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ABSTRACT Optimal periodic control is an effective technique to reduce aerodynamic heating and fuel
consumption of hypersonic cruise vehicles. Herein, this optimal control problem has been solved by
nonlinear programming and passed the posteriori check of optimality. The results indicate that the lift
coefficient and velocity in dynamical model could be recognized as constants. Accordingly, the original 3D
system consists of velocity, flight path angle, and altitude, which could be decoupled into a 2D subsystem and
a 1D one. The 2D subsystem could describe the correlation between the flight path angle and altitude. And the
period length is mainly dependent on the maximum altitude difference. The 1D subsystem has been proved
to be feasible to describe the variation of kinetic energy or velocity. On basis of the subsystems, the heating
and fuel performances of periodic cruise have been studied. The heating performance is mainly dependent
on the maximum altitude difference, and the fuel consumption is mainly dependent on the drag coefficient.
The features concluded in this paper can support rapid trajectory planning or suboptimal feedback design of
hypersonic cruise vehicles.

INDEX TERMS Optimal periodic control, hypersonic cruise vehicle, trajectory features, performances.

I. INTRODUCTION
Hypersonic cruise vehicle (HCV) is a kind of aerial vehicle
that cruises at Ma 5 and altitude beyond 20 km. Its high
speed is helpful to shorten endurance, especially that of
long-range flights. This advantage facilitates the research of
hypersonic airliners such as LAPCAT [1], HIKARI [2], and
HEXAFLY-Int [3], [4]. Besides, the high speed also endows
hypersonic missiles like Boeing X-51A [5], [6] with high
penetration ability [7], which is desirable in military [8].

However, speed beyond Mach 5 would induce severe
aerodynamic heating on surfaces [9]. To withstand the
aerothermodynamics over a long range, a comprehensive
and complicated thermal protection/management system is
demanded [10], [11]. This would lead to a higher empty ratio,
which means decline of structural efficiency [12]. To obtain
a long range, lightweight materials for thermal protection is
a research hotspot at present [13].

Besides, optimal control has been proven another
effective approach [14]–[16]. In works minimizing fuel
consumption [7], [17], [18], optimal periodic control is shown
also efficient to alleviate aerodynamic heating. Altitude,
flight path angle, and velocity of the resultant trajectories
behave periodicity during cruise segment. Hence the manner

of cruise is called periodic hypersonic cruise (PHC). From
perspective of Pines [19], the excellent global reach and heat
load performances of PHC are due to a flight regime where
the coupled propulsion, aerodynamics and flight physics
are simply more efficient. By heat load and specific fuel
consumption being optimized together, Kang et al. [20]
figured out that heat load and fuel consumption could be
simultaneously diminished by PHC, and that the two per-
formances mutually conflict. Herein, the adopted models of
HCV is referred from our previous work [21]. By minimizing
the weighted combination of fuel and heating performances,
the results show that PHC is effective to reduce mean heating
flux, and that it maintains the similar performance of fuel
consumption with steady cruise. The difference between [21]
and the other works is the effectiveness of PHC to conserve
fuel. This difference is mainly caused by the differences of
propulsive and aerodynamic models, which has also been
observed by Menon et al. [22].

However, as a locally optimizing periodic solution of a
Hamiltonian system, PHC is more likely to be unstable,
according to Evans’s work [23]. The poor stability would
lead to failure in realization. Hence more efforts should be
made to improve stability and feasibility of PHC. That means

3406
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-3334-5633
https://orcid.org/0000-0001-6672-1896


W. Wang et al.: Optimal Periodic Control of Hypersonic Cruise Vehicle: Trajectory Features

a compromise in optimality. Before such a compromise,
a tractable method to construct suboptimal trajectories with
improved performances are still significant. To build this
method, the mechanism of periodicity, the merit of control
to realize periodic cruise, the variation scales of the flight
states, the predominant factors deciding fuel and heating
performances are necessary to make clear.

The mechanism of PHC to conserve fuel and alleviate
heating has been preliminarily analyzed in our previous
work [24]. Period length is also included. Although the con-
cluded features are in accord with those of PHC, the rational-
ity of assumptions used in simplification of dynamical system
are questionable. Therefore, a further study is necessary.

In this work, the studied features include constant lift
coefficient, constant velocity, periodicity, energy cycle, fuel
and heating performance. Among these features, constant
lift coefficient and constant velocity are used to simplify
the problem and make the dynamical system more tractable.
Features of periodicity and energy cycle are used to generate
temporal arrays of state variables by algebraic correlations.
Features of fuel and heating performance are used to estimate
the performances of a PHC trajectory. With fuel and heating
performances specified, a periodic hypersonic cruise trajec-
tory could be constructed in a procedure as follows:

1) specify the planform loading and the boundaries of
control inputs;

2) solve the reference velocity and altitude by optimal
steady cruise;

3) estimate the maximum altitude difference and drag
coefficient by features of performances;

4) obtain the temporal arrays of velocity, flight path angle,
and altitude.

In Section II, the optimal periodic control problem is
formulated. The simulation results are exhibited. The con-
trol law of thrust coefficient is bang-singular-bang; and that
of lift coefficient is likely to be discontinuous. These fea-
tures have been verified by a posteriori check of necessary
conditions derived from Pontryagin’s minimum principle.
In Section III, the distribution of distance knots is studied.
The vehicle spends most of the time/distance at high altitude
(or low atmospheric density). By supposing that lift coef-
ficient maintains constant over the whole period, the fuel
and heating performances of the simplified system are closed
to those of the original system. The optimal lift coefficient
(optimized as a parameter) is higher than that related to the
maximum L/D. Due to the hypersonic speed, the relative
variation of velocity and its impact on variation of flight path
angle are negligible. Hence the dynamical models of flight
path angle and altitude are decoupled from that of velocity
(or specific kinetic energy). The original 3D system is divided
into two subsystems: a 2D autonomous subsystem composed
by density and flight path angle, and an 1D subsystem of
kinetic energy. In Section IV, the features and performances
of the PHC are studied. The 2D and 1D subsystems are
proved to be feasible to approximate the variations of the
state variables governed by the original 3D dynamical system.

TABLE 1. Definition of variables and parameters.

On basis of the 2D autonomous subsystem, the periodicity
is predominantly decided by the natural oscillation of the
2D subsystem. And the period length could be estimated by
the maximum altitude difference (a description of oscillation
amplitude of altitude history). The mean heat flux could be
estimated by the maximum altitude difference. The excellent
heating performance is a nature of PHC. The fuel consump-
tion is mainly dependent on the drag coefficient.

II. PERIODIC HYPERSONIC CRUISE TRAJECTORY
A. PROBLEM FORMULATION
Longitudinal phugoid motion of HCV is governed by a non-
linear dynamical system as follows: [20]

dV
dt
=

ρV 2

2m0/S
(CT cosα − CD)−

(
g−

V 2

RE + H

)
sin γ

dγ
dt
=

ρV
2m0/S

(CT sinα + CL)−
(
g−

V 2

RE + H

)
cos γ
V

dH
dt
= V sin γ

dx
dt
= V cos γ.

(1)

Wherein, the variables and parameters are defined and nor-
malized in Table. 1. RE = 6370 km is the earth radius,
g = 9.8 m/s2 is the gravitational acceleration, ρ0 is the
atmospheric density at a reference normalized altitude h0.
In near space (H = 20-100 km), the normalized density could
be approximated as an exponent function of the normalized
altitude, as shown in (2); where, β is the fitted constant.
Besides, CL , CD, and CT are respectively lift, drag, and thrust
coefficients. A modified HL-20 lifting-body model [20] is
adopted here. In this model, CD is in a quadratic correlation
with CL , as shown in (3). CD0 and KD are decided by Mach
number (or kinetic energy), as shown in (4) and (5). Mach
number is another normalization of velocity, as shown in (6);
where,Va is the sound speed which is decided by atmospheric
temperature.

d = exp [−βRE (h− h0)] (2)

CD = CD0(Ma)+ KD(Ma)C2
L (3)

CD0 = 0.07115 exp(−0.8061Ma)+ 0.007839 (4)

KD = 1.85[1− exp(−0.2356Ma)] (5)

Ma =
V
Va

(6)
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With the other three equations in (1) divided by variation
ratio of distance dx/dt , the dynamical system could be con-
verted into a 3D one with respect to distance. Besides, with
the following assumptions adopted, the dynamical system
could be simplified as (7).

1) γ is a small angle, hence tan γ ≈ γ and cos γ ≈ 1;
2) Because of an aerodynamic constraint of stall and a

propulsive constraint of scramjet working condition,
angle of attack is limited. In this work, the thrust is
assumed to be parallel to velocity. The impact of the
deflection of thrust on flight path angle is ignored.

3) Since H � RE holds for an airbreathing cruise,
the impact of altitude on centrifugal force is ignored.

dV
dx
=

ρV
2m0/S

(CT − CD)−
(
g−

V 2

RE

)
γ

V
dγ
dx
=

ρV
2m0/S

CL −
(
g−

V 2

RE

)
1
V 2

dH
dx
= γ

(7)

With the two sides of the variation ratio of velocity with
respect to distance in (7) multiplied by V , the variation ratio
could be revised as (8).

VdV
dx
=

ρV 2

2m0/S
(CT − CD)−

(
g−

V 2

RE

)
γ (8)

The specific kinetic energy is defined by

K =
1
2
V 2 (9)

With specific kinetic energy in (9) and normalizations
in Table. 1 substituted into variation ratio in (8), the dynam-
ical model of normalized specific kinetic energy could be
formulated as

dk
dχ
= 2σkd(CT − CD)− (1− 2k) γ (10)

With the normalizations in Table. 1 and the definition
of specific kinetic energy in (9) substituted into dynamical
models of flight path angle and altitude in (7), the dynamical
models could be revised as normalized ones. With the two
normalized models combined with the one of normalized
kinetic energy in (10), a 3D normalized dynamical system
with respect to normalized distance could be composed,
as shown in (11).

k̇ =
dk
dχ
= 2k · σd (CT − CD)− (1− 2k) γ

γ̇ =
dγ
dχ
= σdCL −

(
1
2k
− 1

)
ḣ =

dh
dχ
= γ.

(11)

Generally, the control input of a vehicle consists of deflec-
tions of control surfaces and throttle of engine. Lift coefficient
is dependent on Mach number and angle of attack; thrust
coefficient is dependent on throttle, Mach number, and angle
of attack. (The detailed models are shown in [20]) Angle of

attack is the difference between pitch angle and flight path
angle. The former is second integral of angular acceleration
which is directly related to the deflections of control surfaces.
Since the dynamics of attitude is not explicit contained in the
dynamical system in (1), angle of attack could be recognized
as an independent variable which realized in attitude control.
Hence control input of the dynamical system in (1) could
consist of throttle and angle of attack. Since angle of attack
and throttle are only explicitly contained in models of thrust
and lift coefficients, the impacts of a set of throttle and angle
of attack could be equivalent to that of a set of thrust and
lift coefficients. And for a given Mach number, throttle and
angle of attack could be solved according to thrust and lift
coefficients. Therefore, the control input could also consist of
thrust and lift coefficients. Let X and U respectively denote
the state and control vector, as shown in (12).{

X = [k γ h]T

U = [CT CL]T
(12)

Fuel consumption and aerothermodynamic performance
are concerned about in this work. The consumption ratio of
fuel mass is governed by (13) [20].mF denotes the consumed
fuel mass, TE does the thrust of engine, and Isp does the
specific impulse.

dmF
dt
=

TE
gIsp
=

1
2
ρV 2SCT

gIsp
(13)

Specific impulse of scramjets could be estimated by (14) [25].
ηKE and ηC are respectively kinetic and combustion effi-
ciency. For a hydrocarbon-fueled scramjet, ηKE = 0.8 and
ηC = 0.7 are rational performances. CC is nondimensional
heat of combustion to unit mass of air, CF is nondimensional
fuel enthalpy at the injector manifold to unit mass of air.

Isp =
V
gf

[√
(1+ f ) ηKE

(
1+

CF + ηCCC
1+ κ

)
− 1

]
(14)

Propulsive efficiency is the ratio of useful work done by
thrust to chemical energy of fuel, as shown in (15). Hence
it is in proportional correlation with velocity and specific
impulse. Hp is the specific combustion enthalpy of fuel. For
Jet-A, it is about 43.5 MJ/kg; for liquid hydrogen, it is about
119.9 MJ/kg. Herein, a scramjet fueled by Jet-A is adopted.

ηP =
TEV
dm
dt
Hp
=
VIspg
Hp

(15)

With the two sides of (13) divided by variation ratio of
distance dx/dt in (1), the variation of fuel mass with respect
to distance could be obtained. With (14), (15) and the nor-
malizations in Table. 1 substituted, the dynamical model of
fuel mass fraction with respect to normalized time could be
formulated as (16).

µ̇ =
σduCT
isp

=
2k · σdCT

uisp
=

2k · σdCT
hpηP

(16)
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The aerodynamic heat flux at the stagnation point could
be estimated by (17) [20]. It is the variation ratio of the
heat convected from atmosphere to the vehicle. Q denotes
the aerodynamic heat. The heat flux is related to atmospheric
density and velocity. kq0 is a constant related to bluntness of
leading edge [26].

qw =
dQ
dt
= kq0

√
ρV 3 (17)

With (17) divided by the variation ratio of distance dx/dt
in (1), and with the normalizations in Table. 1 substituted, the
dynamical model of aerodynamic heat could be formulated
as (18).

Q̇ = kq
√
d · k (18)

In pursuit of high fuel efficiency and low aerodynamic
heating, the period-average criterion in (19) is to minimize
in optimal control. ω is the weight factor of aerodynamic
heating. When a weight factor of 0 is adopted, the problem
would become a fuel-optimal one.

min : J =
1
Tχ

∫ Tχ

0

(
µ̇

µ̇0
+ ω

Q̇

Q̇0

)
dχ (19)

Trajectory of the optimal periodic control is a closed orbit
in state space X = [k γ h]T. The trajectory has no terminal
points in actual. However, to apply discretization and numer-
ical simulation, initial and final points exist. The initial and
final points should coincide to enclose the orbit, as shown
in (20). To avoid multiple solutions caused by different initial
points on the same closed orbit, one dimension of the initial
point could be specified, as shown in (21). The physical
significance of this initial point is the lowest altitude. The
selection of initial points is without loss of generality.

X(0) = X(Tχ ) (20)

γ (0) = 0, h < h0 (21)

The limitations of state variables and admissible controls
are as follows:

φ(X) =
[
k − kmin
kmax − k

]
≥ 0 (22)

ζ (U) =


CT − CT min
CT max − CT
CL − CLmin
CLmax − CL

 ≥ 0 (23)

B. REFERENCE TRAJECTORY: OPTIMAL STEADY CRUISE
To study the advantages of PHC over steady cruise, an opti-
mal steady cruise is used as the reference trajectory [27].
As an equilibrium point of dynamical system shown in (11),
steady cruise should satisfy the condition shown in (24). This
condition means that the vehicle cruises at constant velocity
and altitude. 

k = k0
γ ≡ 0
h = h0 ⇒ d0 = 1

(24)

With this condition substituted into the dynamical system
in (11), the control inputs, namely thrust and lift coefficients,
could be expressed as functions of velocity and altitude,
as shown in (25). Then an equilibrium plane k0−h0 could be
enclosed by the constraints in (22)-(23). Any one point in the
plane is a feasible solution to steady cruise. Then the optimal
steady cruise could be solved by a parametric optimization in
the equilibrium plane.CT = CD

CL =
1
σ

(
1
2k0
− 1

)
(25)

With the heating performance ignored, the objective is to
minimize the fuel consumption, as shown in (26).

J0 = µ̇0 =
2k0σCT
hpηP0

(26)

In the equilibrium plane, with control inputs in (25) substi-
tuted into objective of optimal steady cruise in (26), the objec-
tive could be revised as

J0 = µ̇0 =
1− 2k0
hpηP0E

(27)

According to the objective in (27), to minimize the specific
fuel consumption, the maximum L/D related to a given veloc-
ity should be adopted. On basis of the aerodynamic model
in (3), the maximum L/D could be obtained, as shown in (28).
The equation indicates that the maximumL/D is only decided
by velocity (or specific kinetic energy).

Emax =
1

2
√
CD0KD

∼ k0 (28)

Then the objective could be further revised as a function of
velocity, as shown in (29). The values of function ψ related
to different Mach numbers are shown in Fig. 1. The fig-
ure indicates thatψ declines with increment of Mach number
(Ma ∈ [4, 6]). Therefore, Mach 6 is the optimal velocity of
steady cruise.

J0 = µ̇0 =
1− 2k0
ηP0hpEmax

1
=

1
hp
ψ(k0) (29)

By combining equilibrium condition in (25) and the defi-
nition of σ in Table. 1, the optimal density could be solved,
as shown in (30); where, CLk is the lift coefficient related to
maximum L/D, as shown in (31). Then the optimal altitude
could be obtained by interpolation with the atmospheric data
of 1976 Committee on Extension to the Standard Atmosphere
(COESA). The optimal altitudes for vehicle with different
planform loadings are shown in Fig. 2. For a vehicle with
planform loading of 273 kg/m2, the optimal altitude is 30 km.

ρ0 =
2m0/S
RECLk

(
1
2k0
− 1

)
(30)

CLk =
1

2
√
CD0KD

(31)
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FIGURE 1. Value of function ψ .

FIGURE 2. Altitudes of optimal steady cruise for HCV with different
planform loadings.

Then the heating performance of optimal steady cruise
could be obtained, as shown in (32).

Q̇0 = kq
√
d0k0 = kqk0 (32)

With this heating performance substituted into (19), the per-
formance measure of optimal periodic cruise could be revised
as

min : J =
1
Tχ

∫ Tχ

0
8dχ (33)

where,

8 =
µ̇

J0
+ ω
√
d
k
k0

(34)

In this work, the solution for optimal steady cruise could
be summarized as follows:

X0 = [kmax, 0, h0]T = [0.0260, 0, 0.00471]T

U0 = [CLk ,CD(CLk )]T = [0.0168, 0.0775]T

J0 = µ̇0 = 0.7441

(35)

C. METHOD FOR OPTIMAL CONTROL
The optimal control problem could be expressed as one
to optimize the state and control variables shown in (12)
and limited by (22) and (23) to maximize the performance
measure of (33), while satisfying the boundary conditions
in (20) and (21).

The normalized distance χ is uniformly discretized into a
series of knots, as shown in (36). N is the number of knots.
Tχ is unknown and optimized as a parameter.

χ (i)
= (i− 1) ·

Tχ
N − 1

, i = 1, 2, · · · ,N (36)

At the knots, the state and control variables are also dis-
cretized as{

X(i)
= [k (i) γ (i) h(i)]T = [k(χ (i)) γ (χ (i)) h(χ (i))]T

U(i)
= [C (i)

T C (i)
L ]T = [CT (χ (i)) CL(χ (i))]T

(37)

The differential correlations of dynamical system in (11)
are then converted into algebraic equation constraints by
numerical integrationmethod. Herein, 2-stage 4-order Gauss-
Legendre implicit method [28] based on Gauss quadrature
is adopted. For any i ∈ [1,N − 1] and i ∈ Z , in the
interval between i-th and (i + 1)-th knots, there are two
additional collocation points. At these points, the control
input maintains U(i). At the j-th (j = 1, 2) collocation point
in i-th interval, let K(i)

j denote the gradient of state vector X
with respect to normalized distance χ . For the time-invariant
dynamical system in (11), the differential correlation could be
converted into 3 equation constraints in one interval, as shown
in (38). ajl and bj are coefficients in Butcher tableau of
Gauss-Legendre.

X(i+1)
− X(i)

−1χ
2∑
j=1

bjK
(i)
j = 0

K(i)
j − f

(
X(i)
+1χ

2∑
l=1

ajlkl,U(i)

)
= 0

(38)

The problem is solved by a nonlinear programming solver
IPOPT [29], the Jacobian and Hessian are provided by an
automatic differentiation solver ADOL-C [30].

Simulations with weight factors from 0 to 5.0 in step
of 0.1 have been conducted. For weight factor of 0, the result
of optimal steady cruise in (35) and K(0)

1 = K(0)
2 = 0 is

adopted as the initial guess. For weight factors higher than 0,
the simulations are conducted sequentially: the result of the
previous simulation is used as the initial guess, as shown
in (39). Wherein, Opt denotes a function describing the solv-
ing process of optimal control, i denotes the i-th step with
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weight factor ωi. Weight factor and initial guess for state and
control variables are independent variables of Opt .

X(i)

K(i)
1

K(i)
2

U(i)

 = Opt
(
ωi; X(i−1),K(i−1)

1 ,K(i−1)
2 ,U(i−1)

)
(39)

D. METHOD FOR POSTERIORI CHECK
Evans [23] suggests sufficient and necessary conditions
for local minimum of periodic control in four aspects as
follows:

1) The Euler-Langrange equations and the transversality
conditions must be satisfied;

2) The strong form of the Legendre condition related to
the second derivative of Hamiltonian with respect to
control input should be positive definite, i.e. Huu > 0;

3) A bounded symmetric solution to the Riccati equation
exists for 0 ≤ t ≤ T subject to the periodic boundary
condition;

4) Eigenvalues of transition matrix evaluated over one
period are unity or off the unit circle.

In this work, the former two conditions are adopted to con-
duct a rough posteriori check of optimality of the numerical
solutions. The latter two demand solving Riccati equation
over one period, which means additional numerical analyses.
Herein, the latter two are not studied. Besides, Evans [23] has
proved that local optimizing periodic solutions are unstable
with the possible exception of isolated limit points. To avoid
solvingRiccati equation, the solutions in this optimal periodic
control problem are supposed to be unstable. Hence they
could be recognized infeasible. Nevertheless, detailed studies
of the optimality, stability, and feasibility are still necessary
in the future.

The Hamiltonian of the optimal periodic control problem
could be formulated as

H = 3TẊ+8 (40)

where, 3 is vector of costates related to X.

3 = [λk λγ λh]T. (41)

Then first-order derivative of Hamiltonian with respect to
control input could be obtained as

Hu =
∂H
∂U
=

 λk · 2kσd +
1
J0

2kσd
ηPhp

−λk · 2kσd · 2KDCL + λγ · σd

 (42)

With constraints in (22) and (23) considered, the Lagrangian
of the problem could be obtained, as shown in (43).

L = H+ ν̃Tφ + µ̃T ζ (43)

Wherein, ν̃ and µ̃ are adjoint vectors related to respectively
φ and ζ . To minimize the performance measure in (33), all

items in the two vectors are nonpositive, and the conditions
in (44) and (45) hold [31].

ν̃i

{
= 0, φi 6= 0
< 0, φi = 0,

i = 1, 2 (44)

µ̃i

{
= 0, ζi 6= 0
< 0, ζi = 0,

i = 1, 2, 3, 4 (45)

According to Pontryagin’s minimum principle, the neces-
sary condition for optimality is that the partial derivatives of
Lagrangian with respect to control inputs vanish, as shown
in (46) and (47).

0 =
∂L
∂CT
=
∂H
∂CT
+ µ̃1 − µ̃2 (46)

0 =
∂L
∂CL
=
∂H
∂CL
+ µ̃3 − µ̃4 (47)

According to (46), the optimal thrust coefficient satisfies
the following scenes:

1) If ∂H/∂CT > 0, µ̃1 should be nonzero, hence
CT = CT min should be adopted.

2) If ∂H/∂CT < 0, µ̃2 should be nonzero, hence
CT = CT max should be adopted.

3) If ∂H/∂CT = 0, a CT where φ1 and φ2 are inactive
should be adopted. Since CT is not explicitly contained
in ∂H/∂CT , the control is singular.

The optimal control law of thrust coefficient could be formu-
lated as

CT =


CT max, 1T < 0
CT min, 1T > 0
singularity, 1T = 0

(48)

where, 1T is the switching discriminant, as defined in (49).
With this discriminant substituted into derivative of Hamilto-
nian in (42), it could be observed that 1T has the same sign
with ∂H/∂CT .

1T = J0ηPhpλk + 1 (49)

Similarly, the optimal control law of lift coefficient could
be obtained as

CL =


CLmax, 1L < 0
CLmin, 1L > 0
1

4kKD
·
λγ

λk
, 1L = 0

(50)

where,1L is the switching discriminant defined in (51). It has
the same sign with ∂H/∂CL .

1L = −4λkkKDCL + λγ (51)

According to [32], for a control problem with state con-
straint as

ζ (x(t), t) ≥ 0 (52)
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FIGURE 3. Closed orbit of states of optimal PHC (ω = 1).

at the junction time τ , the boundary interval where ζ = 0
starts or ends. Then the costate of x is likely to be discontin-
uous at τ , as shown in (53).

λ(τ−) = λ(τ+)+ η(τ )ζx (53)

Since state constraints in (23) is only dependent on kinetic
energy, history of λk may be discontinuous at junction time
of k = kmax or k = kmin. (50) indicates that control law
of lift coefficient is correlative with the costates (or adjust
coefficients) of kinetic energy and flight-path angle. Hence
the history of lift coefficient may also be discontinuous at the
junction time.

Besides, a strong form of the Legrendre condition shown
in (54) should be satisfied.

Huu =
∂2H
∂U2 =

[
0 0
0 −λk · 2kσd · 2KD

]
> 0 (54)

The condition is equivalent to

λk < 0 (55)

Therefore, as a posteriori check of optimality, the resultant
trajectory should satisfy three intuitive aspects as follows:

1) History of thrust coefficient is in a bang-singular-bang
form switching between CT min and CT max.

2) In history of lift coefficient, discontinuity only occurs
at the junction time of boundaries k = kmin or kmax.

3) History of costate of specific kinetic energy λk main-
tains beneath 0.

E. SIMULATION RESULTS
The optimal periodic hypersonic cruise trajectorywith weight
factor of 1 is plotted in Fig. 3. The coordination system in
the figure is composed by Mach number, flight path angle,
and altitude. The trajectory is a closed orbit in state space.
Hence the terminal constraint of periodicity in (20) could be
satisfied. Besides, the state variables arewithin the admissible
scale.

FIGURE 4. Histories of thrust coefficient and altitude of optimal PHC.

FIGURE 5. Histories of lift coefficient and Mach number of optimal PHC.

The histories of thrust coefficient and altitude are plotted
together in Fig. 4. The history of thrust coefficient is obvi-
ously a bang-bang control switching between boundary arcs
CT = CT max and CT = CT min = 0. Besides, the start
point of engine is observed to be the minimum altitude. Since
the contribution of propulsion to dynamical system in (11)
is multiplied by density, whether the engine is working at
high altitude has little difference. Hence the trajectory could
mainly includes two segments:

1) boosting to ascend;
2) gliding to descend.
The histories of lift coefficient and Mach number are

plotted together in Fig. 5. The history of lift coefficient is
discontinuous only at the junction points of boundary Ma =
Mamax (equivalent to k = kmax).

The history of costate of specific kinetic energy λk is plot
in Fig. 6. The figure indicates that the history maintains
beneath 0 over one period.

Therefore, the histories of state variables satisfy the peri-
odic constraints in (20) and limitations in (22), and that of
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FIGURE 6. History of costate of specific kinetic energy λk .

control variables could pass the posteriori check of optimality
in Subsection II-D.

III. PROBLEM SIMPLIFICATION AND SYSTEM
APPROXIMATION
A. DISTRIBUTION OF DISTANCE KNOTS
On basis of the exponent approximation in (2), the derivative
of normalized density with respect to normalized distance
could be obtained as

ḋ = −βRE · d · ḣ (56)

where, β is the fitted constant of density in (2), RE is the
earth radius. With the two constants involved, a constant ε
could be defined, as shown in (57). With data substituted, ε is
about 0.001.

ε =
1
βRE

≈ 0.001 (57)

With ε in (57) and ḣ in (11) substituted in (56), the variation
of normalized density could be revised as

εḋ = −γ d (58)

Since ε > 0 and d > 0, when γ > 0, the variation of density
is stable, and would converge to d = 0; when γ < 0, density
would diverge to+∞. Besides, γ = 0 is an equilibrium point
of the system of density in (58). At this point, let a constant,
deq, denote the normalized density.
When |γ | > ε, variation speed of density would be

rapid. However, when close to the equilibrium point γ = 0,
γ becomes comparable with ε. The variation of density would
slow down. According to dynamical models of altitude and
density in (11) and (58), γ = 0 is simultaneously related to
the local extrema of altitude and density. Therefore, the vehi-
cle mainly stays at the locally minimum and maximum
altitudes.

Besides, according to the dynamical model of density
in (58), for a given flight path angle, a high density would
yield a high variation speed of density. Hence the vehicle

FIGURE 7. Distribution of distance knots in normalized density (ω = 1).

would stay at the maximum altitude for longer distance than
at the minimum. Therefore, most distance knots would be
located at low density (d < 1).
The distribution of knots in normalized density of PHC

with weight factor of 1 is shown in Fig. 7. The abscissa is the
relative distance, and the ordinate is the normalized density.
On the curve, every circle marker means a distance knot. The
knots uniformly divide the distance. The figure validates that
the vehicle mainly stays at high altitude with low density.

B. APPROXIMATION OF CONSTANT LIFT COEFFICIENT
With the dynamical model of density in (58) taken derivative
with respect to normalized distance, the second-order deriva-
tive of normalized density could be obtained as

εd̈ = −γ̇ d +
γ 2

ε
d . (59)

With dynamical model of flight path angle in (11) substituted,
(59) could be revised as

εd̈ = −σCLd2 +
(

1
2k
− 1+

γ 2

ε

)
d (60)

A high lift coefficient could help to decrease ḋ . This is
beneficial to the motion towards low density, whereas retards
that towards high density. Then more time/distance would
be spent at high altitude. Therefore, high lift coefficient is
desirable for heat protection. However, around the minimum
altitude, the energy loss caused by drag would be consider-
able if the lift coefficient is too high, which should be avoided
to conserve fuel. Therefore, the two parts of criterion in (33)
mainly conflict at low altitude. Fig. 5 validates this conclusion
in two aspects:

1) when heat protection is more considered, the lift coef-
ficient would be higher, and the main increment occurs
at high altitude;

2) at a low altitude, lift coefficient approaches to CLk
which is related to the maximum L/D.

VOLUME 7, 2019 3413



W. Wang et al.: Optimal Periodic Control of Hypersonic Cruise Vehicle: Trajectory Features

FIGURE 8. Comparison of performances between PHC and PHC-CL
trajectories.

At high altitude (d � 1), as shown in dynamical system
of (11), a small d would reduce the influence of aerodynamic
coefficients. Difference in influences between a certain feasi-
ble lift coefficient and the optimal history is ignorable there.
However, the influence of difference is considerable at low
altitude. Fig. 5 indicates that lift coefficient varies in a small
scale at low altitude. A constant lift coefficient close to the
mean value at low altitude could diminish the difference.
Therefore, it is rational to recognize CL as a parameter of
optimal control that maintains constant along distance/time.

The fuel and heating performances are shown in Fig. 8.
In the figure, PHC denotes the result of original optimal
control problem, and PHC-CL does that of the problem
where lift coefficient is optimized as a parameter. The fig-
ure indicates that PHC-CL has similar performances with
PHC. The difference is reflected on the weight factors. How-
ever, weight factor describes the degree of consideration
which is not really a countable quantity. Comparison of
weight factors between different systems is insignificant.
Therefore, although mismatch between performances and
weight factor occurs, PHC-CL is still a rational approximates
of PHC.

Besides, the optimal lift coefficients (CLopt ) of PHC-CL
are compared with the mean ones (C̄L) of PHC in Fig. 9. The
figure shows that a higher weight factor demands a higher lift
coefficient in the each of the problems. However, the aug-
ment scale of CLopt is much smaller than that of C̄L . For
ω ∈ [0.1, 5], CLopt varies within [1, 1.33].

C. APPROXIMATION OF CONSTANT VELOCITY
Figure. 10 plots the histories of specific mechanical, kinetic,
and potential energies. The abscissa, x/Tx , represents the
relative distance. x is the distance, and Tx is the period length
in distance. The ordinate represents the specific energies
in MJ/kg. The figure indicates that mechanical energy
conservation approximately holds at most of the distances.

FIGURE 9. Comparison of optimal lift coefficients of PHC-CL and mean
values of PHC-CL trajectories.

FIGURE 10. Specific energy variation (ω = 1).

The error is small when potential energy is high. Since
potential energy is proportional to altitude, the energy con-
servation mainly holds at high altitude. At high altitude,
the density is low, hence energy imported by propulsion
and that consumed by drag are negligible. The energy con-
servation could be formulated as (61). Wherein, gH is the
specific potential energy; and V 2/2 is the specific kinetic
energy.

gH +
V 2

2
= const (61)

With velocity substituted by Mach number in (6), the vari-
ations of altitude and Mach number are correlated in the
way of (62). For Mach number within 4-6, 1% decrease
of Mach number would cause increment of altitude by
1.47-3.31 km. According to (2), this would lead to 20-40 %
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decline of density. Therefore, from perspective of energy
conversion, small variation of Mach number would lead
to prominent variation of altitude or density. According to
Fig. 3, to enclose a periodic hypersonic cruise, Mach number
only needs a relative variation less than 10%. This is much
less prominent than the other state variables. Therefore, vari-
ation of velocity (Mach number, or kinetic energy) could be
recognized as a small quantity.

1H
1Ma/Ma

= −
V 2
a

g
Ma2 (62)

According to dynamical model of flight path angle in (11),
a perturbation of kinetic energy, 1k , has an impact on flight
path angle as

γ̇ = σdCL −
(

1
2k
− 1

)
+

1
2k2

1k (63)

Then the error of substituting k by a constant k0 could be
estimated by (64). Normalized kinetic energy of optimal
steady cruise in (35) is adopted as k0.

1γ̇ =
1

2k20
1k =

1
k0

1Ma
Ma

(64)

For a given relative variation 1Ma/Ma, the error of ignor-
ing impact of this variation on flight path angle would
decline with increment of velocity (Mach number, or kinetic
energy). Besides, a low value of 1Ma/Ma is possible,
according to (62). Therefore, hypersonic speed rationalizes
an assumption that impact of variation of velocity (Mach
number, or kinetic energy) on dynamical model of flight path
angle in (11) is negligible.

D. PROBLEM SIMPLIFICATION
Subsection III-B rationalizes optimizing lift coefficient as a
parameter. In dynamical system governed by (11), with a
constant lift coefficient, thrust coefficient would be the only
control variable, and is only explicitly contained in dynamical
model of specific kinetic energy.

Subsection III-C indicates that velocity in dynamical
model of flight path angle could be recognized as a constant.
With this approximation adopted, the variations of flight path
angle and normalized density are coupled; however, indepen-
dent on velocity.

Then the original 3D dynamical system in (11) could be
divided into two subsystems as follows:

1) d − γ 2D autonomous subsystem where k = k0 is a
constant, and CL is a constant control input which is
optimized as a parameter;

2) 1D subsystem of k , explicitly contains thrust coeffi-
cient CT , and dependent on normalized density d and
flight path angle γ .

Load factor is a description of acceleration in lift direction.
It is a ratio of lift to weight, as shown in (65).

n =
L
W
=

σdCL
1/2k − 1

(65)

This equation indicates that load factor is also the ratio
between two parts of dynamical model of flight path angle
in (11). With (65) substituted, this dynamical model could be
revised as

γ̇ = (n− 1)0 (66)

where, 0 is a constant correlative with k , as defined in (67).

0 =
1
2k
− 1 (67)

In the optimal steady cruise, γ ≡ 0. Hence n ≡ 1, which
means the lift-weight balance. Then the correlation in (65)
could be revised as

σd0CLk = 0. (68)

With (68) substituted into (65), then the proportional corre-
lation between load factor and normalized density could be
figured out as

n =
d
d0

CL
CLk
∝ d . (69)

With (69) substituted into (58), the dynamical model of load
factor could be obtained, as shown in (70).

εṅ = −nγ (70)

With load factor in (65) substituted into dynamical model
of specific kinetic energy in (11), the dynamical model could
be revised as

k̇ = (1− 2k) (nCA − γ ) (71)

CA is the open-loop input of combined aerodynamics and
propulsion, as defined in (72).

CA =
CT − CD

CL
(72)

Since item in the latter bracket of (71) has a more obvious
variation than that in the former one, substituting k = k0
into (71) is also feasible. Hence (1−2k) could be recognized
as a constant. For Mach number within 4-6, this item ranges
from 0.95 to 0.9, which means it is negligible. Then the
dynamical model of specific kinetic energy could be simpli-
fied as

k̇ = nCA − γ (73)

Therefore, the d−γ 2D subsystem is equivalent to a n−γ
one governed by (66) and (70), and the k 1D subsystem is
governed by (73). The open-loop dynamical system is shown
in Fig. 11. In the figure, CA defined in (72) is the open-
loop input, CL is a constant parameter, 1/s means integra-
tion process. The figure indicates that the 2D subsystem is
autonomous, whereas the 1D subsystem is dependent on CA
and the state variables of the 2D one.
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FIGURE 11. Sketch map of simplified open-loop dynamical system.

IV. TRAJECTORY FEATURES
A. PERIODICITY
With γ̇ in (66) divided by ṅ in (70), χ becomes no longer
explicitly contained in the 2D n − γ subsystem, as shown
in (74).

γ · dγ = ε0
(
1
n
− 1

)
· dn (74)

With the two sides in (74) integrated separately, an algebraic
equation could be obtained to describe a closed orbit sym-
metric about the n axis (γ = 0), as shown in (75). C is the
integration constant.

γ 2
= 2ε0(ln n− n+ C) (75)

At the maximum and minimum altitudes, load factor also
hits its extrema, and γ = 0 holds. Hence the integration con-
stant C could be obtained at these extrema, as shown in (76).
According to definition of load factor in (65) and exponent
estimation of normalized density in (2), nmin is dependent on
the maximum altitude difference between the periodic and
steady cruise trajectories. Themaximum altitude difference is
denoted by1H . Similarly, nmax is dependent on theminimum
altitude difference between the two cruise trajectories, and
denoted by 1H(min). Without loss of generality, nmin is used
to estimate this integration constant C .

C = nmin − ln nmin = nmax − ln nmax ≥ 1 (76)

With the definition of load factor in (65) substituted into
the exponent estimation of normalized density, the correlation
between altitude difference and load factor could be formu-
lated as

1H = −
1
β

(
ln n+ ln

CL
CLk

)
. (77)

For CL/CLk ∈ [1, 1.33], the maximum altitude difference
caused by lift coefficient is −1.81 km. It is a small quantity
compared with the practical maximum altitude difference.
Hence the impact of lift coefficient could be ignored. And
this correlation could be approximated as

1H = −
1
β
ln n. (78)

FIGURE 12. Maximum and minimum altitude differences of periodic
cruise trajectories.

FIGURE 13. n− γ phase portraits of the 2D system and PHC (ω = 1).

The maximum and minimum altitude differences at dif-
ferent integration constants are plotted in Fig. 12. The fig-
ure indicates that the minimum altitude difference decreases
with the increment of the maximum altitude difference.
Hence a vehicle which jumps higher would dive lower.

The n−γ phase portraits of the 2D subsystem and PHC are
compared in Fig. 13. The figure shows that the 2D subsystem
approximates PHC well.

With solution of flight path angle in (75) substituted into
dynamical model of load factor in (70), the variation ratio
of normalized distance with respect to load factor could be
figured out, as shown in (79).

dχ
dn
=

1
ṅ
= −

√
ε

20
1

n
√
ln n− n+ C

(79)

Then the integral of (79) from nmax to nmin could suggest
half of the period length in normalized distance, as shown
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FIGURE 14. Period lengths of PHC and 2D autonomous subsystem.

in (80). The equation indicates that Tχ is inversely propor-
tional to

√
0.

Tχ = 2
∫ nmin

nmax

dχ
dn

dn = −

√
2ε
0
· f (nmin) (80)

In this equation, f (nmin) is defined as the integral with respect
to n, as shown in (81). Since nmax and C are dependent on
nmin, as shown in (76), this integral is only correlative with
nmin.

f (nmin) = −
∫ nmin

nmax

dn

n
√
ln n− n+ C

(81)

Accordingly, the period length in time could be estimated
by (82). In this equation, for Ma < 10, the error caused by
substituting 1 for

√
1− 2k is less than 8%. Hence period

length in time is approximately independent on velocity. It is
only decided by the minimum load factor nmin.

T =
TχRE
V
=

√
2ε

1− 2k
·
RE
g
· f (nmin) (82)

Supposing that CL = CLk , then the period length is
only decided by the maximum altitude difference 1H . The
correlation between maximum altitude difference and period
length in time is plotted in Fig. 14. In the figure, the abscissa
is the maximum altitude difference, and the ordinate is the
period length in time. The correlation is quasi-linear and
could be fitted as (83). In this figure, the altitude differ-
ence contributed by lift coefficient is neglected. Hence the
estimation of period length in (82) is lower than practical,
which could be observed in Fig. 14. The figure indicates that
periodicity of the 2D subsystem could approximate that of the
optimal PHC trajectories.

T̃ (s) = 1.7(1H )+ 160 (83)

Therefore, the 2D autonomous subsystem is decided by
the minimum load factor (or maximum altitude difference).
This subsystem could describe the variations of normalized

density (or load factor) and flight path angle with respect to
normalized distance. And period length in time of an optimal
PHC trajectory could be estimated by its maximum altitude
difference.

B. ENERGY CYCLE
With the dynamical model of specific kinetic energy in (73)
integrated, the variation of kinetic energy over one period
could be obtained as∫ Tχ

0
k̇dχ =

∫ Tχ

0
(nCA − γ )dχ (84)

With dynamical model of normalized altitude in (11) substi-
tuted, the variation in (84) could be revised as∫ Tχ

0
k̇dχ =

∫ Tχ

0
nCAdχ −

∫ Tχ

0
ḣdχ (85)

According to the boundary condition of periodicity in (20),
variations of kinetic energy and altitude in one period are
zeros. Hence the integral of nCA in one period is also zero,
as shown in (86). The equation means that the energies sup-
plied by propulsion and consumed by drag should balance.∫ Tχ

0
nCA =

1
CL

∫ Tχ

0
n(CT − CD)dχ = 0 (86)

As shown in Fig. 4, the scramjet tends to start at the
minimum altitude. At low altitude, the vehicle boosts to
ascend, and glides to descend. Since influence of propulsion
is ignorable in rarefied atmosphere, it is rational to assume
that the scramjet works during the whole ascending process
(γ > 0) and idles during the whole descending process
(γ < 0).With singularity in (48) ignored, a simplified control
law of thrust coefficient is

CT =

{
CT max, γ > 0
CT min, γ < 0

. (87)

According to the energy balance in (86) and the symmetry
of history of normalized density in Fig. 7, this control law
exactly holds in condition of (88).

CT max + CT min = 2CD (88)

With dynamical models of load factor in (70) and kinetic
energy in (73) combined, the differential correlation between
the two state variables could be described by (89).

dk = ε (d ln n− nCAdχ) = −dh− εCA
dn
γ

(89)

By integrating the two sides in (89), the correlation between
kinetic energy and load factor could be converted into an
algebraic one, as shown in (90). The physical significance of
the equation is mechanical energy conservation.
k − k(hmin) = −(h− hmin)− ε

∫ n
nmax

CA
γ

dn (γ > 0)

k − k(hmax) = −(h− hmax)− ε
∫ n
nmin

CA
γ

dn (γ < 0)

(90)
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Let ξ denote the integration of load factor with respect
to normalized distance from χ0 to χ , as shown in (92).
In physical, ξ is nonnegative.

ξ =
1
Tχ

∫ χ

χ0

ndχ, (χ0 ≤ χ < Tχ + χ0) (91)

With the differential correlation between load factor and nor-
malized distance in (79) substituted, ξ could be converted into
an integration with respect to load factor, as shown in (92).
n0 and n is respectively the load factor at χ0 and χ . Since
flight path angle is dependent on load factor, as shown
in (75), this integration is a function dependent on n
and n0.

ξ (n; n0) = sgn(n− n0) ·
1
Tχ

∫ n

n0

dn
|γ |

(92)

According to the symmetry of n − γ subsystem in (75),
the integral ξ from the minimum altitude to the maximum
should be equal to that from the maximum to the minimum,
as shown in (93). For a given altitude, the sum of integration
from this altitude to the minimum during descending and that
from this altitude to the maximum during ascending should
be equal to an integration from the minimum altitude to the
maximum, as shown in (94).

ξ (nmax; nmin) = ξ (nmin; nmax) (93)

ξ (n; nmax)+ ξ (n; nmin) = ξ (nmax; nmin) (94)

Since γ = 0 holds at maximum and minimum alti-
tudes, variation of flight path angle is zero, and integral
of dynamical model of flight path angle in (66) from the
minimum altitude to the maximum should vanish, as shown
in (95).

γ (hmin)− γ (hmax) = 0
∫ Tχ /2

0
(n− 1)dχ = 0 (95)

Hence ξ (nmax; nmin) could be solved to be a constant of 1/2,
as shown in (96).

ξ (nmax; nmin) =
1
Tχ

∫ Tχ /2

0
ndχ =

1
Tχ

∫ Tχ /2

0
dχ=

1
2

(96)

With properties of ξ (n; n0) in (93), (94), and (96) com-
bined, any ξ (n; nmin) could be obtained by a ξ (n; nmax),
as shown in (97).

ξ (n; nmin) =
1
2
− (n; nmax) (97)

With ξ (n; nmax) simply marked as ξ (n), the normalized
specific kinetic energy during descending and descending
could respectively be revised as (98) and (99). Values of ξ (n)
at different load factors are plotted in Fig. 15. The histories of
kinetic energy of PHC and 1D subsystem are plotted together
in Fig. 16. The figure shows that the 1D subsystem governed
by (73) could describe the variation of kinetic energy well.
However, this estimation is on basis of assumption that the

FIGURE 15. Integral of load factor with respect of χ .

FIGURE 16. History of kinetic energy.

engine starts at the minimum altitude and cutoffs at the max-
imum. If condition in (88) could not approximately hold, this
estimation is inapplicable.

k − k(hmin) = −(h− hmin)+ CAmaxTχξ (n) (98)

k − k(hmax) = −(h− hmax)+ CAminTχ

[
1
2
− ξ (n)

]
(99)

C. HEATING PERFORMANCE
According to aerothermodynamic model in (18), aerody-
namic heating at stagnation point of the vehicle is a function
of atmospheric density and velocity. With this model, heating
performance of optimal steady cruise in (32), and definition
of load factor in (65) combined, the heating performance
(mean heat flux) of PHC-CL could be revised as(

1Q
Tχ

)
PHC-CL

= Q̇0

√
CLk
CL
·
1
Tχ

∫ Tχ

0

k
k0

√
ndχ. (100)
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With k ≡ k0 substituted into the heating performance
of PHC-CL in (100), that of the 2D subsystem could be
estimated by (101). According to Subsection II-B, the Mach
number of optimal steady cruise is the maximum. Hence
k0 = kmax. For PHC-CL trajectories, k ≤ k0. For the
2D subsystem, k = k0. Hence mean heat flux of PHC is lower
than the 2D subsystem.(
1Q
Tχ

)
2D
= Q̇0

√
CLk
CL

1
Tχ

∫ Tχ

0

√
ndχ≥

(
1Q
Tχ

)
PHC-CL

(101)

According to boundary condition of periodicity in (20),
the variation of flight path angle in one period should be zero.
Then the integral of dynamical model of flight path angle
in (66) with respect to normalized distance in one period
should vanish, as shown in (102).

γ (Tχ )− γ (0) = 0
∫ Tχ

0
(n− 1)dχ = 0 (102)

Then the mean value of n in one period could be solved as 1,
as shown in (103).

1
Tχ

∫ Tχ

0
ndχ =

1
Tχ

∫ Tχ

0
dχ = 1 (103)

And that of
√
n should be less than 1, as shown in (104).

1
Tχ

∫ Tχ

0

√
ndχ ≤

1
Tχ

∫ Tχ

0

(n+ 1)
2

dχ = 1 (104)

With (104) substituted into heating performance of the
2D subsystem in (101), since CL/CLk ≥ 1, the mean heat
flux of the 2D subsystem should be lower than that of steady
cruise. Therefore, the mean heat flux of PHC is lower than
that of steady cruise.

The mean heat flux the 2D subsystem is plotted in Fig. 17
with that of PHC. In this figure, the abscissa is the maximum
altitude difference, and the ordinate is the relative aerody-
namic heat flux (or the heat flux ratio of periodic to steady
cruises). The blue solid curve is the heating performances
of the 2D subsystem at difference altitudes, and the orange
dashed one is that of PHC. The figure indicates that heating
performance of the 2D subsystem matches with that of PHC.
With the increment of maximum altitude difference, the mean
heat flux declines.When processing the figure, lift coefficient
is supposed to be CLk which is related to the maximum L/D.
This assumption would lead to a higher estimation of mean
heat flux than practical.

Therefore, PHC has a nature to alleviate aerodynamic heat-
ing, and its heating performance could be estimated by the
performance of the 2D subsystem in (101). The mean heat
flux would decline with increment of the maximum altitude
difference.

D. FUEL PERFORMANCE
With the performance measure of PHC in (33), the dynamical
model of fuel mass fraction in (16), and the definition of

FIGURE 17. Mean heat flux of PHC and 2D autonomous system.

propulsive efficiency in (15) combined, the fuel performance
of PHC could be estimated by(

1µ

Tχ

)
PHC
=

2σ
hp
·
1
Tχ

∫ Tχ

0

kdCT
ηP

dχ. (105)

With k = k0, energy balance condition of 1D subsystem in
(86), and the equilibrium condition of flight path angle in (68)
substituted, the heating performance of 2D+1D system could
be estimated by (106). Since E ≤ Emax, the specific fuel
consumption of 2D+1D system is not less than the optimal
steady cruise. Since CL ≥ CLk , with increment of lift coeffi-
cient, the ratio Emax/E would augment. That means the fuel
performance of periodic cruise would be worse. However,
with the aerodynamic model in (3) considered, for CL/CLk ∈
[1, 1.33], the maximum ratio Emax/E is 1.04, which means
an increment of specific fuel consumption by 4%. According
to performances of PHC in Fig. 8, the maximum increment
would be more than 30%. Therefore, the 1D subsystem with
assumption of k = k0 could not be used to estimate the fuel
performance of PHC.(

1µ

Tχ

)
1D
=

1− 2k
hpηPE

=
Emax

E
µ̇0 (106)

According to fuel performance in (105), most fuel con-
sumption occurs at low altitude (high atmospheric density).
However, Fig. 10 shows that energy conservation does not
hold at low altitude. Hence the variations of flight path angle
and altitude (or density) should not be decoupled from that
of kinetic energy (or velocity). Then approximations of con-
stant k , energy balance condition of 1D subsystem in (86),
and the equilibrium condition of flight path angle in (68) are
infeasible.

With dynamical models of kinetic energy and altitude
in (11) substituted into fuel performance of PHC in (105),
the fuel consumption is proportional to an integral as follows:

θ =
1
Tχ

∫ Tχ

0

1
ηP

[
k̇ + (1− 2k)ḣ

2σ
+ kdCD

]
dχ. (107)
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FIGURE 18. Fuel consumptions and drag coefficients at different optimal
lift coefficients.

With boundary condition of periodicity in (20) substituted,
with impact factor of centrifugal force (1 − 2k) ignored,
by mean value theorem of integrals, the function could be
revised as (108). The equation indicates that the fuel con-
sumption is proportional to drag coefficient.

θ =

(
k
ηP

)
k=k1

d̄ · CD (108)

The ratio of PHC-CL to optimal steady cruise in fuel
consumption is plotted in Fig. 18, with that in drag coeffi-
cient. The abscissa denotes that of lift coefficient. The left
ordinate denotes the relative fuel consumption (1µ/Tχ )/J0,
and the right one does the relative drag coefficient CD/CDk .
The figure indicates that the variation of fuel performance of
periodic cruise matches with that of drag coefficient. The fuel
performance of PHC could be estimated by drag coefficient,
as shown in (109). The equation indicates that the impact of
d̄k/ηP on fuel performance is about 10%.

1µ

Tχ
=

(
CD
CDk
− 0.1

)
µ̇0 (109)

With aerodynamic models in (3) and (31) combined, the
relative drag coefficient in (109) could be substituted by a
function of relative lift coefficient in (110).

CD
CDk
=

1
2

[
1+

(
CL
CLk

)2
]

(110)

Therefore, fuel performance of PHC-CL is mainly depen-
dent on drag coefficient.

V. CONCLUSION
This work studies the trajectory features of optimal periodic
control of hypersonic cruise vehicle. By this study, periodic
hypersonic cruise could be realized with less technical merit
of control, thus making this kind of trajectory more fea-
sible. The features are also suggestive in further trajectory
design/optimization with considerations of conserving fuel

and alleviating aerodynamic heating. Besides, in preliminary
designs including trajectory, the features could help to con-
struct a routine from flight conditions to fuel and heating per-
formances of periodic cruise. The next works will contain sta-
bility analysis of periodic hypersonic cruise trajectory, design
of suboptimal stable closed-loop control law, and periodic
optimal control of a PDE-ODE system with thermodynamics
included.

The remarkable conclusions of this work are as follows:
1) The vehicle stays at high altitude for longer time/

range.
2) Lift coefficient could be a constant and be optimized as

a parameter.
3) At high altitude, dynamical models of flight path

angle and altitude could be decoupled from that of
velocity.

4) Period length in time is approximately irrelevant with
velocity. It augments with the maximum altitude differ-
ence (a description of oscillation amplitude of altitude
history) in a quasi-linear way.

5) The decoupled 2D and 1D subsystems could approx-
imate the variations of the variables of original
3D system.

6) PHC has a nature to alleviate aerodynamic heating, and
the mean heat flux would decrease with the increment
of maximum altitude difference.

7) The fuel performance is mainly dependent on the con-
stant drag coefficient.
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