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ABSTRACT Bearings-only tracking is a continuous-discrete system, whose state of motion is in the
continuous-time domain and themeasurement is in the discrete-time domain. The unpredicted approximation
errors are inevitable due to integration, discretization, and linearization of continuousmodel in many filtering
methods. The adaptive covariance feedback framework is proposed for solving this kind of problem, in which
the posterior covariance sequence is proved theoretically to be useful for prior covariance updating. In this
framework, the covariance feedback framework is integrated with the continuous-discrete cubature Kalman
filtering, and Chebyshev distance is applied to judge the proper condition for the start-up of the feedback
channel. The numerical results illustrate the proposed method’s superior performance in accuracy and
computational efficiency.

INDEX TERMS Cubature Kalman filtering, bearings-only tracking, nonlinear filtering, continuous-discrete
systems.

I. INTRODUCTION
Bearings-only tracking (BOT) [1] is applied widely for nav-
igation [2], passive tracking [3], etc., in which only the
bearings information is used for target location or tracking.
In general, the forms of the measurement function and the
state function are discrete in the conventional filtering meth-
ods. The advantages of the discretized form are obvious
that it is easy for mathematical deduction and computation.
Actually, the statemodel in BOT can be embodied completely
within continuous-time form, which is more accurate than
the traditional discretized forms [4]. In this work, BOT is
described as a continuous-discrete (CD) system.

Compared with the conventional discrete-time domain fil-
tering methods, the form of state prediction is quite dif-
ferent. The state is described as the stochastic differential
equation (SDE). The form of SDE makes the mathematical
deductionmore complex in CDfilteringmethods. Itô calculus
and Stratonovich calculus [5] are twomain means to solve the
special SDEs problem in many researches. In [6], Itô-type
stochastic differential system model and ensemble Kalman
filter are used to improve the accuracy of state estimation for
a nonlinear CD model.

In general, the numerical approximate methods are applied
for the solving differential equations, such as Taylor approx-
imation and Runge-Kytta approximation. In [7], Itô-Taylor
expansion of order 1.5 is used to approximate the state
model, and cubature Kalman filtering (CKF) for CD sys-
tems is proposed. In [8], the order 0.5 Euler-Maruyama
filtering method is introduced, and the Euler scheme of
SDE is applied in the method to achieve the 0.5 rate of
convergence. In [9], Runge-Kytta approximation and the
unscented Kalman filtering (UKF) are used for a nonlin-
ear continuous-time stochastic system. The higher order
Runge-Kytta approximation methods are reviewed in [4].
In [10], the deterministic Runge-Kytta algorithms and a
moment matching technique are used to predict the target
state and covariance matrix. In [11], the adaptive Markov
chain Monte Carlo (AMCMC) based numerical integration
method is proposed for parameter estimation in nonlinear
SDEs, and the performance is better than the Taylor series
and particle MCMC approximations.

No matter what kind of approximation method is used,
the focus of most researches is on the accuracy, robust-
ness and computational efficiency, etc. In [12], the feedback
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particle filter algorithm is introduced for the CD nonlinear
filtering problem. An error-based feedback control structure
is proposed to improve the accuracy of the algorithm. In [13],
a variable-size unscented Kalman filter is proposed to deal
with CD stochastic models in radar tracking, in which the
global error control ensures the better accuracy and efficiency
compared with the accurate continuous-discrete extended
Kalman filter (ACD-EKF) and the accurate continuous-
discrete extended-unscented Kalman filter (ACD-EUKF).
Similarly, in [14], the variable-step-size Gauss- and Lobatto-
type Nested Implicit Runge-Kutta (NIRK) formulas of
orders 4 and 6 are presented, and the automatic local and
global error regulation mechanisms are implemented in the
method. In [15], the accurate continuous-discrete method and
CKF are combined in the proposed method, in which the time
updating is implemented in the accurate continuous-discrete
method while the measurement updating is implemented
in CKF based on the third-degree spherical-radial cubature
rule. Ogihara and Tanaka [16] deduce the asymptotic error
distribution of the Euler method for nonlinear CD filtering
problem, and the stable convergence is proved. However,
discretization and linearization, the unknown approximation
errors cannot be avoided by the method mentioned above.
In [17], a feedback CD-EKF framework of the covariance
adaption is proposed; the posterior covariance information is
used for the prior covariance updating. However, it is subop-
timal to use EKF framework for nonlinear filtering problem.

To alleviate effects of unpredictable errors, the adaptive
stochastic feedbackmethod is proposed. The posterior covari-
ance sequence is proved theoretically to be useful for prior
covariance updating. Thus, the stochastic feedback based
covariance online adaption channel is established. To cope
with the nonlinear filtering method, the channel is integrated
with the framework of CD-CKF, in which the Chebyshev
distance is used as a threshold to determine whether to trigger
the online adaption mechanism or not.

The paper is structured as follows: section II presents the
BOTmodel. Section III briefly introduces the general types of
continuous-discrete filters. Section IV deduces the covariance
updating method and presents the adaptive stochastic feed-
back framework of CD-CKF (ASFCD-CKF). Simulations
results are shown in section V, and section VI concludes the
main work.

II. THE MODEL OF BOT
The model of BOT contains the state function and mea-
surement function, where the state function is in continuous
time-domain and the measurement function is written as the
discrete form. Suppose that the state is in 2-dimensional
Cartesian coordinate. The model with CD form can be
rewritten as

dx(t) = f (x(t), t)dt +
√
Qdw(t) (1)

zk = h(xk , k)+ ek , k = 1, 2, · · · (2)

h(xk , k) = arctan
xk
yk

(3)

where the state x(t) = [x(t), y(t), ẋ(t), ẏ(t)]T is the state of the
target. The position and velocity are xp(t) = [x(t), y(t)] and
xv(t) = [ẋ(t), ẏ(t)] respectively. f is known as the drift func-
tion,Q is the diffusionmatrix,w(t) denotes the n-dimensional
standard Brownian notion which is independent of x(t). The
measurement zk ∈ Rd , h : Rn

× R→ Rd , the measurement
noise ek ∈ Rn is independent Gaussian with zero mean and
known covariance matrix R.

III. CONTINUOUS-DISCRETE FILTERING
The one of the main differences between discrete-discrete
and continuous-discrete filtering methods is concentrated in
the state prediction. The interval within adjacent measure-
ments is divided in several small intervals; the state is pre-
dicted at each small interval. In general, Euler approximation,
Taylor approximation and Runge-Kutta approximation are
usedwidely for the state propagation in the CDfilteringmeth-
ods. Though the forms of those two approximation methods
are quite different, the core is to realize state propagation in
the small intervals. Here, The Itô-Taylor of 1.5 order based
CD-CKF is introduced. The details of CD-CKF algorithm can
be referred to [7].

For the interval (t, t + δ), the state

x(t + δ) = x(t)+ δf (x(t), t)

+
1
2
δ2(00f (x(t), t)+

√
Qβ + (0f (x(t), t))γ (4)

where δ is a small interval, β is a Gaussian random variable
related to the standard Gaussian random u via β =

√
δu ∼

N (0, δIn). Two differential operators 00 and 0 are defined by

00 =
∂

∂t
+

n∑
i=1

f i
∂

∂xi

+
1
2

n∑
j,p,q=1

√
Qp,j

√
Qq,j

∂2

∂xp∂xq

0j =

n∑
i=1

√
Qi,j

∂

∂xi

The term 0f (·) represents a square matrix with its
(i, j) th element being 0if j(·), i, j = 1, . . . , n.
Suppose the interval within adjacent measurements is

divided inm small intervals δ, δ = T
/
m, t is themeasurement

period. The interval g ∈ (1,m), when g = 1, the state estimate

x̂1k|k = E[x1k |z1:k ]

≈ E[f d (xk , kT )+
√
Qβ + 0f (xk , kT )γ |z1:k ] (5)

Because the noise terms are independent of the state vector
and zero-mean Guassian, we may further simplify matters by
writting

x̂1k|k = E[x1k |z1:k ]

=

∫
f d (xk , kT )N (xk ; x̂k|k ,Pk|k )dxk (6)

where N (xk ; x̂k|k ,Pk|k ) is the statistic of xk .
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For CD-CKF, the state predicted error covariance matrix is
also propagated as

P1
k|k
≈

∫
Rn
f d (xk , kT )f

T
d (xk , kT )N (xk ; x̂k|k ,Pk|k )dxk

+
δ3

3
(0f (x̂k|k , kT )(0f (x̂k|k , kT )T

+
δ2

2
[
√
Q(0f (x̂k|k , kT )T + (0f (x̂k|k , kT )

√
Q
T
]

− (x̂1k|k )(x̂
1
k|k )

T
+ δQ (7)

Based on the third-degree cubature rule, we have

x̂1k|k ≈
1
2n

2n∑
i=1

X∗(1)i,k|k (8)

where

X∗(1)i,k|k = fd (x̂k|k +
√
Pk|k ξi, kT ) (9)

Thus the predicted error covariance matrix can be written as

P1
k|k
≈ (1X∗(1)k|k )(1X

∗(1)
k|k )

T

+
δ3

3
(0f (x̂k|k , kT )(0f (x̂k|k , kT )T

+
δ2

2
[(0f (x̂k|k , kT )QT + Q(0f (x̂k|k , kT )T ]+ δQ

(10)

where

1X∗(1)k|k =
1
√
2n

[
1X∗(1)1,k|k −x̂

1
k|k , · · · ,1X

∗(1)
2n,k|k −x̂

1
k|k

]
(11)

IV. THE ADAPTIVE FEEDBACK FRAMEWORK
Above section illustrated the basic CD-CKFmethod. Consid-
ering the unpredicted error in the state prediction, the adaptive
stochastic feedback CD-CKF is proposed in this section,
in which the covariance is estimated by the maximum like-
lihood estimation method. In this section, the covariance
estimation based on the maximum likelihood estimation is
introduced, and then the whole framework will be illustrated.

A. COVARIANCE ADAPTION
In CD-CKF, the updated state is

x̂k+1|k+1 = x̂k+1|k +W k+1ek+1 (12)

where the continuous-discrete cubature gain is

W k+1 = Pxz,k+1|k P−1zz,k+1|k (13)

Pxz,k+1|k and Pzz,k+1|k are cross-covariance matrix and
innovations covariance matrix respectively.

The error covariance matrix is

Pk+1|k+1 = Pk+1|k −W k+1Pzz,k+1|kWT
k=1 (14)

The innovation

ek+1 = zk+1 − ẑk+1|k (15)

where the predicted measurement

ẑk+1|k =
1
2n

2n∑
i=1

h(X i,k+1|k , k + 1) ≈ Hx̂k+1|k (16)

where xi,k+1|k is the cubature points,H is the Jacobianmatrix
of partial derivatives of h.
The innovations covariance matrix is

Pzz,k+1|k = Zk+1|k ZTk+1|k + Rk+1 (17)

where the weighted-centered matrix is

Zk+1|k =
1
√
2n

[
z1,k+1|k −ẑk+1|k , · · · , z2n,k+1|k − ẑk+1|k

]
(18)

Substituting (15) and (16) to (17), the innovations covariance
matrix can be described as

Pzz,k+1|k ≈ HPk+1|kHT
+ Rk+1 (19)

where Pk+1|k is Pgk|k when g→ m.
The cross-covariance matrix

Pxz,k+1|k
= Xk+1|k ZTk+1|k

=
1
√
2n

[
1X∗(k+1)1,k|k − x̂

(k+1)
k|k , · · · ,1X∗(k+1)2n,k|k − x̂

(k+1)
k|k

]
·

1
√
2n

[
z1,k+1|k − ẑk+1|k , · · · , z2n,k+1|k − ẑk+1|k

]T
(20)

Substituting (17) to (20), we can get

Pxz,k+1|k ≈ P jk|kH
T , j = k + 1 (21)

Namely, Pxz,k+1|k ≈ Pk+1|kHT . Then, the continuous-
discrete cubature gain can be written as

W k+1 ≈ Pk+1|kHTP−1zz,k+1|k (22)

In order to decrease the unpredicted error, the prior error
covariance is considered to be reconstructed. Suppose that the
covariance P j+1|i , j = k−N+1, . . . , k+1 is nearly constant.
This assumption is a simplification used in [18] and [19], and
is proved to be an explicit and efficient method applied for
online estimation.

The maximum likelihood estimation problem can be
described as

L(Pk+1|k ) = ln p(ek−N+1, · · · , ek
∣∣Pk+1|k )

=

k∑
j=k−N+1

ln p(ej
∣∣Pk+1|k ) (23)

where n is the time window, ej can be regarded as a normally
distributed random variable. The portability p(·) can be writ-
ten as

p(ej
∣∣Pk+1|k) = 1√

(2π )m
∣∣Pzz,j+1|j ∣∣ exp

(
−
1
2
eTj Pzz,j+1|j ej

)
(24)
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L(Pk+1|k ) is a scalar and Pk+1|k is a symmetric with
size n× n. For derivative �k+1 = ∂L(Pk+1|k )/∂Pk+1|k , the
s-th row and t-th column element of the derivative is

�
s,t
k+1 = −

1
2
tr


k∑

j=k−N+1

[2 ·9]

 (25)

2 = P−1zz,j+1|j − P
−1
zz,j+1|j eje

T
j P
−1
zz,j+1|j (26)

9 =
∂Pzz,j+1|j
∂Ps,tk+1|k

(27)

where Ps,tk+1|k is the s-th row and t-th column element of
Pk+1|k . Then P̂k+1|k can be yielded by setting �k+1 to zero,
i.e. �s,t

k+1 = 0.
Because Rk+1 and H are independent of Pk+1|k , with

(19) and (27), we can get

9 = H
∂Pk+1|k
∂Ps,tk+1|k

HT (28)

tr


k∑

j=k−N+1

[
2 ·H

∂Pk+1|k
∂Ps,tk+1|k

HT

] = 0 (29)

Then pre- and post-multiply the matrix inside tr {·} by HT

and its inverse (or the generalized inverse) can be expressed
as

tr


k∑

j=k−N+1

[
HT2 ·H

∂Pk+1|k
∂Ps,tk+1|k

] = 0 (30)

because ∂Pk+1|k
∂Ps,tk+1|k

is a constant matrix and its s-th row and

t-th column element is 1 while other elements are 0. Based
on the multiplication rule, the t-th column of the matrix
HT2H · ∂Pk+1|k

∂Ps,tk+1|k
cannot be 0 while other column must be 0.

So the value of tr {·} is equal to the t-th diagonal element
of {·}, 

k∑
j=k−N+1

[
HT2 ·H

∂Pk+1|k
∂Ps,tk+1|k

]
t,t

= 0 (31)

Furthermore, because the s-th row and t-th column element
of ∂Pk+1|k

∂Ps,tk+1|k
is 1 and other elements are 0, to insure elements of

{·} to be 0, we can obtain
k∑

j=k−N+1

{[
HT2 ·H

]}t,s
= 0 (32)

where t , s can be any value within (0,n), so

k∑
j=k−N+1

[
HT2 ·H

]
= 0 (33)

Let’s multiply both sides of (33) by P j+1|j ,

k∑
j=k−N+1

[
P j+1|jHT2 ·HP j+1|j

]
= 0 (34)

With (22) and (26),

k∑
j=k−N+1

[
W j+1HP j+1|j −W j+1ejeTj W

T
j+1

]
= 0 (35)

Based on (12) and (14), we can obtain

W j+1ej = 1x̂j+1 = x̂j+1|j+1 − x̂j+1|j (36)
k∑

j=k−N+1

[
P j+1|j − P j+1|j+1 −1x̂j+11x̂

T
j+1

]
= 0 (37)

Then
k∑

j=k−N+1

P j+1|j =
k∑

j=k−N+1

(
P j+1|j+1 +1x̂j+11x̂

T
j+1

)
(38)

Considering the assumption, Pk+1|k can be approximated by

P̂k+1|k =
1
n

k∑
j=k−N+1

P j+1|j =
k∑

j=k−N+1

P∗j+1 (39)

where P∗j+1 is defined as an intermediate matrix. Hence,

P̂k+1|k = P̂k|k−1 +
(
P∗k − P

∗
k−N

)
(40)

B. THE DISCRIMINANT RULE
The covariance adaption method is demonstrated in the above
section. The key is to decide when to use the adaption
method. Let’s reconsider the assumption that the covariance
P j+1|j, j = k −N + 1, . . . , k + 1 is nearly constant. Actually,
a discriminant rule is needed to judge whether the covariance
is nearly constant or not. In order to measure the difference
between two covariance matrices at adjacent times, similarity
measurement method is used, which is applied widely for
machine learning.

From the viewpoint of matrix, each element should be
compared with the corresponding one of the covariance at
adjacent time, if the difference was small, the covariance
matrices at adjacent times can be considered to be constant.
Chebyshev distance of these two covariance matrices is used.

Chebyshev distance is defined as

lim
p→∞

 n∑
s,t=1

∣∣∣Ps,tj+1|j − Ps,tj|j−1∣∣∣p
 1

p

=
n

max
s,t=1

∣∣∣Ps,tj+1|j − Ps,tj|j−1∣∣∣
(41)

where Ps,tj+1|j is the the s-th row and t-th column element
of P j+1|j.
Normally, the diagonal elements of the covariance matrix

are larger than other elements, thus the covariance matrix is
diagonally dominant when the filtering tends to be stable.
The maximum differences of elements defined by Chebyshev
distance are from the diagonal elements. The diagonal ele-
ments represent the variance of the state, so the differences
of corresponding diagonal elements are the differences of the
states’ error variance at adjacent time. Thus the threshold of
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FIGURE 1. Adaptive feedback framework.

the discriminant rule is defined by Geometrical Dilution of
Precision (GDOP)

n
max
s,t=1

∣∣∣Ps,tj+1|j − Ps,tj|j−1∣∣∣ ≤ Rk+1 (42)

where Rk+1 is the covariance of the measurement noise,
which is generally constant.

C. ADAPTIVE FEEDBACK FRAMEWORK
According to the above theoretical analysis, the diagram of
adaptive feedback framework is shown in Figure 1. At time k ,
the state x̂k|k is predicted according to the cubature rule,
and then x̂k+1|k and Pk+1|k are propagated. When the mea-
surement zk+1 is input, the innovations covariance matrix
Pzz,k+1|k is calculated by the cubature rule, the Jacobian
matrix H and the covariance of the measurement noise Rk+1
are also generated to calculate the cubature gainW k+1. In this
process, the covariance matrice Pk+1|k is tested according to
the discriminant rule to determine whether the adaptive feed-
back can be triggered or not. If the covariance matrice Pk+1|k
meet the condition defined by (42), the adaptive feedback
mechanism will be triggered, and Pk+1|k will be replaced by
P̂k+1|k generated by (40). At last, the error covariance matrix
is generated. The details of the algorithm are in the Appendix.

The characteristics of adaptive feedback framework can be
concluded as:
Remark 1: the adaptive feedback channel separates the

covariance estimation from the traditional filtering frame-
work. It is the novel way proposed in this study to avoid the
unpredictable errors.
Remark 2: the complex process of numerical integration

or discretization in SDE is not needed in the covariance
propagation, the computational efficiency is improved.
Remark 3: CD-CKF in the framework enables the

ASFCD-CKF to deal with the nonlinear filtering problem
better.

V. NUMERICAL SIMULATION
In this section, a linear model and a nonlinear model
are used to investigate the filtering performance of
ASFCD-CKF. Herein, CD-EKF [20], 1.5 order CD-CKF [7],
SFCD-EKF [17] (which is also called CD-AKF) and
SFCD-CKF (stochastic feedback CD-CKF) are compared.
Specially, ‘‘linear’’ and ‘‘non-linear’’ described here refer to
the type of state models, because the measurement models
in BOT are all non-linear in this study. The simulations are
conducted in Matlab 7.0 using Windows XP, Intel Core i3,
3.3 GHz platform. Monte Carlo simulations are set to be
200 times for each scenario.

A. LINEAR MODEL
The linear state model is

dx(t) = Fx(t)dt +
√
Qdv(t) (43)

where v(t) is the standard Brownian notion, F is the state
transition matrix. Measurement function is (2). The measure-
ment noise is ek ∼ N (0, 10−2). The time window N = 5,
the measurement sampling interval T = 1 min. The motion
of observer is the CA model with the constant acceler-
ation is [0.1m

/
s2, 0m

/
s2]T . The initial state of observer

is
[
0m, 0m, 100m

/
s, 50m/s

]T . The initial state of Target
is
[
1× 105m, 1× 105m, 40m

/
s,−190m/s

]T
. The diffusion

matrix is

Q =


T 3/3 0 T 2/2 0
0 T 3/3 0 T 2/2

T 2/2 0 T 0
0 T 2/2 0 T

 · 10−5

F =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1


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The root mean square error (RMSE) of position is applied to
evaluate the accuracy of BOT.

RMSE(k) =

(
1

NMC

NMC∑
i=1

∥∥∥xk − x̂ik∥∥∥22
)1/2

(44)

where NMC is the number of Monte Carlo simulations, x̂ik is
the estimation at time k for Monte Carlo simulation i, xk is
the real state of the target.

FIGURE 2. Performances comparison with the linear model. (a) The
RMSEs comparison. (b) The RMSEs with different sampling intervals.
(c) The relative ratio of the computational time.

Figure 2 presents the comparison results of filtering perfor-
mances. Figure 2 (a) shows the RMSE with different filtering
methods. The RMSEs of CD-CKF and ASFCD-CKF are the
same in the first 13s, because adaptive stochastic feedback is
not used in this stage, and then the working condition of the
feedback has not met the requirements of the discriminant
rule. After this initial stage, the RMSE of ASFCD-CKF
is the lowest and the final value is 19.05% lower than
CD-CKF. The performances of CD-CKF and SFCD-EKF
are superior over CD-EKF. Figure 2 (b) shows the RMSE
with different sampling intervals. In general, the RMSE will
be decrease along with the decrease of sampling interval.
The RMSEs of CD-CKF and ASFCD-CKF are similar when
the sampling interval approaches to 0.01min. Figure 2(c)
shows the relative ratio of the computational time, CD-EKF
with sampling interval 0.01 is the datum point. SFCD-EKF
exhibits the highest computational efficiency, while CD-CKF
is contrary, ASFCD-CKF and SFCD-CKF are not better than
SFCD-EKF. The reasons are: firstly, stochastic framework
avoids the complex computation in the filtering methods,
and thus can significantly improve the computational effi-
ciency. Secondly, the computational complexity of CD-CKF
is higher than CD-EKF. As a result, SFCD-EKF is superior

over other methods; SFCD-CKF and ASFCD-CKF are bet-
ter than CD-CKF and CD-EKF but lower than SFCD-EKF.
On the whole, ASFCD-CKF has the advantage on estimation
accuracy and computational efficiency for filtering problem
of linear model.

B. NONLINEAR MODEL
In this section, the nonlinear model [21] is defined as
d

[
y(t)
ẏ(t)

]
=

[
ẏ(t)

λ(1− x2(t))ẏ(t)− x(t)

]
dt +

[
0
1

]
dw(t)

x(t) = x(0)+

[
t
y(t)

] (45)

The parameters λ = 0.3 and w(t) ∼ N (0, 10−5). The initial
position is x(0) =

[
1× 105m, 1× 105m

]T
. The motion of

observer is the same as the previous section. The measure-
ment is defined by formula (2).

FIGURE 3. Performances comparison with the nonlinear model. (a) The
RMSEs comparison. (b) The RMSEs with different sampling intervals.
(c) The relative ratio of the computational time.

As shown in Figure 3 (a), the RMSE of CD-EKF is
the highest, and it is similar to SFCD-EKF. The RMSE of
SFCD-CKF is higher than CD-CKF and ASFCD-CKF in
the first 13 minutes, and the RMSE of CD-CKF are the
same as ASFCD-CKF. In this stage, the adaptive stochastic
feedback is not triggered, only the framework of CD-CKF
works. After this stage, the finial RMSE of ASFCD-CKF
is 9.70% higher than SFCD-CKF and 20.64% higher than
CD-CKF. Figure 3 (b) shows the RMSEs with different
sampling intervals, the general tendency is: it is a positive
correlation between the sampling intervals and the values of
RMSEs. Figure 3 (c) shows the comparison of the compu-
tational time with different filtering methods. CD-EKF with
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sampling interval 0.01 is the datum point.With the increase of
the sampling intervals, the computational time decreases. The
computational efficiency of SFCD-EKF is superior over the
other methods, and ASFCD-CKF and SFCD-CKF are a little
higher. From the comprehensive perspective, ASFCD-CKF
has the advantage in accuracy and computational efficiency.
Although the computation efficiency is not the most superior,
the adaptive stochastic feedback framework decreases the
complex computation of framework of CD-CKF.

VI. CONCLUSION
The ASFCD-CKF method is proposed to alleviate effects
of unpredictable errors. Different from the general frame-
work of traditional filtering methods, the adaptive stochastic
feedback channel is established to modify the framework of
CD-CKF, in which the posterior covariance information is
used to achieve the prior covariance. Chebyshev distance is
applied to judge the proper condition for start-up of the feed-
back. The feedback channel divides the covariance updating
from the complex mathematical calculation, and avoids the
unpredictable errors, thus the performances of efficiency and
accuracy are improved significantly. The numerical results
illustrate the superior performances of the proposed method.
However, the feedback channel will be violated by the signif-
icantly change of covariance. We will focus on this problem
and extend the application scope of this method.

APPENDIX
Appendixes, if needed, appear before the acknowledgment.

Adaptive stochastic feedback continuous-discrete cubature
Kalman filter (ASFCD-CKF)

Algorithm 1 Adaptive Stochastic Feedback Continuous-
Discrete Cubature Kalman Filtering Algorithm

Initialization g→ 0, x̂0k|k = x̂k|k and P0
k|k = Pk|k .

m-step Time-Update
(1) Factorize

Pgk|k = (Sgk|k )(S
g
k|k )

T

(2) Cubature points (i = 1, 2, . . . , 2n)

ξi =


√
nei, i = 1, 2, · · · , n

−
√
nei, i = n+ 1, n+ 2, · · · , 2n

xgi,k|k = Sgk|k ξi + x̂
g
k|k

(3) The propagated cubature point set

x∗(g+1)i,k|k = f d (x
g
i,k|k , kT + gδ)

(4) Estimate the predicted state

xg+1i,k|k =
1
2n

2n∑
i=1

x∗(g+1)i,k|k

Algorithm 1 Continued. Adaptive Stochastic Feedback
Continuous-Discrete Cubature Kalman Filtering Algorithm

(5) Estimate the predicted error covariance matrix

1X∗(g+1)k|k

=
1
√
2n

[
x∗(g+1)1,k|k − x̂

g+1
k|k , · · · , x

∗(g+1)
2n,k|k − x̂

g+1
k|k

]
Pg+1k|k = (1X∗(g+1)k|k )(1X∗(g+1)k|k )T

+
δ3

3
(0f (x̂gk|k , kT + gδ)(0f (x̂

g
k|k , kT + gδ)

T

+
δ2

2
[(0f (x̂gk|k , kT + gδ)Q

T

+Q(0f (x̂gk|k , kT + gδ)
T ]+ δQ

Increase g by one and repeat the steps (1)-(5) until g = m-1.
When g→ m,
(6) The standardized residual

τk+1 =
(
zk+1 − ẑk+1|k

)/
Szz,k+1|k

(7) The innovation covariance

Pzz,k+1|k = Szz,k+1|kSTzz,k+1|k

(8) The threshold

λk+1 =
(
zk+1 − ẑk+1|k

)
P−1zz,k+1|k

(
zk+1 − ẑk+1|k

)
= τ 2k+1

(9) The discriminant rule
If

n
max
s,t=1

∣∣∣Ps,tj+1|j − Ps,tj|j−1∣∣∣ ≥ Rk+1

Pk+1|k = Pmk|k

else

P̂k+1|k =
1
N

k∑
j=k−N+1

P j+1|j

end
Measurement-Update
(1) Factorize

Pk+1|k = Sk+1|kSTk+1|k

(2) Evaluate the cubature points (i = 1, . . . , 2 n)

X i,k+1|k = Sk+1|kξi + x̂k+1|k

(3) Evaluate the propagated cubature points

zi,k+1|k = h(X i,k+1|k , k + 1)

(4) Estimate the predicted measurement

ẑk+1|k =
1
2n

2n∑
i=1

zi,k+1|k
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Algorithm 1 Continued. Adaptive Stochastic Feedback
Continuous-Discrete Cubature Kalman Filtering Algorithm
(5) Estimate the innovations covariance matrix

Pzz,k+1|k = zk+1|kzTk+1|k + σ
2

where the weighted-centered matrix

zk+1|k =
1
√
2n

[
z1,k+1|k − ẑk+1|k , · · · , z2n,k+1|k − ẑk+1|k

]
(6) Estimate the cross-covariance matrix

Pxz,k+1|k = Xk+1|kzTk+1|k

where the weighted-centered matrix

Xk+1|k =
1
√
2n

[
X1,k+1|k

− x̂k+1|k , · · · ,X2n,k+1|k − x̂k+1|k
]

(7) Estimate the continuous-discrete cubature gain

W k+1 = Pxz,k+1|kP−1zz,k+1|k

(8) Estimate the updated state

x̂k+1|k+1 = x̂k+1|k +W k+1(zk+1|k − ẑk+1|k )

(9) Estimate the corresponding error covariance matrix

Pk+1|k+1 = Pk+1|k −W k+1Pzz,k+1|kWT
k+1
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