiation threshold. In particu-
lar, ChargingOriented gives the best possible rate of
transferring energy in the network and serves as an upper
bound on the charging efficiency of the performance of
IterativeLREC, but is expected to achieve a poor per-
formance on keeping the radiation low, due to frequent, large
overlaps. Our evaluation setup consist of a uniform network
deployment with |P| = 100, |M| = 5 and K = 100,
which is depicted in Fig. 1. We observe that the radius of the
transmiters in theChargingOriented case are larger than
the other two cases. In the case of IP-LRDC the radiation
constraints lead to a configuration where two transmitters
are not operational. IterativeLREC provides a configura-
tion in between the ChargingOriented and IP-LRDC,
in which some overlaps of smaller size are present.

For the main simulation phase, we deployed uniformly at
random |P| = 100 identical network receivers, |M| = 10
identical wireless transmitters and K = 1000 points of
pointes of interest regarding radiation. The following parame-
ters has been set to the following valuses α = 0, β = 1, γ =
0.1 and ρ = 0.2 in order to get the best results regarding
illustration. Additionally, the above experiment has been
conducted 100 times to provide the corresponding statistical
analysis that the reader expects. The findings presents a

statistical smoothness (the median, lower and upper quartiles,
outliers of the samples) as they demonstrate very high con-
centration around mean value. Our analysis is mainly focused
on three basic metrics: charging utility, energy balance and
radiation levels.

1) CHARGING EFFICIENCY
The objective values achieved were 80.91 by the
ChargingOriented, 67.86 by the IterativeLREC
and 49.18 by the IP-LRDC. As expected, the
ChargingOrientedmethod is the most efficient and fast
regarding charging, while at the same time high levels of
radiation are created. As we observe in Fig. 2a, it distributed
the energy in the network in a very short time. The efficiency
of ChargingOriented both in terms of objective value
and in terms of time is explained by the frequent charger
radii overlaps that are created during the configuration of
the chargers (e.g., Fig. 1). IP-LRDC achieves the lowest
efficiency of all due to the small charging radii and conse-
quently small network coverage by the chargers. Our heuristic
IterativeLREC achieves high enough efficiency w.r.t. the
radiation constraints. It’s performance lies between the per-
formance of ChargingOriented and IP-LRDC, both in
terms of objective value and in terms of time.

2) MAXIMUM RADIATION
Mind that this factor is critical concerning the safety aware-
ness per transmitting method. Dangerous radiation expo-
sure, created in network force us to have second thought on
methods application in real life. this case is verified with
ChargingOriented, which despite its high efficiency in
charging, it exhibits elevated levels of radiation (Fig. 2b).
On the other hand, IterativeLREC performs quite well,
since it respects the radiation threshold while fuels the net-
work with sufficient amoun of energy.

3) ENERGY BALANCE
Even though the proposed algorithmic solutions were not
designed having energy balance in mind, nevertheless, this
metric is crucial for the lifetime of Wireless Distributed Sys-
tems, since early disconnections are avoided and nodes tend
to save energy and keep the network functional for as long as
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FIGURE 2. Efficiency and radiation. (a) Charging efficiency over time. (b) Maximum radiation.

FIGURE 3. Energy balance. (a) ChargingOriented. (b) IterativeLREC. (c) IP-LRDC.

possible. This is why we chose to measure the performance
of the three algorithms with respect to this metric. Fig. 3
gives a graphical representation of the energy provided in
the network throughout the experiment. By sorting nodes by
their final energy level, we can see that IterativeLREC
achieves efficient energy balance that approximates the per-
formance of the powerful ChargingOriented.

IV. EFFICIENT ALGORITHMS FOR POWER
MAXIMIZATION IN THE VECTOR MODEL
In this section, our intention is to stand out from the majority
of the state of the art works and present a special model and
the corresponding algorithmic approach for two optimization
problems concerning energy management in WPT networks.

In particular, Katsidimas et al. [15] use a model that nat-
urally derives from the basic properties of the superposition
of electromagnetic waves which can capture constructive and
destructive effects. With respect to this model, they study
two problems of particular interest for the maintenance of
the wireless power transmitters efficiency, so as to maximize
the overall power in the system, which can be solved in
polynomial time. A distributed solution running in pseudo-
polynomial time is presented, and also provide theoretical
performance guarantees. Last but not least, three new heuris-
tics have been designed and evaluated for the second problem.
Related Work: Several research has been done on a number

of problems concerning the field of wireless charge. The
overwhelming majority, if not all, are studying such problems
based on the scalar model. For example, Zhang et al. [16] aim
in maximizing charging quality in a two dimensional field,
in the meaning that given a number of predefined candidate
locations for placing transmitters, provide as an outcome the
power allocation and the location of each transmitter with
respect to an initial power budget. In Addition, [7] provides
experiments to evaluate the charging rate, the packet loss
rate increased by interference effects, and efficient ranges
for power and data transfer of the transmitters. There is an
analysis that on how the charging process is affected by
placement and relative distances of many chargers. Similarly
to us, they study additive and cancellation energy aggregation
at the nodes, but also the merit of having different channels
for charging and data propagation in different frequencies.

Tong et al. [17] search for the wireless charging technology
impact on both routing management and sensor network
topology. They provide a formalization for the deployment
and routing problem and achieve to prove that is a NP-
complete problem. Finally, they design and evaluate through
extensive simulations efficient heuristics, for the correspond-
ing problem. Reference [18] presents the first distributed
MAC protocol for wireless power receivers/sensors, and
through an extensive evaluation that both includes experimen-
tal and simulation results, they present a significant network
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throughput improvement that reaches 112% in average over
the modified unslotted CSMA MAC protocol. In particular,
the experimental test-bed showed how the topology of the
transmitters, the frequency that they use and their number
can improve or not the receivers charging time. An exten-
sion of the same research team is presented in [19], where
the authors study the setup of directional wireless power
transmitters and the network’s data communication cost. This
particular concept requires sharing channel techniques in the
medium access control layer while particular handling also
needs the trade-off between wireless power transfer and data
transmitting functions. An experimental evaluation presents
here as well that the transmitters deployment, the transmitting
frequency and the number of the chargers affects the charging
quality of the sensors.

Recently, radiation complementary problem has attracted
more researchers to work on it as wireless power transfer
must be aware of such regulations concerning human health.
In specific, Dai et al. [12], Li et al. [20] aim to optimize
the utility of the receivers by configuring the transmitting
power of the charging device with respect that we do not
meet high radiation concentration in a particular filed of
action. Similarly, Leeuwen et al. [21] aim to maximize the
receiving power by remote devices that are located in a long
distance while the radiation maintains in low levels near the
transmitters position. A centralized algorithm is provided to
address the problem above that both has a good approxima-
tion to the optimal and satisfies the EMR threshold. Some
of the health risks and the safety constrains that should be
followed can be found in [22], where a scientific analysis is
provided to present the importance of radiation awareness in
modern energy devices. Concerning wireless communication
andmore specific in networks that consist of medical devices,
a review is presented in [23], where issues of electromagnetic
interference for medical equipment are addressed.

Finally, in [24] a more dynamic setup is presented as the
problem defines to configure both the orientation of a number
of directional antennas that the transmitters are equipped with
and the deployment location. The target is to maximize the
total charging efficiency with respect to some connectivity
restrictions. Algorithms and evaluation are both provided to
verify the performance of their solution. In most of the sensor
networks that combine WPT technology we come up with
problems like: the sensor’s energy is not enough, a high
latency packet delivery, sensor’s limited storage capacity
etc. All the above cause a low duty cycle sensor operation.
Gao et al. [25] provide an algorithm that finds the optimal
sleeping scheme for a node by increasing the number of
power transmitters. Wireless Power transfer has been also
been adopted in UAV applications where systems that enable
wireless power transfer to those systems, recharge not only
sensors but also other electronics. Prototypes for both the uav
and the transmitters installation are presented in [26]. On the
contrary, [27] presents a study that proves how the data link
procedure of a uav suffers from the electromagnetic radiation
that co-exist in the same area. Both analysis and experiments

showed that communication efficiency is quite sensitive in
such applications.
Contribution: In view of the above vector charging model,

this study is the first to our knowledge that algorithmically
study a more precise model, that can describe super-additive
and cancellation effects which rise from the superposition
of the electromagnetic fields. Thus, two new problems are
introduced for the efficient utilization of the emitted power
by the chargers. Particularly, we first consider to find the
operation level of each transmitter to optimize the cumulative
power received by the receivers set, while in the second one,
we aim to configure the operation levels of the chargers that
maximize the total power of all k sets of receivers with the
minimum power sum.

The first problem, named as MAX-POWER is presented
in a quadratic form and prove that we can get an opti-
mal solution in pseudo-polynomial time. Thus, a family of
distributed algorithms are presented depending on the sys-
tem’s knowledge levels, which in practice are quite fast
as we figure out from the simulations. Last but not least,
an extensive simulation procedure can be found for the
three heuristics designed to address the second one called as
MAX-kMIN-GUARANTEE.

To get a clearer and intuitive picture of the above defini-
tions regarding vector model, we give the following indicative
example: Consider that our system consist of two chargers,
C1 and C2 which are located at (0, 0) and (2, 0) locations,
inside our area of interest. Furthermore, assume a receiver
R is located at (1, 0). Note that, for clarity reasons, the fol-
lowing constants are set to 1, λ = β = δ = 1. For
the first case, in which a single charger is working in full
capacity, the power that R receives is P(C1,R) = P(C2,R) =

‖E(C1,R)‖2 = ‖E(C2,R)‖2 =
(

1
dist(C1,R)

)2
= 1. For

the second case that both chargers work in full capacity,
the receiving power by R is provided by (9), that is

P({C1,C2},R) = ‖E(C1,R)+ E(C2,R)‖2.

Mind that, since R is equidistant from both transmitters C1
and C2, the vectors E(C1,R) and E(C2,R) share the same
direction. Thus,P({C1,C2},R) = 4P(C1,R) = 2(P(C1,R)+
P(C2,R)) = 4. It is worth to mention that the total receiv-
ing power by R when both transmitters are operational with
respect to vector model is 4 times more than the corre-
sponding sum of powers in which we just sum the powers’
amplitudes for the two chargers as Friis model suggests; this
phenomenon can be characterized as superadditive and is
visible in the blue curve at location (1,0) in Figure 4a.

Still in the same instance but in a different case, con-
sider a receiver R′ located at

(
5
4 , 0

)
. Then by equation (8),

E(C1,R′) = 4
5 ·

[
0
1

]
, and also E(C2,R′) = 4

3 ·

[
0
−1

]
.

By equation (9), the total receiving power by R′ when
both transmitters work in full capacity is P({C1,C2},R′) =(

8
15

)2
≈ 0.28. Here, we have to highlight what we call

destructive or cancellation case and visible in local minima
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FIGURE 4. Example showing the superadditive and cancelation effects.
(a) The power distribution between the two chargers. Different curves
represent different operation levels of the chargers.

in the curve shown in Figure 4a. More specifically, the total
receiving power by R′ when the two chargers work in full
capacity is less than the individual power that is offered per

charger which is min{P(C1,R′),P(C2,R′)} =
(
4
5

)2
≈ 0.64.

A. PROBLEM DEFINITION
Assuming we have a topology that both includes a set R of
rf receivers and a set C of rf power transmitters. For every
transmitter C ∈ C, let xC ∈ [0, 1] (called the configura-
tion of a charger) be a variable that servers to quantify the
transmitting power of C in the meaning that if x equals to
1 then C works in 100% of its capacity, while if x equals to
zero then C is off. Thus, in the general case where we also
introduce the configuration of the charger, equation (8), turns
to have the following form xC · E(C,R) = xC · β · 1

dist(C,R) ·

e−j
2π
λ
dist(C,R). Also let C(x) be the configuration setup for a

set of transmitters in a system.
We initially consider the following problem:
Definition 4 (MAX-POWER): For a set of receiversR and

a set of transmitters C, come up with the transmitters’ config-
uration that optimizes the receiving power toR. That is, find
x∗ such that

x∗ ∈ arg max
x∈[0,1]C

P(C(x),R), (18)

where P(C(x),R) =
∑

R∈R P(C(x),R).
Wewill denote by

(R
k

)
the set of all subsets ofR containing

k nodes. Subsequently, we define and study the following
generalization of MAX-POWER, which finds a configuration
that aims to optimize the k-sets nodes with small receiving
power levels:
Definition 5 (MAX-kMIN-GUARANTEE): In a system

that consist of a set of nodes R and a set of transmitters C,
come up with the transmitters’ configuration that optimize

the minimum total receiving power for all possible subsets of
k size that can be made fromR. Hence, configure x∗ in a way
that

x∗ ∈ arg max
x∈[0,1]C

min
A∈(Rk )

P(C(x),A), (19)

where P(C(x),A) =
∑

R∈A P(C(x),R).

B. MAXIMUM TOTAL POWER
The subsection describes an algorithm for MAX-POWER.
Consider a set of nodes R = {R1, . . . ,Rn}, where n =
|R| and a set of wireless transmitters C = {C1, . . . ,Cm},
where m = |C|, . Assume that x ∈ [0, 1]m is the trans-
mitters’ configuration and xj is the capacity level of charger
Cj, j ∈ [m].
Initially, we write MAX-POWER problem as a quadratic

program. Hence, for each R ∈ R, define Q(R) be a 2 × m
matrix whose j-th column is the two dimension vector of the
electric field created from Cj at R, i.e. Q

(R)
:,j =

√
γ ·E(Cj,R),

for each j ∈ [m]. Hence, the harvesting power by the node R
can be written as:

P(C(x),R) = γ ‖E(C(x),R)‖2

= γ

∥∥∥∥∥∑
C∈C

xCE(C,R)

∥∥∥∥∥
2

=

(∑
C∈C

xC
√
γE(C,R)

)T (∑
C∈C

xC
√
γE(C,R)

)
= (Q(R)x)TQ(R)x,

where (·)T denotes the transpose of a matrix or vector.

Therefore, setting H
def
=
∑

R∈R
(
Q(R)

)T Q(R), the solution to
MAX-POWER is given by

x∗ ∈ arg max
x∈[0,1]m

xTHx. (20)

In general, the maximization of a quadratic form is a non-
convex quadratic program (even when H is positive semi-
definite, which is the case here), hence cannot be solved in
polynomial time. Nevertheless, by taking into account several
properties and the special form of our problem, we are able
to provide an efficient algorithm for MAX-POWER.

We first need the following elementary lemma that consid-
erably reduces the size of the search space.
Lemma 4: If x∗ is an optimal solution to MAX-POWER,

then x∗ ∈ {0, 1}m. In particular, there exists an optimal solu-
tion to MAX-POWER in which each charger either operates at
full capacity or not at all.

The proof uses some positive semi-definite (PSD) matrices
properties. Mind that, Lemma 4 and Theorem 2 below imply
that any local maxima of the objective function P(C(x),R) =
(Qx)T Qx are also global maxima that belong to {0, 1}m. This
means, that the gradient descent method can be used to find a
global maximum (i.e. an optimal solution to MAX-POWER).
In the experimental evaluation, we used a pseudopolynomial
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Algorithm 3 IterativeMaxPower
Input : dist,R, C, communication_range
Output: x

1 begin
2 x ∈ {0, 1}m is a random initial charger configuration;
3 while

∃Cj ∈ C : P(C(x),R) < P(C(x(j,a)),R), a ∈ {0, 1}
do

4 choose randomly a charger Cj ∈ C;
5 RCj = 0 ;
6 foreach R ∈ R do
7 if dist(Cj,R) ≤ communication_range then
8 RCj = RCj ∪ R

//at this point Cj communicates with R
and receives E(C(x),R);

9 xCj = argmaxa∈{0,1} P(C(x(j,a)),RCj );

10 return x;

distributed algorithm for computing the exact optimum con-
figuration for MAX-POWER, which is quite fast in practice.
We present this algorithm later in this section.
Theorem 2: A configuration x∗ ∈ {0, 1}m is an opti-

mal solution to MAX-POWER if and only if P(C(x∗),R) ≥
P(C(y),R), for each y that comes from x by setting exactly
one of its coordinates to either 0 or 1.

Lemma 4 and Theorem 2 suggest that the follow-
ing distributed algorithm (called IterativeMaxPower)
can be used to find an exact optimum configuration for
MAX-POWER: At first, we begin from an arbitrary configu-
ration in {0, 1}m. In each subsequent step, we scan the set of
chargers to find a charger C ∈ C such that the total power
received by R can be increased by flipping the operation level
of C (e.g. if C operates at full capacity, it checks whether the
received power is increased if it is not operational and vise
versa). The algorithm terminates if there is no such chargerC .
For a given topology of a set C of chargers and a set

R of receivers, define δ(C,R)
def
= min{|P(C(x),R) −

P(C(xj,a),R)| : x ∈ {0, 1}m, a ∈ {0, 1}, j ∈ [m]}.
In particular, δ(C,R) is the minimal increment in the total
received power that can be incurred by a single iteration of
IterativeMaxPower. In addition, notice that every such
iteration takesO(m3) time. Finally, given that the chargers and
receivers satisfy the placement constraints of Subsection Vec-
tor model, a crude upper bound for the maximum total power
is nm2γβ2 4π

2

λ2
= O(nm2). Therefore, we have the following:

Theorem 3: In a system that consist of a set R of n
nodes that comply with the deployment restrictions of Vector
model Subsection and a transmitters’ set C of size m, Algo-
rithm IterativeMaxPower aims to provide an optimal
solution of MAX-POWER in O

(
1

δ(C,R)nm
5
)
.

Note: Different levels of knowledge of the wireless
system have been considered in the implementation of

IterativeMaxPower. Hence, we define the communica-
tion radii of a transmitter as the area where it can commu-
nicate by messages from nodes. To this end, the transmitters
ignore any information coming from nodes outside from the
communication radii that each one covers. For the case that a
transmitter Cj exchange messages with a receiver R, the node
propagates to Cj the electric field vector E(C(x),R), where
x is the configuration at the time when the communication
took place. This information suffice for the transmitter to find
P(C(x(j,a)),R), for each a ∈ {0, 1}, since P(C(x(j,a)),R) =
γ ‖E(C(x),R) + (a − xj)E(Cj,R)‖2. By using the above it is
easy to compute P(C(x(j,a)),RCj ) for each a ∈ {0, 1}, where
RCj ⊆ R is the receivers subset that can communicate with
Cj. Algorithm 3 implements IterativeMaxPower in a
distributed manner. For example, the transmitters check for
their configuration every a predefined period of time, but for
the above algorithm we only check those that can positively
contribute to the total power of the system by changing their
state.

C. MAXIMUM k-MINIMUM GUARANTEE
The current section, presents the general version of
MAX-POWER, which we previously defined as MAX-kMIN-
GUARANTEE and the corresponding algorithms that attempt
to solve it. Although, we have the feeling that the problem
tends to be computational hard, we could not provide a formal
proof.

Algorithms that exhaustively search every possible
solution is not our case for this kind of problem. Still we
provide the simulation of such approach for performance
comparison purpuses. Different to Lemma 4 we show in the
following example that different to x ∈ {0, 1}m capacity
transmitting levels of the chargers succeed in resulting better
performance. Once again there are two nodes R1 and R2
which are located at (− 3

4 , 0) and at ( 134 , 0) respectively
and two transmitters C1 at (0, 0) and C2 at (4, 0). Also,
let λ = β = γ = 1. Figure 5a depicts the case in
which a fractional power capacity of C1 achieves to result
a better min{P({C1,C2}, {R1}),P({C1,C2}, {R2})} value. So,
x ∈ {0, 1}2 offers us 4 configuration cases. We just analyze
the 3 out of 4 as the one which suggests both transmitters to
be off does not provide any interest. Thus, for the first case
where just C1 works, we result P(C1,R1) = ( 43 )

2
= 1.77

and P(C1,R2) = ( 4
13 )

2
= 0.094. The second case suggests

that C2 is the only one to work. For this configuration we
resulted min{P(C2,R1),P(C2,R2)} = ( 14 )

2
= 0.0625. In the

final case, where xC1 = xC2 = 1, the power at the points is
P({C1,C2},R1) = ( 43 +

4
19 )

2
= 2.38 and P({C1,C2},R2) =

( 43 −
4
13 )

2
= 1.025. Clearly if the power from R1 is less by e,

then P({C1,C2},R2) succeeds to have an increase minimum
while the P({C1,C2},R1) remains high.

With respect to the above hardness indications, we are
forced to apply a relaxation to MAX-kMIN-GUARANTEE
where we aim to find the optimal configurations among
{0, 1}m, i.e. the possible configuration options are 2, either
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FIGURE 5. Counter-example for fractional operation level of the chargers
in MAX-kMIN-GUARANTEE problem. (a) The power distribution in the
straight line from the two chargers. Different curves represent different
operation levels of the chargers.

the transmitter works in full power or it is off. Bellow you
can find the 4 approaches solving the relaxed version of the
problem, including an optimal algorithm and three heuristics.

1) OPTIMAL CONFIGURATION
We present this approach in order to provide a performance
indicator for the three heuristics bellow. Indeed, Optimal
Algorithm (OPT) cannot be practically used as both the search
area and execution time are prohibitive. Nevertheless, OPT
checks every possible configuration of the transmitters and
finally choose the one (among 2m) that better serves our case.

2) GREEDY ALGORITHM (GRE)
GRE, as its name implies it follows a greedy strategy to find
the transmitters’ configurations. In each round, a transmitter
is selected uniformly at random and checks which of the two
possible configurations achieve the best result at the current
stage. The sequence that the transmitters are chosen does not
affect the outcome neither the initial random configuration of
the transmitters at the beggining as we are going to show in
the evaluation subsection.

3) SAMPLING ALGORITHM (SAM)
In an effort to avoid solving the problem for such a large
instance, we designed an algorithm that relies on the well-
known strategy of sampling. So instead of finding the best
configuration for every possible k−set in the network, we are
trying to find a solution that best serves a smaller subset
(σ k−sets) with the prospect of giving us a reliable solution.

In specific, SAM runs in two stages. Initially it creates
the σ k−sets uniformly at random and matches the optimal
transmitters’ configuration that came up from 3 per each

k-set. Having the optimal configurations per k − set an
iterative process begins in which we check the contribution of
a charger chosen randomly when works in full capacity and
when it is off for every k − set . The operation stage that has
the bigger contribution is chosen as the charger’s operational
status. Step by step and by following the above process, after
m loops the σ k − sets will share the same transmitters’
configuration. In this approach we can skip the possibility for
our algorithm to get trapped in a local optima. To this end it’s
obvious the trade-off we have to pay in performance due to
sampling technique.

4) FUSION ALGORITHM (FUS)
FUS algorithm meets the benefits of the previous two
approaches. Similar to SAM, FUS begins bymatching to each
receiver the transmitters’ group configuration that maximizes
its received power quantity. It is obvious that in this step
we have n different configurations (one per receiver). After-
wards, the algorithm tries to change the different configura-
tions which in the last step we get a single one, with respect
to the following conditions: pick the charger’s configuration
that in the current step provide the larger sum of the k nodes
with the less power. Mind that FUS initiates from the best
individual setup and ends up with all receivers sharing a
common chargers’ configuaration.

D. EVALUATION
In this subsection we present the corresponding performance
simulations of the above mechanism. The tool used for the
benchmarking is Matlab 2016a and the considered system
consist of 15 chargers and 100 receiver points randomly dis-
tributed in a rectangular 10m2 area. The following parameters
need to be clarified for your better understanding consid-
ering the antenna and transmitting technology. To this end,
each charger is equipped with an omni directional, isotropic
antenna of 2W power, with a 29cmwavelength and 2dbi gain,
while the receivers’ antenna is 1dbi.

The simulation results study the following performance
metrics: primarily, the cumulative power fueled into the sys-
tem and then some supplementary information on the mes-
sages exchanged and the communication overhead.

As cumulative power we define the sum of the power that
each of the receivers harvest. As the chargers’ communication
radii gets larger, 3 succeeds in performing very good results
regarding optimal solution. Fig 6 depicts the cumulative
received power by the nodes over 4 different communication
ranges of the transmitters for 90 rounds time period.

One of the most important observations is that the cumula-
tive power with the global knowledge (open) never decreases
over time like the others do. In different cases, where a limited
communication radii is applied, we resulted that there are
steps that the total received power decreases due to local
knowledge ability of a transmitter. Since chargers see only
receivers inside their neighbourhood, it is very likely to pro-
vide a configuration in favour of this particular subset that is
not aligned with the total set of receivers.
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FIGURE 6. Cumulative power over time for different knowledge levels of
IterativeMaxPower.

Another observation, is that in early steps it is possible to
result with a better total power from limited communication
radii rather than open. This happens cause the algorithm fol-
lows a greedy approach which in combination with a decision
based on network’s local knowledge can perform temporarily
a better power value. Still in the end, the global network’s
knowledge will perform better.

We also observe that when the communication range is 1m
we achieve a near optimal solution. This is because of the
received power of the nodes far from the charger, which is
reduced due to distance and they don’t have added value to
the cumulative received power.

FIGURE 7. Algorithms’ Cumulative power (of k−set with minimum
power) for different values of k .

Regarding MAX-kMIN-GUARANTEE Fig 7 presents the
performance of our heuristic over different size of k . What
we observe in this evaluation process is two things. The
first indicated that GRE has similar performance to SAM for
k < 27. Indeed, this is due to the sampling procedure and
especially when the sample is small. For the complementary
case where k > 27 we result a significant improvement. As it

was expected FUS heuristic is the one that approximatesmore
efficiently the exhaustive OPT algorithm.

Fig 8a depicts the network’s message overhead over differ-
ent communications ranges that vary from 0.3 to 1.5. Those
messages have been exchanged during running time while the
transmitters try to configure their operational status via the
distributed algorithm. What the reader can easily distinguish
is that the communication radii grows together the number of
messages exchanged within the network. At the same time,
there is evidence that a trade-off exists between the amount of
information exchanged and the effect of the resulting power.
Finally it is noted that from the point of 1m− 1.2m commu-
nication range and after, the contribution of the exchanged
messages becomes smaller.

V. PEER TO PEER WPT
Peer to peer wireless power transfer is a new, futuristic
method that achieves to almost nullify the emitted EMR
due to wireless power transfer. This is due to the fact that
this method does not require any strong network entity (i.e.
chargers) to carry all the available energy and transfer it to the
nodes of the network but lets the nodes to charge each other
when they interact. The exact amount of energy depends on
their needs and on other design aspects of the network.

In this section we will present some protocols for dis-
tributed networks which consist of computationally weak
devices that form specific network structures and try to con-
verge to some energy distributions, designed for the corre-
sponding structure. More specifically, we will present proto-
cols that construct the star network structure where one of the
agents should be the central one and each other agents should
be a peripheral. Also, the connections should be established
only between the central agent and each peripheral agent.

A. RELATED WORK
Wireless Power Transfer has been extensively studied in the
context of (mobile) ad hoc networks. In most of these studies,
powerful chargers are used with the sole purpose of replen-
ishing the energy of the network nodes. However, there are
some works in the literature that investigate WPT from a
different viewpoint like [28] that evaluate WPT in the con-
text of electromagnetic radiation (EMR) safety. They design
protocols for the placement and configuration of chargers
in static networks in order to guarantee EMR safety at any
point of the network area. In the same context, the authors in
[29] attempt to study (for the first time in the state-of-the-art)
path radiation problem created by distinct electromagnetic
sources with respect to vector model. In the light of the above,
they design and evaluate both an algorithm and a heuristic that
achieve different trade-offs between radiation and trajectory
length of a moving agent.

Madhja et al. [30] assume a network that consists of mul-
tiple mobile chargers with limited energy and static sensor
nodes. The authors design efficient traversal and coordination
strategies to extend the network lifetime of static sensor
networks. In contrast, Angelopoulos et al. [31] investigate
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FIGURE 8. Impact of communication range on different metrics.
(a) Communication overhead over different communication ranges.
(b) Cumulative power over different communication ranges at the 90th
round of Algorithm 3. (c) Ratio of cumulative power to communication
overhead over different communication ranges.

mobile ad hoc networks and a single mobile charger with
infinite energy that traverses the network in order to recharge
the agents as required.

Dhungana et al. [32] investigate the advantages of peer-to-
peer energy exchange betweenmobile devices. They consider
mobile devices can be charged either by using a charging
cable or in a peer-to-peer manner based on their interactions
with other devices and their goal is to minimize the amount
of times a device will need to be charged through a charging
cable. Reference [33] study the potential of crowdcharging.
More specifically, authors investigate its feasibility and the
challenges (software and hardware) that emerge for its use.
Moreover, they develop an application which constructs a
social network for the users, which manages the entire pro-
cess of power sharing between the corresponding mobile
devices.

Another interesting study in the literature [34] investigates
the peer-to-peer energy transfer with tree network formation
and appropriate desired energy distributions.

B. THE MODEL
The network consist of m mobile agents denoted as M =

{u1, u2, . . . , um} which are equipped with the appropriate
wireless power transceivers in order to be able to perform
energy exchanges. We assume the the agents are computa-
tionally very weak devices and their memory is very small.
This limitation enforces us to use a very small amount of
possible states which are used by the agents to self-operate
and construct the network structure, following the rules of an
interaction protocol.

Each agents u, at any time t ≥ 0, has a configuration

denoted as Cu(t)
def
= (Eu(t), qu(t),Ru(t)) where Eu(t) is the

energy level, qu(t) is the state from a predetermined set Q
and Ru(t) is the memory of agent u at time t . Also, we define
a connection state q{u,v}(t) that describes the relationship
between the agents u and v at time t . In ourmodel, each pair of
agents can be either connected or not and thus, this connection
state can take values in {0, 1}.

All agents in the network run the same interaction protocol
P when they interact. The interaction takes place between
two agents when they come close to each other. The interac-
tion protocol describes how the agents should update their
configuration state, i.e.what is the new energy level, their
new state and the values of the variables on their local
memory.

It is important to note that at each time t , only the configu-
ration of the two agents u and v that interact are updated. Also,
only the connection state between this specific pair of agents
that interact (q{u,v}(t)) may change. Every other configuration
and connection state between any pair of agents (even if u or v
are involved) do not change.

Another critical issue that has been taken into consideration
in this model is the energy loss of each wireless energy
transfer. This energy loss factor β indicates the amount of
energy that is not received by the receiver, although it is sent
by the transmitter and it depends on environmental conditions
and the material with which the agents are equipped with in
order to be able to transfer energy wirelessly.

VOLUME 7, 2019 3157



G. Filios et al.: On EMR Control for WPT in Adhoc Communication Networks

To further enhance our model and make it even more
realistic, we consider a scenario, where energy loss factor β
can be different at each interaction and it is not known by
the agents. More specifically, in the experimental evaluation
of our proposed algorithms we assumed that loss factor β is
an independent random variable which follows the Normal
Distribution N (0.2, 0.05).

C. PROBLEM DEFINITION AND METRICS
Our problem, Energy Aware Network Formation, is to both
construct specific network structure and to achieve a targeted
energy distribution for the network agents. In order to eval-
uate our solutions, we designed two metrics, the structural
distance and the energy distance.
A formal definition of our problem is the following.

Assume two graphs G1 and G2 on the same set of vertices n.
We denote by H (G1,G2) the hamming distance between

those graphs i.e. H (G1,G2)
def
=
∑

e |Ie(G1)− Ie(G2)|, where
Ie(G1) and Ie(G2)) are the indicator variables for the existence
of edge e in the corresponding graphs and the summation
takes into account all possible edges of the graphs, i.e.

(m
2

)
.

The structural distance of the state of the network at time t ,
denoted asG(t) from the target graphG is defined as follows:

δst (G,G(t))
def
= min

G∼G(t)
H (G,G), (21)

where the minimum is taken over all graphs G that are iso-
morphic to G(t).

The definition of the energy distancemetric is based on the
well-known Total Variation Distance in stochastic processes
and probability theory [35], [36]. Formally, let us denote by
E the target energy distribution for the set of agents M,
by Eu(t) = Eu(t)∑

u Eu
the relative energy level of agent u ∈ M,

by E(t) the relative energy distribution at time t and by Sm the
permutations of m.

The energy distance of the energy distribution of the net-
work at time t to the targeted energy distribution is defined as
following:

δet (E, E(t))
def
= min

σ∈Sm

1
2

m∑
i=1

|Ei − Eσ (ui)(t)|, (22)

where the minimum value is taken among all possible permu-
tations of agents.

The problem that we study in this section is to design pro-
tocols that aim to nullify the structural distance (i.e. construct
the targeted graph), minimize as much as possible the energy
distance (i.e. the energy distribution should be very close to
the targeted one) and also minimize the total energy loss in
order to prolong the network lifetime. Formally, the problem
is the following:
Definition 6 (Energy Aware Network Formation Problem):

Consider a network that consists of a set of mobile agents
M. We denote by G the target graph on M, by E the target
energy distribution. and by ε, θ > 0 small constants. At each
time t, a probabilistic scheduler selects two agents to interact

according to an interaction protocol. The problem is to find
an interaction protocol that at a time t ≥ 0 achieves (i)
δst (G,G(t)) = 0, (ii) δet (E, E(t)) ≤ ε and (iii) Eloss =∑

u Eu(0)−
∑

u Eu(t) ≤ θ .
In this section we focus on star networks structures, i.e. the

target graph is a star graph where only one node on the graph
(called central) has edges to all other nodes and there is no
any edge between any other pair of nodes. Since our network
consists of m agents, the total number of edges in the target
graph are m − 1 which equals to the degree of the central
agent.

This network structure, by design, necessitates the central
node to receive all network flow. The most critical conse-
quence of this is that the central node consumes its energy
in a much higher rate compared to the other nodes.

Based on this observation, we define a targeted energy
distribution where the targeted energy level of each agent
is proportional to the degree of the agents in the graph.
More specifically, at any time t , the targeted energy level for
the central agent is Etotal (t)

2 while for every peripheral agent
is Etotal (t)

2(m−1) .

D. THE PROTOCOLS
To study the energy aware network formation problem from
different perspectives, we designed four protocols. All pro-
tocols construct star networks and try to converge to the
targeted energy distribution. The main difference between
the protocols is on the amount of registers and states that
are available to agents (i.e. the size of their memory). The
higher the size of memory the more sophisticated protocols
are. As a consequence, the rules for the configuration of each
agent when it interact, are different. Additionally, the amount
of energy that is exchanged between the pair of agents that
interact at each time is different.

Since the targeted graph structure is a star, the possible
states of the agents are either central (c) or peripheral (p).
Initially, the state of all agents is c and there is not any
connection between them. As the protocols run and the agents
interact, they change their states, add or remove the con-
nections between them, exchange energies etc. However, for
our more sophisticated protocols, we additionally introduce d
halted states denoted as hi, i ∈ {1, . . . , d} that are not actual
network states but are useful to improve the agents decisions
regarding the energy transmissions. Note that in protocols that
use these halted states, the agents will eventually end up in
peripheral state. In general, the set of all possible states is
Q = {c, p, h1, . . . , hd }.

The time horizon T is discrete and at each time t only a
pair of agents that is selected by the probabilistic scheduler
interacts according to the protocol.

1) FULL TRANSFER PROTOCOL
This protocol requires the smallest amount of memory and
serves as a lower bound of the performance of the rest, more
powerful protocols.
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The set of possible states is Q = {c, p} and all agents
store in their memory the energy threshold Emin, which is the
amount of energy they keep for their own operation.

The interaction rules depend on the current states of the
agents that interact. The main cases are the following.
(c, c) Both agents are centrals: One of them is randomly

chosen to become peripheral and transfer all its energy
to the central (except a small amount Emin). Also,
a connection is established between them.

(p, p) Both agents are peripherals: If a connection exists
between them, it is removed.

(c, p) One agent is peripheral and the other one is central: If
there is no connection between them, it is established.

Note that all agents start as centrals and each time two
central nodes interact, one of them becomes peripheral. Once
an agent becomes peripheral, it does not change its state in the
future. however, it may change its connection state to other
agents in order to be connected to the final central agents and
to not have any connection with any other agents that became
peripheral. This guarantees that at the end, only one agent
will remain in central state. The rules that contain at least one
peripheral agent are used for correcting the communication
states between the agents such that, at the end, all (and only
these) connections between the peripherals and the central
agent will exist (such that the constructed graphwill be a star).

Regarding the energy transfer, the agents transfer almost
all of their energy (except the threshold value that they keep
for their own operations) when they change their state (from
central to peripheral). So, any peripheral agents does not store
any excess amount of energy to transfer and thus, there is no
any further energy exchange between a pair of nodes that at
least one of them is already peripheral. The pseudo-code of
this protocols is presented in Protocol 4.

2) HALF TRANSFER PROTOCOL
This protocol assumes that the agents can store in their mem-
ory their own initial energy levels. Note that although this
assumption is weak (since they use local information only)
it results in better performance compared to Full Transfer
Protocol. Also, note that it does not require any additional
memory space since it can be stored instead of Emin value
used in Full Transfer protocol.

Similarly to Full Transfer protocol, the set of possible
states of each agent is Q = {c, p} and the three main
interaction cases are the following.
(c, c) Both agents are centrals: The agent with highest

energy will remain central, and the other will become
peripheral. The peripheral, will keep half of its initial
energy and transmit the rest to the central agent. Also,
a connection is established between them.

(p, p) Both agents are peripherals: If a connection exists
between them, it is removed.

(c, p) One agent is peripheral and the other one is central: If
there is no connection between them, it is established.

An observation is that the cases where a peripheral nodes
interact with either another peripheral or a central agent are

Protocol 4 Full Transfer PFT
Input : Agents u, u′ with energy levels εu, εu′ and

states qu, qu′
1 if qu == c AND qu′ == c then
2 agent = randomly_select_agent(u, u′);
3 if agent == u then
4 qu′ = p;
5 q{u,u′} = 1;
6 εsent = εu′ − Emin;
7 εu = εu + εsent ∗ (1− β);
8 εu′ = εu′ − εsent ;
9 else

10 qu = p;
11 q{u,u′} = 1;
12 εsent = εu − Emin;
13 εu′ = εu′ + εsent ∗ (1− β);
14 εu = εu − εsent ;

15 else if qu == p AND qu′ == p then
16 if q{u,u′} == 1 then
17 q{u,u′} = 0;

18 else
19 if q{u,u′} == 0 then
20 q{u,u′} = 1;

exactly the same as in Full Transfer protocol where only
the connection states are fixed in order to construct the star
structure.

However, the interaction between two central agents is very
different compared to Full Transfer protocol. The difference
is both on the update rule for their states and on the energy
exchange rule. More specifically, the decision of which of
them will remain in central state is not random but is based
on which of them has the higher energy. Also, the amount
of energy that is transferred is different. In Half Transfer
protocol, the agents keep half of their initial energy and
transfer the rest. This energy exchange rule is very natural
in order to achieve the targeted energy distribution where
the central agent should store the half of the total energy of
the network. Protocol 5 describes the pseudo-code of Half
Transfer protocol.

3) DEGREE AWARE PROTOCOL
This protocol aims to reveal the size of the network (i.e. the
number of the agents) and use this information in order to
make the energy exchanges and update the states of the agents
appropriately.

More specifically, the algorithm that is used by the agents
to estimate the network size is the following. Every central
agent stores as estimation, its degree. Similarly to the pre-
vious protocols, initially all agents are centrals and there is
no any connection between them. Thus, the initial estima-
tion of each agent is 0. Each non-central agents stores as
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Protocol 5 Half Transfer PHT
Input : Agents u, u′ with energy levels εu, εu′ , initial

energies εinitialu , εinitialu′ and states qu, qu′
1 if qu == c AND qu′ == c then
2 agent = NULL;
3 if εu == εu′ then
4 agent = randomly_select_agent(u, u′);

5 if εu > εu′ OR agent == u then
6 qu′ = p;
7 q{u,u′} = 1;
8 εsent = (εu′ − εinitialu′ /2);
9 εu = εu + εsent ∗ (1− β);

10 εu′ = εu′ − εsent ;
11 else
12 qu = p;
13 q{u,u′} = 1;
14 εsent = (εu − εinitialu /2);
15 εu′ = εu′ + εsent ∗ (1− β);
16 εu = εu − εsent ;

17 else if qu == p AND qu′ == p then
18 if q{u,u′} == 1 then
19 q{u,u′} = 0;

20 else
21 if q{u,u′} == 0 then
22 q{u,u′} = 1;

estimation, the highest value of an agent it has interacted with
in the past, since at each interaction, the agents exchange
the highest estimation (between them). These exchanges of
he stored estimations of the maximum number of agents
are used in order to propagate to the whole network the
maximum value which eventually will be stable to the size
of the network decreased by 1, since the maximum value
will be the degree of the central agent, i.e. it will not include
itself.

This protocol requires highermemory since the set of states
for each agent is higher. More specifically, the set of possible
states is Q = {c, p, h1, . . . , hd } which includes d additional
states, the halted ones. Every agent (except the final central
one) will pass through all halted states before they become
peripherals. These states are used in order to improve the
estimation of the agents and postpone the energy exchanges in
order to reduce energy loss due to insufficient energy transfers
to agents that will not end up to be the central agent of the final
star structure and to reduce the energy distance.

The update of the halted state of an agent (from hi to hi+1)
is performed each time it interacts with a central agent that has
higher estimation on the network size. The energy transfer
is performed only by peripheral agents and if the agent it
interacts with has higher estimation.

Another important property of this protocol is the energy
exchange rule that is designed. More specifically, an energy

exchange takes place when both following conditions are
satisfied. The first one refers to the state of the agents that
interact where one of them should be central and the other
one should be either peripheral or in hd state. The second
condition is that the central node has higher estimation than
the other node, i.e. its degree is higher that the stored estima-
tion of the other node. If both conditions hold then the nodes
exchange energy based on the following rule.

If the energy of an agent times the higher estimation of
the network size between the pair of agents that interact is
larger than the energy level of the other agent, it will transfer
to it (1/k) × (Eu × Ev)/(Eu + Ev) energy. Note that there
is a parameter, denoted as k which is used in order to reduce
the non-useful energy exchanged between the agents and thus
reduce the energy loss, when the estimation is not equal to the
actual network size.

Regarding the new halted states, and agent changes its
central state to h1 if it interact with another agent with higher
estimation on the network size. The change of any halted
state hi to the next one hi+1 is applied when the halted agents
interacts with a central agent that has higher estimation of the
network size.

Due to the higher amount of possible states, the interaction
rules are also higher. However, we grouped them and themain
cases are the following.
(c, c) Both agents are centrals: The agent with the lowest

estimation becomes h1. A connection is established
between them and thus the estimation of the central
agent is increased by one and this value is stored to
the halted agent as well.

(c, c) None of the agents is central (i.e. are either
halted or peripherals): Agents exchange the maxi-
mum estimation and remove their connection, if it
exists.

(c, p) One agent is peripheral and the other one is cen-
tral: If central agent has lower estimation, it becomes
h1 and stores as estimation, the estimation of the
peripheral agent. Otherwise, agents check if they have
a connection between them. If not, they establish a
connection, increase the estimation of the central by 1
and store this value in peripheral agent as well. Also,
in the case where the agents remain to their states,
they apply the energy exchange rule described above.

(c, hi) One agent is central and the other one is halted: If
the central agent has lower estimation, it changes its
state to h1. Otherwise, the level of the halted agent
is important. If it is not in the last halted state (hd )
then it simply changes its state to the next halted
state hi+1 and updates its estimation. However, if the
agent is in hd , then it becomes peripheral. Addition-
ally, if the agents are not already connected they
establish a new connection, increase the estimation
of the central agent by one and store this value to the
peripheral node as well. Also, the energy exchange
rule is applied between the peripheral agent and the
central one as described above.
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A detailed pseudo-code for Degree Aware is presented in
Protocol 6.

Protocol 6 Degree Aware PDA
Input : Agents u, u′ with energy levels εu, εu′ and

states qu, qu′
1 ru = number_of _neighbors(u);
2 ru′ = number_of _neighbors(u′);
3 x = max{ru, ru′};
4 if qu == c AND qu′ == c then
5 agent = NULL;
6 if ru == ru′ then
7 agent = randomly_select_agent(u, u′);

8 if ru > ru′ OR agent == u then
9 qu′ = h1;
10 ru = ru′ = x + 1;
11 q{u,u′} = 1;
12 else
13 qu = h1;
14 ru = ru′ = x + 1;
15 q{u,u′} = 1;

16 else if qu, qu′ ∈ {p, h1, . . . , hd } then
17 q{u,u′} = 0;
18 ru = ru′ = x;
19 else if qu == c AND qu′ ∈ {p, h1, . . . , hd } then
20 if ru ≥ ru′ then
21 if qu′ ≥ hd OR qu′ == p then
22 qu′ = p;
23 if q{u,u′} == 0 then
24 q{u,u′} = 1;
25 ru = ru + 1;

26 εsent =
1
k ∗

εu
εu+εu′

∗ εu′ ;
27 if εu < εu′ ∗ ru then
28 εu = εu + εsent ∗ (1− β);
29 εu′ = εu′ − εsent ;
30 else if εu > εu′ ∗ ru then
31 εu′ = εu′ + εsent ∗ (1− β);
32 εu = εu − εsent ;
33 end if
34 else
35 qu′ = hi+1;

36 ru′ = ru;
37 else
38 qu = h1;
39 ru = ru′ ;

40 else if qu ∈ {p, h1, . . . , hd } AND qu′ == c then
41 Similarly with the case above by symmetry.
42 end if

4) FULLY ADAPTIVE PROTOCOL
This protocol is the most powerful one compared to the
other three protocols described above. Specifically, it is an

enhancement of the Degree Aware protocol where addition-
ally to the estimation of the network size, agents store the
energy level of the last central agent they interacted with.
Note that this energy level refers to the energy that the central
node had at the time they interacted and does not indicate its
current energy level (since the agent has to interact again with
it in order to be able to be informed about this). Let us denote
by ecu this energy level stored at agent u. Also let us denote as
ru the estimation of agent u regarding the network size.

The protocol is quite similar to the Degree Aware pro-
tocol. The difference is on the energy exchange rule. More
specifically, in this protocol, agents can estimate their tar-
geted energy levels and thus make the energy exchanges
appropriately. This enables for the first time, two peripheral
agents to exchange energy if one of them has higher amount
of energy of the targeted one while the other agent has lower
energy from the targeted energy level.

Specifically the energy exchange cases are the following:
Case I: (c, p) or (c, hd ): Agent u is in state c and agent v

is in state p or hd . In this case, the amount of energy that is
exchanged between the two agents is

esent =
1
k
|Eu(ru − 1)− Ev|

ru + 1

Case II: (p, p): Both agents u and v are peripherals.
As described above, the agents, before exchanging energy,
should estimate their targeted energy level which equals to
epu = ecu/(max(ru, rv) − 1) and epv = ecv/(max(ru, rv) − 1).
After estimating the targeted energies, agents calculate if they
can exchange energy. This decision is positive only if the
agents’ current energy levels are in the opposite site of each
targeted energy level. More specifically, agents exchange
energy if and only if Eu > epu & Ev < epu & Eu > epv &
Ev < epv .

If all above mentioned conditions hold then the agent with
the highest amount of energy transfers the following amount
of energy:

esent =
1
k
|Ev − Eu|

2

A detailed description of Fully Adaptive is presented in
Protocol 7.

E. EVALUATION
In this subsection the performance evaluation of the popu-
lations protocols will be described. The simulation has been
conducted in Matlab R2016a and the simulation setup is the
following. The number of agents varies, from 20 to 100 and
the total available energy of the network is 3000 · [20 : 20 :
100] for 20, 40, 60, 80 and 100 agents respectively. Initially,
agents start with different energy supplies for abstracting the
diversity on a real-life network. Also, as described above,
each energy exchange induces an energy loss β which is
different at any time t and follows the Normal Distribution,
β ∼ N (0.2, 0.05). Each simulation is conducted 100 times
and the average values are presented.
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Protocol 7 Fully Adaptive PFA
Input : Agents u, u′ with energy levels εu, εu′ and

states qu, qu′
1 ru = number_of _neighbors(u);
2 ru′ = number_of _neighbors(u′);
3 x = max{ru, ru′};
4 if qu == c AND qu′ == c then
5 agent = NULL;
6 if ru == ru′ then
7 agent = randomly_select_agent(u, u′);

8 if ru > ru′ OR agent == u then
9 qu′ = h1; ru = ru′ = x + 1; q{u,u′} = 1; ecu = εu;
10 else
11 qu = h1; ru = ru′ = x + 1; q{u,u′} = 1; ecu = εu′ ;

12 else if qu == p AND qu′ == p then
13 q{u,u′} = 0; ru = ru′ = x;
14 eup = ecu/ru; e

u′
p = ecu/ru′ ;

15 εsent =
1
k ∗ |

εu−εu′
2 |;

16 if εu > eup AND εu′ < eup then
17 if εu > eu

′

p AND εu′ < eu
′

p then
18 εu′ = εu′ + εsent ∗ (1− β); εu = εu − εsent ;

19 else if εu′ > eup AND εu < eup then
20 if εu′ > eu

′

p AND εu < eu
′

p then
21 εu = εu + εsent ∗ (1− β); εu′ = εu′ − εsent ;

22 end if
23 else if qu/u′ ∈ {p, h1, . . . , hd } AND qu′/u ∈ {h1, . . . , hd }

then
24 q{u,u′} = 0; ru = ru′ = x;
25 else if qu == c AND qu′ ∈ {p, h1, . . . , hd } then
26 if ru ≥ ru′ then
27 if qu′ ≥ hd OR qu′ == p then
28 qu′ = p; ecu′ = εu;
29 if q{u,u′} == 0 then
30 q{u,u′} = 1; ru = ru + 1;

31 ecu′ = εu; εsent =
1
k ∗ |

εu′∗ru−εu
ru+1

|;
32 if εsent < 0 then
33 εu′ = εu′ + εsent ∗ (1− β);
34 εu = εu − εsent ;
35 else if εsent > 0 then
36 εu = εu + εsent ∗ (1− β);
37 εu′ = εu′ − εsent ;
38 end if
39 else
40 qu′ = hi+1;

41 ru′ = ru;
42 else
43 qu = h1; ru = ru′ ;

44 else if qu ∈ {p, h1, . . . , hd } AND qu′ == c then
45 Similarly with the above case by symmetry.
46 end if

The metrics that are used to evaluate the protocols are the
structural distance, the energy distance, the energy loss and
the convergence speed (i.e. the number of interactions that
are required in order to achieve the desired energy distance).

1) FINE TUNING OF PARAMETERS d AND k
In order to evaluate the performance of the new protocols,
it is required to select the best values for the parameters d and
k that are used by the Degree Aware protocol and the Fully
Adaptive protocol. To select this best values, various metrics
and various network sizes are applied. More specifically the
various network sizes are 20, 40, 60, 80 and 100 agents and
both the energy loss and the energy distance are used as
metrics.

In order to select one single best value for each parameter
(for each protocol) the following new metric was designed.

w = ti · Eloss(ti) · δeti (E, E(ti)) (23)

where Eloss(ti) is the energy loss of each protocol at time ti,
δeti (E, E(ti)) is the energy distance of each protocol at time
ti and ti is the time that the protocol that has the worst
performance, achieves its best energy distance.

The best values for the parameters d and k are the one that
achieve the minimum value of w.
Best value of parameter d . The values d = [1, 7] have

been investigated while the value of parameter k has been
set to 1. The best value for both Degree Aware and Fully
Adaptive protocol is 1 which means that only one halted state
is required.
Best value of parameter k . The values k = [1, 8] have been

investigated while the value of parameter d has been set to 1.
The best value for the Degree Aware protocol is 7 while the
best value for the Fully Adaptive protocol is 1.

In the following sections we present the performance of
the four protocols described in the previous sections, after
the fine tunning of the various parameters. Although we
conducted simulations with different network sizes, i.e., with
20, 60, 80 and 100 agents respectively, we observed that each
protocol has similar performance for each network size. Thus
we will present the results for a network with 100 agents.

2) PROTOCOLS’ PERFORMANCE ON TIME TO CONVERGE
In this section we compare the protocols performance on the
two basic metrics that are designed specifically for this prob-
lem and described in the corresponding subsection above.
More specifically we evaluate the protocols’ performance
on number of interactions they need to build a global star
network structure, as well as to achieve a low energy distance.

a: STRUCTURAL DISTANCE
As shown in Fig. 9a, at the early rounds, the Full Transfer
and the Half transfer protocols have an increase on their
structural distances. This is natural since, in these protocols,
the agents do not have any network knowledge and thus the
naive rule of establishing connection between every central
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FIGURE 9. Speed comparison of the different protocols. (a) Structural
Distance vs. interactions. (b) Energy distance vs. interactions.

and peripheral agent induces a lot of erroneous connections.
However, as the time progresses and the central nodes become
peripherals, when they re-interact, these erroneous connec-
tions are removed, resulting on a reduce on the structural
distance and thus successfully formatting a star structure.

On the other hand, the Degree Aware protocol and the
Fully Adaptive protocol that use one halted state achieve a
quicker converge to the correct star structure since they do
not create connections every time. More specifically, they
create a connection if they interact for the second time and
the central one is still in central state. Note that there are
a lot of other interaction in between the two times that a
specific pair of agent interacts again. So, in the meantime,
each of the agent may have interacted with other agents and
change its state. Thus, if the central agent has become a
halted or peripheral until it re-interacts with this agent, they
will never create a connection between them. So, a lot of
unnecessary connections are avoided in the first place. Note
that this is achieved by using just one halted state which
reveals the power of two choices [37].

b: ENERGY DISTANCE
The protocols performance on the energy distance metric
is shown in Fig. 9b. The energy distance metric refers to
the number of interactions required in order to achieve a
relatively low energy distance. As we can observe by the
figure, the Full Adaptive protocol has the best performance
since it achieves the lowest energy distance the entire time and

also converges to an almost zero energy distance very soon.
Although, the Degree Aware protocol eventually achieves its
targeted energy distribution as well, it requires much more
time.

On the contrary, the Full Transfer and Half Transfer proto-
cols do not achieve the targeted energy distribution and their
energy distance remains very high. However, they converge
to their final energy distribution in a very small number of
interactions.

3) PROTOCOLS’ OVERALL PERFORMANCE
In this section we will present the performance of the
designed interaction protocols on the energy loss that is
induced to achieve the targeted energy distribution and the
distance between the achieved energy distribution to the
desired targeted one.

FIGURE 10. Energy comparison of the different protocols. (a) Energy loss
to total energy. (b) Energy distance to total energy.

In Fig. 10a the total amount of energy that is lost is shown.
All protocols started with the same initial energy but, the dif-
ferent rules the apply (due to different assumed power) results
to different energy exchanges. The energy exchange rules
differ not only on the cases they are applied but also on the
amount of energy that is transmitted each time. As show in
the figure, the Fully Adaptive protocol has the lowest energy
loss. This is natural since this is the most powerful protocol
and its energy exchange rules are very sophisticated. The
Degree Aware protocol, although it converges very close to
its targeted energy distribution, the energy distance is not
zero. Thus, for fair comparison of the protocols, we depict
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the energy loss when it achieves a very small energy dis-
tance equal to 0.05. The Half Transfer protocol, although its
more naive compared to the previous ones, it achieves the
same energy loss with the Degree Aware protocol. On the
contrary, the Full Transfer protocol has the highest energy
loss, as expected due to its extremely low power and its
randomness.

Fig. 10b depicts the energy distance to total energy. During
the early rounds, the Degree Aware protocol outperforms the
Fully Adaptive one which makes sense since the value of
parameter k is set to 7 which means that it transfer very
small portion of energy when the estimation of the network
size is still far from the actual value. As the time progresses
the Fully Adaptive protocol achieves the best performance of
all protocols. The Degree Aware protocol although it almost
converges to the targeted energy distribution it spends all
the available energy in the network. Half Transfer protocol
although it reduces its energy distance, it wastes more energy.
Finally, the Full Transfer protocol achieves the worst perfor-
mance between all protocols.

VI. ADAPTIVE CHARGING RANGE ALGORITHMS
A new challenging research direction that aims to reduce
the emitted EMR while maintaining a high QoS is to design
protocols that select a different charging range at any time (in
an online manner), according to the network requirements.
A very interesting case is in mobile ad hoc networks, where
the mobile devices (called agents) move around the network
(randomly) and the static charger should manage its finite
energy by selecting the appropriate charging range every
time. The decision of the range selection is primarily based
on the energy characteristics of the agents that travel across
its range at the specific time, and on the specific goal it aims
to achieve, i.e. to prolong the network lifetime. However,
the general principle is to keep it as low as possible such that
to store energy for future (and prolong the network lifetime)
and reduce the emitted radiation while in parallel, the network
is operational with a high QoS.

In the sections below, we will describe the underlying
model, the optimizations problems and three adaptive heuris-
tic algorithms which differ on the available network knowl-
edge they have. Finally, we will present simulation results to
show their performance on various metrics.

A. RELATED WORK
Mobile ad hoc networks have been extensively studied
in the literature under different perspectives.
Angelopoulos et al. [38] studied mobile ad hoc networks
that consist of multiple static chargers. They designed and
experimentally evaluated two algorithms that find which of
the chargers should be active at each round, in order to
maximize charging efficiency and achieve energy balance,
respectively. In [31] authors also investigated mobile ad hoc
networks. However, in their model, there exists a single
mobile charger that has infinite energy and traverses the
network in order to recharge the agents. They designed

optimal traversal strategies for the mobile charger in order
to prolong the network lifetime.

He et al. [5] investigated the energy provisioning problem,
i.e. to minimize the number of chargers. Also, they computed
where they should be located in the network area, so that all
agents are always active (i.e., they have or get enough energy
to complete their tasks). Dai et al. [39] showed that the agent’s
continuous operation cannot be guaranteed due to their veloc-
ity and battery capacity constraints. Moreover, authors intro-
duced the Quality of Energy Provisioning (QoEP) metric to
characterize the expected time that the agent is actually active.

Dai et al. [40] studied the safe charging problem with the
goal of maximizing the charging utility, while ensuring that
there is no point in the network area with electromagnetic
radiation (EMR) that exceeds a threshold value. Specifi-
cally, they assumed a network consisting of static agents and
multiple stationary chargers. They investigated which of the
chargers should be active such that the EMR constraint is not
violated and proposed algorithms with provable efficiency
guarantees. Dai et al. [12] studied a variation of this problem
where the power of each charger can be adjusted once at
the beginning, and and it can be different compared to other
chargers. Nikoletseas et al. [13] studied the low radiation
efficient wireless charging as well. However, they defined
a different charging model that takes into account hardware
constraints for the chargers and the agents (i.e., the chargers
have finite energy supplies and the agents have battery capac-
ity constraints).

The last two papers are the most related to our problem,
in the sense that the power of each charger is adjustable. How-
ever, observe that since the agents are static in both models
considered in [12] and [43] each charger adjusts its power
only once, at the beginning of the time horizon. In contrast,
the power of the charger in our setting constantly changes
over time, adaptively to the behavior of the mobile agents
which is revealed in an onlinemanner. Therefore, even though
our setting and that of [12] and [43] are seemingly similar,
they are fundamentally different and uncomparable to each
other.

B. MODEL
Our network comprises of n mobile agents that move around
in a bounded network area, and a single static charger that is
positioned at the center of the area. For simplicity, we assume
that the network area is represented as a rectangle defined by
the points (0, 0) and (xmax, ymax) on the Euclidean space.
In our model, we assume that the time horizon T ∈ N≥0

is discrete and consists of a number of distinct rounds. Each
round runs for a constant period of time denotes as τ . Since
the agents are mobile, their positions change at each round
as they move around in the network area. At the begin-
ning of round t , the position of every agent i is denoted by
pi(t) = (xi(t), yi(t)). However, for the charger, the param-
eter that changes at each round is its charging range. More
specifically, at round t , its charging range is denoted by
R(t) ∈ [Rmin,Rmax]. R(t) is decided by the transmission
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power of the charger and defines a circle of radius R(t) around
pcharger; let CR(t) denote this circle on the plane. All agents that
pass through CR(t) during round t can get recharged (if they
need to).

1) MOBILITY MODEL
We denote as vi(t) the velocity of node i at time t . We assume
three different level of movements: slow, medium, and
fast. Each kind of movement defines a range of possible
speeds: I1 = [0, 14vmax], I2 =

(
1
4vmax,

1
2vmax

]
, and I3 =(

1
2vmax, vmax

]
, where vmax is the maximum possible velocity

that any agent can have at any time.
The mobile agents perform a random walk. More specifi-

cally, each agent i, at round t , starts from position pi(t), and
chooses randomly a new direction θi(t) ∈ [0, 2π ) as well
as a new velocity vi(t) ∈ Iµi(t). The direction θi(t) together
with pi(t), define a line along which the agent travels with
the chosen velocity vi(t) until it reaches its final position at
the end of the round, which is the position pi(t + 1) at the
beginning of the next round. If the selection of the velocity
and direction lead to a position out of the network area,
the movement is redefined accordingly.

2) ENERGY MODEL
Let Ei(t) be the energy of agent i at the beginning of round
t . All agents have the same battery capacity B, and they are
initially fully charged.

During round t , each agent i consumes an amount of energy
Eci (t) for communication purposes. Following previous work
(e.g., [31]), we assume that Eci (t) follows a poisson proba-
bility distribution with expected value γi ∈ [γ imin, γ

i
max]. The

energy of agent i at the beginning of the next round (assuming
no recharging), is

Ei(t + 1) := max
{
0,Ei(t)− Eci (t)

}
.

We remark that the agents do not consume any energy due
to movement as the necessary energy can be supplied by
different sources.

3) CHARGING MODEL
The total available energy is finite and equal to the charger’s
battery capacity C . Let Echarger(t) denote the energy of the
charger at the beginning of round t .
As described above, the charging range defines a circle

and all nodes that are travel through it are being recharged,
if the charger has the required amount of energy. Let fi(t)
and `i(t) be the first and last position of agent i in range.
These may or may not be defined depending on whether the
agent travels or not through CR(t). Hence, the time that agent
i spends in range is

T in
i (t) =


||fi(t)− `i(t)||2

vi(t)
, if fi(t) 6= `i(t), vi(t) 6= 0

τ, if fi(t) = `i(t), vi(t) = 0
0, otherwise.

We assume that agent i receives energy according to a simpli-
fied version of the scalar model. In particular,

Eri (t) =
α · R(t)2 · T in

i (t)

(||pcharger − fi(t)||2 + β)2
, (24)

where α and β are environmental and technological con-
stants. The energy of agent i at the beginning of the next round
(taking into account both energy consumption and possible
recharging), is

Ei(t + 1) := min
{
B,max{0,Ei(t)− Eci (t)+ E

r
i (t)

}
}.

In parallel, the energy of the charger is decreased accordingly.

C. OPTIMIZATION PROBLEMS
We now discuss two simplified offline optimization prob-
lems with different objective goals: the number of charges
performed by the charger, and the number of rounds during
which the network is active.

1) MAXIMIZING THE NUMBER OF CHARGES
In this problem, all information about the movement and
energy consumption characteristics of the agents during all
rounds t ∈ [T ] is given as input, where T is a given finite
time horizon. Moreover, the charger has initial energy C and
we can choose its charging range from a set of k distinct
values {R1, ...,Rk} such that 0 ≤ R1 < ... < Rk . All non-
fully charged agents in the specified charging range receive
energy according to equation (24) with α = 1 and β = 0. The
goal is to set the range R(t) of the charger, for every t ∈ [T ],
to maximize the total number of recharges until the charger
is left out of energy.
Theorem 4: The MAXIMIZING THE NUMBER OF CHARGES

problem is NP-hard.

2) MAXIMIZING THE NETWORK LIFETIME
In this optimization problem the goal is to maximize the
network lifetime. In particular, we are given all movement
and energy consumption characteristics of the agents, during
a time horizon T . The charger has initial energy C and its
charging range is selected from a set of k distinct values
{R1, ...,Rk} such that 0 ≤ R1 < ... < Rk . All non-fully
charged agents in the specified charging range receive energy
according to equation (24) with α = 1 and β = 0. The goal
is to set the range R(t) of the charger, for every t ∈ [T ],
to maximize the total rounds during which there exists at least
one agent with strictly positive energy.
Theorem 5: The MAXIMIZING THE NETWORK LIFETIME

problem is NP-hard.

D. ADAPTIVE ALGORITHMS
We now present three adaptive algorithms, which differ on
the knowledge they require in order to select the appropriate
charging range during any round t . In particular, the first one
only uses information about the positions of the agents at
the beginning of each round. The second one needs extra
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information about the positions both at the beginning and
at the end of each round, as well as the energy levels of
the agents at the beginning of each round. Finally, the third
algorithm uses all information about the positions and the
energy levels of all agents at the beginning and at the end
of each round.

a: LEAST DISTANT AGENT OR MAXIMUM RANGE (LdMax)
At the beginning of each roung t , the LdMax algorithm sets

R(t) := max{Rmin,mini:pi(t)∈CRmax
||pcharger − pi(t)||2}

with some probability q ∈ [0, 1], and R(t) := Rmax otherwise
(with probability 1− q).

b: MAINTAIN WORKING AGENTS (MWA)
The MWA algorithm uses a parameter µ ∈ [n] and, for each
round t , sets R(t) in order to guarantee that there are at least
µ agents that either have positive energy at the beginning of
the round or get recharged during it, calledworking agents. To
compute R(t) it first counts the number k1(t) of agents that are
in the circle CRmax and have positive energy at the beginning
of the round. If k1(t) ≥ µ, then R(t) := Rmin. Otherwise,
it counts the number k2(t) of agents with zero energy at the
beginning of the round and either pi(t) ∈ CRmax or pi(t + 1) ∈
CRmax . If k1(t)+k2(t) < µ, then R(t) := Rmax. Otherwise, it it
setsR(t) := R∗, whereR∗ is the smallest range value such that
CR∗ covers at least µ− k1(t) agents.

c: MAXIMIZE CHARGES OVER ENERGY RATIO (MCER)
Let R be a set of range values in [Rmin,Rmax]. Let νj(t) be
the number of agents that would get recharged if the charger
had range equal to Rj ∈ R during round t , and let εj(t) be the
total given energy in this case. The MCER algorithm uses a
parameter λ ≥ 1 and sets

R(t) := argmax
Rj∈R

νj(t)λ

εj(t)
.

Observe that MCER needs to perform many heavy computa-
tions as, in order to select the best possible range, it needs to
simulate the whole recharging process repeatedly.

E. PERFORMANCE EVALUATION
1) SIMULATION SETUP
For evaluating the performance of the three described algo-
rithms, we conducted simulations inMatlab R2016a.We con-
sider a simulation setup with n = 100 agents that move
around in a 25 × 25 network area. The charger is positioned
at the center of the network area, has initial energy C =
105, and its range can take values in [1, 5]. Each agent has
battery B = 1000, maximum velocity vmax = 3. Also,
the agents are randomly partitioned into 4 groups, namely,
(S1, S2, S3, S4) of expected sizes

( n
2 ,

n
4 ,

n
8 ,

n
8

)
. Then, agent i

consumes energy following a poisson distribution with ran-
domly chosen expected value γi such that

γi ∈ [0, 10 · 2j−1] if i ∈ Sj. (25)

We remark that the expected values are chosen non-uniformly
from the corresponding intervals so that there is heteroge-
neous energy consumption among the agents.

For the mobility behavior of the agents we consider three
different randomized scenarios:
(S1) All agents randomly move around in the network area.
(S2) Choose R ∈ [Rmin,

1
2Rmax] uniformly at random do not

allow the agents to enter circle CR.
(S3) Choose δ ∈

[
b
n
10c
]
, R` ∈

[
Rmin,

1
4 (Rmin + Rmax)

)
and

Rh ∈
[
1
4 (Rmin + Rmax),Rmax

]
uniformly at random.

Then, choose δ agents to move around only within the
ring CRh \ CR` , while the remaining (n − δ) agents
randomly move around in the whole network area.

For statistical smoothness, we repeated our simulation
100 times, and in each of them we equiprobably selected a
different scenario (from the ones described above). Due to the
many different random choices that have to be made, many
different instantiations can arise.

2) SIMULATION RESULTS
After extensive fine-tuning of the parameters used by our
adaptive algorithms, we have concluded that setting q = 0.9,
µ = 15 and λ = 2 are the best values for the particular
simulation setup that we consider here.

Figure 11 depicts the performance of the adaptive algo-
rithms as well as that of the fixed Rmax value algorithm over
time, with respect to various metrics: the charging range
(Figure 11a); the charger’s energy (Figure 11b); the num-
ber of charges (Figure 11c); the number of working agents
(Figure 11d); the number of agents with adequate energy
(Figure 11e); the charging frequency of the agents
(Figure 11f).

We will present a brief analysis on how MWA and MCER
respond to the behavior of the agents by inspecting Figure 11a
which displays the evolution of the charging range over time
depending on the algorithm. As observed, during the early
rounds, most of the agents are considered working because
they are initially fully charged. Thus, the MWA algorithm’s
requirement of maintaining 15 working agents is trivially
satisfied and it selects the minimum charging range. In par-
allel, as shown in Figure 11b it has high amount of energy
stored for future rounds. In contrast, MCER initially chooses
a higher charging range such that to perform more charges
while giving away little energy because agents already have
energy supplies due to initial charging. However, as the time
progresses, the agents spend energy and thus their energy
level drops. This means that they need to be recharged higher
amount of energy. As a result, MWA is forced to increase the
range in order to keep satisfying the requirement of main-
taining 15 working agents, while MCER decreases its range
as the cost per charge has increased substantially.

VII. FUTURE CHALLENGES
As wireless technology pervades everyday life, users are
somehow skeptical about the potential consequences of using
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FIGURE 11. Comparison between the three adaptive algorithms LdMax(0.9), MWA(15), MCER(2), and the fixed Rmax value algorithm.
Figure (a) depicts the evolution of the charging range over time. Figure (b) depicts the decrease of the charger’s energy. Figure (c)
depicts the number of charges that were performed. Figure (d) depicts the number of working agents. Figure (e) depicts the number
of agents with adequate energy. Figure (f) depicts the charging frequency of the agents.

WPT technology, such as electromagnetic radiation. There
are recent studies that have previously addressed this subject
in a very explicit, inefficient and inconvenient way, but now,
new possibilities and intuition are emerging through more

precise abstractions, such as the vector model, towards estab-
lishing safe and efficient wireless charging.

In this direction, a recent work [29] studies the problem of
finding a safe, radiation-aware path. In particular, the concept
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is the following; given a starting point and a point of termina-
tion, find the path that a moving agent should follow, with the
smallest exposure to electromagnetic radiation. Regarding the
moving agent, mind that it could be a human being or even a
nano-device sensitive to electromagnetic waves. Notice also
that, rules like ’’the further away you are from an electro-
magnetic radiation source, the less radiation you receive’’
are not realistic (as we have shown above). This work is the
first attempt for the radiation problem being studied under the
vector model and provides interesting results. Therefore, our
aim and vision is to further study radiation phenomena with
greater precision, especially when they include the human
factor.

Notice that the quality of service must go hand in hand
with protection from electromagnetic radiation in such appli-
cations. Significant results and knowledge are expected from
the study of the vector model for a number of problems in the
field of wireless power transfer, that were previously studied
based under a more basic, less precise model. At the same
time, another aspect of this technology remains the provision
of better services. The vector model also enables to study
problems and find solutions and mechanisms that incur better
results than most of the solutions proposed in the state-of-the-
art.

Based on this, issues such as efficient placement of charg-
ers and receivers become a new challenge for the field. Apart
from geometry and topology matters, we may also address
other problems such as scheduling the chargers operation
time since, as we have seen, the functionality of one can affect
the operation of another at a point of interest.

Finally, vector model enables a set of technologies that
are not inherently related to wireless charging, such as
phase shifting. Even though the technology for phase shifting
already exists, yet it could not adapt to the wireless technol-
ogy in order to exploit the new opportunities that arise. As a
result, not enough work has been done in this direction. In our
view, the vector model can implement such a technology, like
phase shifting, and achieve both efficient control of power
and radiation distribution in a system, as well as energy
balance. Hence, effective power management can be studied
and discussed under a new basis compatible with the vector
model.
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