
Received October 10, 2018, accepted November 19, 2018, date of publication December 7, 2018,
date of current version January 7, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2885651

A Decision Support System for Managing
the Water Space
DONALD MCMENEMY 1, GOPI VINOD AVVARI 2, DAVID SIDOTI 1, ADAM BIENKOWSKI1,
AND KRISHNA R. PATTIPATI 1, (Fellow, IEEE)
1Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT 06269-4157, USA
2Aptiv, Kokomo, IN 46902, USA

Corresponding author: Donald Mcmenemy (donald.mcmenemy@uconn.edu)

This work was supported in part by the United Technologies Corporation–Institute of Advanced Systems Engineering and in part by the
U.S. Office of Naval Research and Naval Research Laboratory under Grant N00014-16-1-2036, Grant N00173-16-1-G905,
Grant N00014-18-1-2838, and Grant HPCM034125HQU.

ABSTRACT A novel decision support system comprising of several interference identification algorithms
for the detection of hazardous (i.e., risk to life, assets, and/or mission) voyages and water space allocations in
maritime operations is proposed. Given a specified spatio-temporal region for each polygonal or ellipsoidal
object, the objective is to identify interference, defined as overlap, among the assigned regions. The challenge
is to fuse information on bathymetry, obstacles, and planned spatial assignments to identify conflicts
among any combination of polygons or ellipses. We briefly review data structures for the representation
of spatio-temporal regions computationally, and efficient algorithms for collision detection. Specifically,
we propose a two-phase solution approach to interference identification using time-parameterized R-trees,
linear programming, and quadratic programming. The proposed interference detection algorithms can detect
overlaps among thousands of polygons and elliptic regions. The resulting decision support tool, conflict
identification, is part of a larger system for water space planning.

INDEX TERMS Water space planning, collision avoidance, collision detection, interference, interference
identification, bathymetry, linear programming, quadratic programming, time-parameterized R-trees,
decision support system.

I. INTRODUCTION
A. MOTIVATION
The prevention of the loss of lives, assets and missions is
vital to the success of maritime operations. Some of the major
collisions involving U.S. Navy vessels since 1975 are listed
in Table 1. For example, in 2009, the USS Hartford and the
USS New Orleans collided in the strait of Hormuz, needing
$120 million dollars worth of repairs and loss of 21 months of
operations [1]. The USS Hartford, a submarine, was unaware
of the USSNewOrleans when the vessels collided as the USS
Hartford ascended to the surface. These accidents highlight
the importance of proactive notification of potential spatial
conflicts to human operators via the fusion of information
from multiple data sources, including bathymetry, obstacles
and spatial assignments.

Interference is defined as an overlap among a pair of
spatio-temporal regions. A well-established definition of an
interference is the loss of separation, meaning the sepa-
ration distance between vessels is below a user-specified
threshold. Voyages and water space allocations are made
safer by finding interferences with planned routes, and

resolving them by altering plans or dispatching advi-
sories. The mission of water space planning is to per-
form coordinated operations, and interference detection is
a key component of planning. Advisories given ahead of
time to submarine commanders are useful for scheduling
and focusing their crews to handle complex interference
scenarios.

B. RELATED RESEARCH
A common approach for determining if two regions overlap
is a two-phase process [2]. The first phase, called the broad
phase, quickly identifies region pairs that may overlap.
Broad phase methods can result in false alarms, that is,
an interference may be identified when none exists. The sec-
ond part of the two phase approach is called the narrow
phase and includes collision detection algorithms that deter-
mine whether an intersection indeed exists between any two
regions.

1) CONVEX DECOMPOSITION
The polygons used to model safety regions proposed by
a planner may not be convex and may contain holes.

2856
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0003-3214-161X
https://orcid.org/0000-0001-8383-5414
https://orcid.org/0000-0002-2347-225X
https://orcid.org/0000-0002-0565-181X

D. McMenemy et al.: Decision Support System for Managing the Water Space

TABLE 1. Incidents involving navy vessels since 1975.

The presence of holes is required to model obstacles and
places where submarines dive or surface within another area
of assignment. Our narrow phase algorithms require convex
inputs, so the polygons that are not convex must be decom-
posed into a union of convex polygons. An ideal convex
decomposition is fast and returns the partition with a minimal
number of pieces.

There are many convex decomposition algorithms for
polygons. Some of these triangulate the space inter-
nal to a polygon [3], [4], while others form trapezoidal
shapes [5], [6] and some seek to find a set of convex
polygons [7]–[9]. The triangulation methods result in the
highest number of pieces, but can be modified to contain
fewer pieces by removing edges of the triangulation [4]. The
trapezoidal partitioning (trapezoidation) of a polygon works

by extending segments horizontally from each vertex of the
polygon. The intersection of a segment with the boundary of
a hole or another edge of the polygon forms an end point for
the segment [5]. Since the segments are parallel, the resulting
partition forms trapezoids inside the polygon. Algorithms for
constructing a partition with polygons, that are not trapezoi-
dations of the space, add an edge originating from a reflex
angle (or notch), which are internal angles of radian measure
greater than π . The idea is to add edges such that there are no
internal angles that are reflex, thereby guaranteeing a convex
partition [7]. The Hertel andMehlhorn algorithm [7] is one of
the early algorithms that adds edges terminating at notches;
this algorithm was enhanced using heuristics in [8] and [9].
An experimental comparison of various convex decomposi-
tion methods was performed in [9], where it was found that

VOLUME 7, 2019 2857

D. McMenemy et al.: Decision Support System for Managing the Water Space

a heuristic, termed A5m, resulted in the lowest cardinality of
decomposition on average. A python implementation of A5m,
termed Py2D, is used for convex decomposition with holes in
this paper.

2) BROAD PHASE
The computational efficiency of broad phase methods stems
from the use of bounding boxes, or multiple resolutions
of bounding polytopes. For example, the method of axis
aligned bounding boxes (AABBs) draws a rectanglular prism
that completely contains a region. If the projections of the
bounding boxes onto the global axis overlap, then the regions
may overlap; otherwise, the regions are deemed disjoint.
Oriented bounding boxes (OBB) provide a tighter fit than
AABBs, since the bounding volume is oriented to mini-
mize the total volume [10]. The AABB and OBB volumes
can be embedded as hierarchical tree structures to contain
assigned regions. Examples of hierarchical tree data struc-
tures include octrees [11], k-d trees [12], bucket trees [13],
and R-trees [14]. Octrees recursively divide a cube into eight
octants, while quadtrees [15], the 2-dimensional analogs,
divide a plane into quadrants. An octree is formed with child
elements that are the octants generated by recursively split-
ting parent elements. Each child element contains an indicator
of whether a region is contained in the child element or not.
The k-d tree is a generalization of the octree, where instead
of binary splits, as used in generating the octree, the volume
is split into k subtrees. The analysis of k-d trees applies to
octrees and quadtrees. The resolution (i.e, size of the space
partitions) of the k-d tree represents a trade-off between the
false positive rate and the query time. A finer resolution
results in fewer false positives at the expense of an increased
query time. The choice of resolution is critical to the success
of the k-d trees and the related space partitioning methods
(octrees, quadtrees, etc).

For moving objects, the update of a child node in a k-d tree,
octree, or quadtree can be cumbersome, because the child
nodes that contain parts of the object need not share the same
parent. An attempt to improve the update of regions in octrees
is termed the bucket tree, where an array of bounds is updated
under the temporal coherence assumption -- regions are of
similar shape and position across time steps. Rather than
exhaustively updating the index of each entry, the bounds are
used to update the indices of entries. However, in the context
of water space planning, the temporal coherence assumption
is not valid; thus, neither the Bucket tree nor the k-d tree
approaches are suitable for the interference identification
problem posed in this paper.

Rather than partitioning the entire space as in k-d trees,
the R-tree is formed by surrounding regions that are close
together with a minimum bounding box and using it to repre-
sent the regions at the parent node level [16]. Consequently,
successive levels above the leaves of an R-tree contain a
single minimum bounding box that contains all the child
elements. R*-tree is an improvement upon the R-tree in that it
utilizes heuristics to optimize the tree by modifying the set of

minimum bounding boxes to minimize the area, perimeter,
or mutual overlap of the minimum bounding boxes [17].
This optimization is shown to speed up queries. In order to
handle moving regions, the minimum bounding boxes may be
enlarged to keep the child elements surrounded for a chosen
time window. This modification results in a structure known
as time-parameterized R-tree (TPR-tree) [18]. The TPR-tree
is periodically re-optimized to enhance query performance on
the data structure via reduction of the area and the number
of overlaps of minimum bounding boxes. Due to the rapid
update and query times, the R-tree variants are ideally suited
for applications involving spatio-temporal data.

3) NARROW PHASE
Examples of existing narrow phase algorithms for con-
vex polygon and polytope regions include GJK (Gilbert,
Johnson, Keerthi), Voronoi Marching (Closest Feature Pair),
and linear programming algorithms. The GJK algorithm
iteratively minimizes the distance between two convex
polygons, or more generally, polytopes [19], [20]. Vononoi
Marching finds the closest feature pair, where features are
Voronoi partitions of the exterior space of a convex poly-
gon (polytope) [21]. A linear program [22] is solvable by an
interior point method to detect intersections of polytopes.
The GJK algorithm is a simplex-based method, and thus
inferior to an interior point method for polygons (polytopes)
with a large number of vertices, since the latter can handle
models with a large number of vertices faster. The Voronoi
Marching method has robustness issues and can exhibit
cycling [23].

Exact methods for detecting intersection between a pair
of ellipsoids was examined and a novel approach based
on least squares minimization over a sphere was proposed
in [24]. This method was shown to be computationally supe-
rior to a method that finds the signs of the roots of a
4th order polynomial [25]. The approach proposed in [24]
enhances the method in [26] by testing squared Maha-
lanobis distance metrics for a pair of ellipsoids and, to the
authors’ knowledge, is the fastest known algorithm for this
problem.

Interference determination between a polygon (polytope)
and an ellipse (ellipsoid) is performed by circumscribing
the ellipse (ellipsoid) by a polygon (polytope) with a large
number of vertices (> 32) and solving the resulting problem
using an interior point method for linear programming [22].
Directly solving polygon-ellipse inferference problems as
a constrained quadratic programming problem with linear
constraints is left as a future research issue.

C. SCOPE AND ORGANIZATION OF THIS PAPER
Towards ensuring safe maritime operations, we have devel-
oped CONFIDENT, a conflict (interference) identification
tool, that detects interferences between operating regions
represented as polygons and/or ellipses. The polygonsmay be
non-convex and of non-zero genus, that is, they may contain
holes. These features make CONFIDENT a unique solution

2858 VOLUME 7, 2019

D. McMenemy et al.: Decision Support System for Managing the Water Space

FIGURE 1. The CONFIDENT system at a high level.

to interference identification using any of the definitions of
interference between static and dynamic regions.

In this paper, we present a two phase approach to interfer-
ence determination between any combination of polygonal
and elliptical regions for water space planning. The broad
phase consists of a TPR-tree with bounding boxes for each
region at the leaves. The TPR-tree is chosen due to its effi-
ciency over other spatio-temporal indexing structures. The
narrow phase for polygon/polygon encounters is an interior
point method from [22]. Interference determination between
a polygon and an ellipse is performed by approximating
the ellipse with a circumscribing polygon, and using the
broad and narrow phases for polygon/polygon encounters.
Our method for interference detection between a pair of ellip-
soids involves using squared Mahalanobis distance metrics
and a least squares minimization over a sphere [24]. The
overall system performs interference detection among any
combination of thousands of polygonal and elliptical regions.

The paper is organized as follows. In Section II, the water
space planning problem is described. We present our
2-dimensional solution approach in Section III and detail the
broad phase TPR-tree and its extension to 3-D regions in
Section IV. In Section V, we present the narrow phase algo-
rithms. Section VI contains a discussion of the runtime and
scalability of the interference detection algorithms. The paper
is concluded in Section VII with a summary and suggestions
for future work.

II. PROBLEM DESCRIPTION
Among the tasks of a planner are scheduling operations in
reserved water space, voyages between ports, and alerting
parties of scheduling changes through messages. The sched-
ules aim to ensure that vessels avoid shallow water, rough
seas, and hazards due to conflicting region assignments with
other vessels. Such hazards include potential collisions, and
damage due to towed cables, nets, or fire from live weapon
systems. Automated detection of encounters that are too close
is needed, since manually detecting interferences is tedious,

TABLE 2. Notation.

complex and cumbersome. The number of regions, planned
paths, and tracked vessel paths may be on the order of thou-
sands, making manual interference identification intractable.
The planning period and the corresponding amount of time
available for interference identification varies depending on
the situations being monitored.

An essential part of efficient operation on the ocean is to
choose safety regions, such as the closest point of approach
(CPA), that allow for ample time to react to a threat and yet
do not generate spurious resolution maneuvers. For example,
a safety region that is too small runs the risk of endangering
the vessel, while a safety region that is too large encourages
making unnecessary evasive maneuvers at far off distances.
With the required separation distances, a planner can input
polygons, ellipses, and paths to model reserved water spaces
and moving havens for vessels. A summary of 2-D area
and path types, which are static and dynamic, respectively,
is presented in Table 2.

A polygon assigned to an asset or an obstacle, indexed by
j, with n constant vertices in a time interval starting at ts and
ending at te can be represented by a 2 × n matrix, X {j,ts,te},
with columns x ji. The units of the vertices, x

j
i, are typically in

degrees longitude (long) and degrees latitude (lat), or nautical
miles from some origin. An ellipse can be described by a set
{µ, r, θ}{j,ts,te}, where µ ∈ R2 is a position vector with units

VOLUME 7, 2019 2859

D. McMenemy et al.: Decision Support System for Managing the Water Space

of degrees (lat, long) or nautical miles with respect to some
origin. The vector r ∈ R2 is a vector with ranges in units of
nautical miles. The bearing angle, θ is measured in radians.
The characterization of an ellipse, {µ, r, θ}{j,ts,te} is used to
generate a covariance matrix 6j = RTj 3jRj, where

Rj =
[
cosθ −sinθ
sinθ cosθ

]
(1)

3j =

[
r12 0
0 r22

]
. (2)

The level curve of points, p, such that (p− µ)T6−1j (p−µ) =
1 define the boundary of the elliptical safety region. A con-
stant other than 1 in the right hand side can be accommodated
by scaling the covariance matrix or eigenvalues.

In the case of moving vessels, a path is indicated by a series
of vertices and a description of the safety region on each leg of
the path between vertices. A planned path with n way-points
and a rectangular safety region can be represented by a set
{W ,B, t}{j,ts,te}, where W ∈ R2×n is a matrix with columns
wi ∈ R2 as vertices, B ∈ R2×n is a matrix with columns bi
whose elements are the buffer ahead/astern baa, and buffer
port/starboard, bps distances in a rectangular region. The
buffers for the ith leg given in bi, or the i

th column of B,
correspond to the path between way-points of wi and wi+1,
i ∈ [1, n]. The vector t ∈ Rn contains the desired arrival
time at each way-point inW . The element ti of t must satisfy
ti ∈ [ts, te] ∀i ∈ [1, n].
Figure 2 depicts a scenario with a mixture of ellipti-

cal, polygonal, and path assignments. Given a set of inputs
as regions and paths, the objective is to determine if the
intersection of each pair of spatio-temporal regions is non-
empty. If the intersection is non-empty, there exists at least a
common border between the regions. If a common border is
not allowed between a pair of spatio-temporal regions, then
there exists an interference.

III. SOLUTION APPROACH
A two-phase interference identification method, embedded
in CONFIDENT, is presented as Algorithm 1. It takes as
input a set of areas A, paths P and a TPR-Tree. Optionally,

FIGURE 2. Ten static assignments and two paths are shown. The first
index is that of the vessel in the assignment and path. The second index
is the index of the geometric region.

Algorithm 1 CONFIDENT Called by WaSP
F The TPR-Tree TPR
F Areas A, and paths P to add to the TPR-Tree
FAreas rm_A, and paths rm_P to delete from the TPR-Tree
function CONFIDENT (P, A, rm_P, rm_A, TPR)
F Pre-processing

TPR.delete(rm_P, rm_A)
AABB_A = make_AABB(convex_decomp(A))
AABB_P = make_AABB(P)
TPR.insert([AABB_A,AABB_P])

F Broad Phase
for x in [AABB_A, AABB_P]
bp_conflict[x] = TPR.intersection(x)

end for
F Narrow Phase

jobs = split(bp_conflicts,N_nodes)
F Parallel processing of interference checks

conflicts_sbs = map(narrow_phase(), jobs)
return TPR, conflicts_sbs
end function

a set of areas and paths to delete from the TPR-Tree may
be specified as rm_A and rm_P respectively. The steps can
be categorized as pre-processing, broad phase and narrow
phase. Pre-processing involves the computation of the convex
decomposition of non-convex polygons, the approximation
of ellipses by a polytope, the computation of bounding boxes
and the creatation or update of the TPR-tree. Note that the
convex decomposition and approximation of an ellipse by a
polygon may not be required if the water space allocations
are either convex or elliptic, or if the broad phase indicates
that there is no overlap. The convex decomposition and the
approximation of an ellipse by a polygon can be performed
offline, preferably at the time each region is created. Doing
so reduces the total processing time of the narrow phase.
The convex decompostition, convex_decomp(), is performed
using the A5m algorithm in [9]. Approximating an elliptic
region with a polygon or polytope is presented in Section IV.
The generation of bounding boxes, via make_AABB, is pre-
sented in Algorithm 2 for area and path assignments, which
are static and dynamic, respectively. The updated TPR-tree,
and lists of axis-aligned bounding boxes, AABB_A, AABB_P,
are passed to the broad phase.

Section IV describes the broad phase, where all regions
have a bounding box representation in a TPR-tree as made in
the preprocessing step. The TPR-Tree is queried for intersec-
tion with the AABB for each area [18]. The resulting interfer-
ences, bp_conflict, are passed onto the narrow phase for val-
idation. Algorithm 5 shows the narrow phase of interference
identification between a pair of regions for one time inter-
val. The narrow phase algorithm used depends on the type
of regions. Two polygons may be checked for interference
by formulating a linear programming problem and solving
the resulting optimization problem using a primal-dual path

2860 VOLUME 7, 2019

D. McMenemy et al.: Decision Support System for Managing the Water Space

Algorithm 2 Make ABBB for Areas and Paths
function make_BB(S)
F S is a set of area assignments and paths
for X in S do F X is an area

BB(X , 1) =
[
xa1 , x

a

1 , x
`

1 , x
`

1
xa2 , x

`

2 , x
`

2 , x
a

2

]
V (X , 1) =

[
0, 0, 0, 0

]
end for
for P in S do F P is a path

for i = 1 : length(W)− 1 do
ψ(i) = disbear_rl(wi,wi+1)
BB(P, i) = path_BB(wi, ψ(i), bi)

end for
for i = 1 : len(W)− 2 do

V (P, i) = edge_V (BB(P, i),
BB(P, i+ 1), ti, ti+1)

end for
BB_end = path_BB(wi+1, ψ(i), bi)
V (P, len(W)− 1) = edge_V (BB(P, i),
BB_end, ti, ti+1)

end forreturn BB, V
end function

following algorithm [27]. When two ellipses are interfering
at the broad phase level, a series of squared Mahalanobis
distance-based tests and a quadratic program is used for
interference determination. Typically, the Mahalanobis dis-
tance based tests obviate the need for solving the quadratic
programming problem in more than 90% of the cases. The
polygon approximation of the elliptic region is used when an
ellipse and a polygon are checked for interference. A dic-
tionary containing all interferences, conflicts_sbs, and the
TPR-tree are returned as outputs.

IV. BROAD PHASE ALGORITHMS
Querying the TPR-tree involves specifying an initial AABB,
start time, end time, and velocities for each of the bounds for
the AABB [29]. The query is performed for each AABB for
all areas and paths. The return from each query is the list of
AABBs that intersect the query AABB during the specified
time interval. This is a rapid query-response process, since it
avoids performing checks in a pairwise manner.

The generation of the AABB and computation of the veloc-
ities of bounds of the AABB for paths are done for all area
assignments and paths. Area assignments are static and have a
constant AABB over the active interval [ts, te]. Paths have an
AABB that grows over the duration of each leg. The TPR-tree
is updated with the constant AABB for areas, and an initial
AABB and velocity for each leg of a path. The pseudocode
for this pre-processing is shown as Algorithm 2. We drop the
index of the object, j to simplify the notation.

Bounding box representations for area assignments (static
polygons or ellipses) are computed by finding the maximum
and minimum values in each dimension. For a 2-dimensional

FIGURE 3. A representation of the temporal distribution of assignment
regions and dynamic paths. The active time, regions and paths are
shaded in grey.

FIGURE 4. The axis aligned bounding boxes for two polygons are shown
bounding each polygon. The path to the right has 4 way-points. There are
3 moving havens; one for each leg.

object (k = 1, 2),

xak = max
[
X {j,ts,te}(k, :)

]
(3)

x`k = min
[
X {j,ts,te}(k, :)

]
(4)

the minimum and maximum values are computed, respec-
tively. A MATLAB-like notation is used here to indicate that
each row of the matrix X {j,ts,te} corresponds to a dimension
of the polygon. The bounds x` and xa typically have units of
degrees of latitude and longitude, respectively. The bounding
box for an ellipse is computed via the approximation for an
ellipse, and then the algorithm for computing the bounding
box for a polygon.

The bounding box representation for static objects are
stored in the TPR-tree with the associated start and end
times. Similarly, the tracks are parameterized by time with a
computed AABB and velocity of each edge for the bounding
box over each leg [18] using Algorithms 3 and 4, respectively.
An example path is shown in Figure 4, with 3 moving havens
defined on the 3 legs of the path. The edge velocities for
the AABB surrounding the moving haven are simply the
differences between the starting AABB and ending AABB
edges divided by the nominal transit time. The velocities
of the edges are computed, in Algorithm 4. It is seen in

VOLUME 7, 2019 2861

D. McMenemy et al.: Decision Support System for Managing the Water Space

Algorithm 2 that the velocity of the edges of the final leg are
computed using the last AABB and an AABB positioned at
the final way-point. Finally, the area assignments and paths
are inserted into the TPR-Tree as in Algorithm 1, and are then
queried for intersection. The resulting overlaps are logged,
and passed onto the narrow phase portion for exact overlap
identification.

Algorithm 3 Make ABBB for a Single Leg of a Path
function path_BB(w, bearing, b)
F bi contains the values for buffer front, right, left,

back
Compute the vertices of the bounding box at w[
front, right, left, back

]
= b

p0, p1 = lonlat_rl(w[0],w[1], front, bearing)
lon, lat = lonlat_rl(p0, p1, left, bearing− 90)
H .append([lon, lat])
lon, lat = lonlat_rl(p0, p1, right, bearing+ 90)
H .append([lon, lat])
p0, p1 = lonlat_rl(w[0],w[1], back, bearing+ 180)
lon, lat = lonlat_rl(p0, p1, right, bearing+ 90)
H .append([lon, lat])
lon, lat = lonlat_rl(p0, p1, left, bearing+ 270)
H .append([lon, lat])

BB =
[
ha1 , h

a

1 , h
`

1 , h
`

1
ha2 , h

`

2 , h
`

2 , h
a

2

]
return BB
end function

Algorithm 4Compute EdgeVelocities for ABBB for a Single
Leg of a Path

function edge_Velocities(BB(P, i),BB(P, i+ 1), ti, ti+1)
[le, be, re, te] = BB(P, i+ 1)
[ls, bs, rs, ts] = BB(P, i)
left_right_v1 = (le − ls)/(ti+1 − ti)
top_bottom_v1 = (be − bs)/(ti+1 − ti)
left_right_v2 = (re − rs/(ti+1 − ti)
top_bottom_v2 = (te − ts)/(ti+1 − ti)
leftv = min(left_right_v1, left_right_v2)
rightv = max(left_right_v1, left_right_v2)
bottomv = min(top_bottom_v1, top_bottom_v2)
topv = max(top_bottom_v1, top_bottom_v2)
velocities = (leftv, bottomv, rightv, topv)

return velocities
end function

A. EXTENSION TO 3-D
Current operations require 2-D elements at various depth lev-
els. However, the TPR-tree, and the narrow phase algorithms
also generalize to any interference detection in any number of
dimensions. The narrow phase algorithms require no modifi-
cation, since they are dimension-independent. The TPR-tree
implementation is also dimension-indepenedent [29]. The
only modifications required are in pre-processing, where

ellipsoids are approximated by circumscribing polytopes,
convexification of 3-D non-convex polytopes, and computa-
tion of the bounding volumes and velocities in three or more
dimensions. Convexification of 3-D non-convex polytopes is
left for future work.

V. NARROW PHASE ALGORITHMS
The narrow phase algorithms presented here provide a new
approach to detect conflicts between any combination of
ellipses and polygons. The resulting narrow phase for any
combination of ellipses, and convex polygons is presented.

Algorithm 5 Narrow Phase Pseudocode
function Narrow(Pair)

if both regions in Pair are ellipsoids then
F Use Algorithm 10 in [24]

else
if Any region is elliptic then
F Look-up the approximation via Algorithm 12

polyVerts = circumscribe(R, 3, p).
end if
F Solve LP [22] via Algorithm 6

end if return Encounter_Type, Pair
end function

A. INTERIOR POINT METHOD FOR A PAIR OF POLYGONS
A primal-dual path following algorithm [27] is used to solve
the linear program (LP) for an indication of overlap between
a pair of polygons [22]. Objects represented as two convex
polygons X j ∈ R2×nj and Xq ∈ R2×nq (j 6= q), are
defined by vertices x ji and xqk where i ∈ [1, 2, . . . nj] and
k ∈ [1, 2, . . . nq]. We drop the time superscripts since both
of the polygons exist at a common time. Let u ∈ R2 represent
the coordinates of the distance between two points that are
guaranteed to belong to X j and Xq, respectively, such that

u =
(

1
nq

nq∑
k=1

xqk

)
−

(
1
nj

nj∑
i=1

x ji

)
(5)

A convex hull for these three vector sets is defined as

1
nj

nj∑
i=1

x jiαi −
1
nq

nq∑
k=1

xqkβk + uφ = 0 (6)

where α = {αi}
nj
i=1, β = {βi}

nq
i=1, and φ are the non-negative

coefficients ensuring convexity. To reformulate the problem
in terms of these non-negative coefficients, we define

ρ = ||u||
∞

(7)

and let the primal model, whose solution can indicate if X j

and Xq have mutual interference, be

min ρφ (8)

s.t.
nj∑
i=1

x jiαi −
nq∑
k=1

xqkβk + uφ = 0 (9)

2862 VOLUME 7, 2019

D. McMenemy et al.: Decision Support System for Managing the Water Space

nj∑
i=1

αi = 1 (10)

nq∑
k=1

βk = 1 (11)

φ ≥ 0; αi ≥ 0; βk ≥ 0; ∀ i, k (12)

where α, β and φ are the primal decision variables. The
primal objective is a measure of separation between the two
polygons. The primal problem has nj + nq + 2 decision vari-
ables, 4 equality constraints and non-negativity constraints
on the decision variables. The optimal solution to the pri-
mal problem is zero when the two polygons overlap. Other-
wise, the optimal solution has some positive value. The dual
problem is

max π3 + π4 (13)

s.t.

X jT , KT
1

XqT , KT
2

uT , 0T

π + s = c (14)

s ≥ 0 (15)

where 0 is a 2× 1 vector of all zeros,

K1 =

[
1, 1, . . . , 1
0, 0 . . . , 0

]
∈ R2×(nj+nq), (16)

K2 =

[
0, 0 . . . , 0
1, 1, . . . , 1

]
∈ R2×(nj+nq), (17)

c =
[
0T , ρ

]T
∈ R(nq+nj+1), (18)

π =
[
π1, π2, π3, π4

]
∈ R4, (19)

are dual decision variables, and s ∈ R(nq+nj+1) are dual
slack variables. The primal-dual path following algorithm
used to solve (8-19) is shown in Algorithm 6. The func-
tion takes a pair of polytopes or polygons and determines
whether they interfere or not. The initialization of the pri-
mal decision variables, x, dual slack variables, s, and dual
decision variables, π are done in Algorithm 7. The function
diag() represents the function that creates a diagonal matrix
given a vector containing the elements of the diagonal. The
choice of how to update the barrier scaling parameter, χ ,
is given in [27]. It uses the duality gap which monotonically
decreases, and so eventually the barrier scaling parameter
decreases. Algorithm 8 computes the Newton directions and
step sizes for the primal and dual variables. Then, the duality
gap, constraint matrixA, cost coefficients φ and ρ are updated
as per [22]. Termination checks are performed to end the
algorithm. A maximum number of iterations is set to ensure
termination.

The algorithm requires the polygons to be convex. There-
fore, any non-convex polygons were previously decomposed
into a set of convex polygons. The A5m algorithm in [9]
is used for convex decomposition. After decomposing a
non-convex polygon, the LP problem is solved for all com-
binations of convex polygons as in Algorithm 5.

Algorithm 6 (LP) Primal-dual path following algorithm
solving [22]

function LP_narrow_phase(X j, Xq)
F X j is an 2 by nj matrix
F Xq is an 2 by nq matrix
χ, γ, ε, α, β, x, η, π,X , s, S, u, ρ,A, b, c =
LP_initialize(nj, nq,X j,Xq)
gap = sT · x
counter = 0
while gap ≥ ε do

counter+ = 1
χ = 0.8 gap4
x, s, π,X , S =

LP_Newton_dir_steps(A, S,X , π, x, s, b, c, χ, γ)
gap = sT · x
α, β, φ, u, ρ, c,A =

LP_primal(x,Xq,X j, α, β, u, 2, nj, nq, ρ)
if ρ · φ ≤ 10−5 then

tf _interference = true
tf _termination = true
break

end if
if π3 + π4 > 0 then

tf _interference = false
tf _termination = true
break

end if
if counter > 100 then

tf _interference = false
tf _termination = false
break

end if
end while

return tf _interference, tf _termination
end function

B. SQUARED MAHALANOBIS DISTANCE TESTS AND QP
FOR A PAIR OF ELLIPSES
The interference detection between ellipses is handled via
squared Mahalanobis distance test and QP, Algorithm 10
in [24]. It first checks the squared Mahalanobis distance
between the ellipses, then, if necessary, solves a quadratic
program termed (LSMOS) [30]. Both of the ellipses are
defined with the boundary of the safety region to coincide
with a squared Mahalanobis distance of 1. This is achieved
by specifying the eigenvalues of the covariance matrix in
Equation 2. Given means µ

i
, µ

j
and covariances 6−1i , 6−1j

the squared Mahalanobis distance

dij← (µ
i
− µ

j
)T (6i +6j)−1(µi − µj) (20)

is compared to a threshold of 2. It is proven in [24] that
dij > 2 corresponds to separated ellipses as defined in
Section II. Rapid indication of overlap is found by finding
the squared Mahalanobis distance of a query point µ

ij
, which

VOLUME 7, 2019 2863

D. McMenemy et al.: Decision Support System for Managing the Water Space

Algorithm 7 Initialize Primal and Dual Variables

function LP_initialize(nj, nq,X j,Xq)
χ = 1 F Duality gap parameter
γ = 0.995 F Step factor scaling parameter
ε = 10−8 F Duality gap tolerance parameter
α = 1

nj
· e F e is a nj vector of ones.

β = 1
nq
· e F e is a nq vector of ones.

φ = 1
x = [αT , βT , φ]T

η = max
(
max(abs(X j)),max(abs(Xq))

)
π = [0T , η, η]T

X = diag(x)
s = χ · X−1e F e is nj + nq + 1× 1
S = diag(s)
u = −

(∑nj
i=1 X

j(i, :) · αi −
∑nq

k=1 X
q(k, :) · βk

)
ρ = ||u||

∞

K1 =

[
1 · · · 1
0 · · · 0

]
; K2 =

[
0 · · · 0
1 · · · 1

]
A =

[
X j −Xq u
K1 K2 0

]
F A is a (4× (nj + nq + 1) matrix.

b =
[
0
e

]
; c =

[
0
ρ

]
return χ, γ, ε, α, β, x, η, π,X , s, S, u, ρ,A, b, c
end function

Algorithm 8 Compute Newton Directions and Step Sizes
function LP_Newton_dir_steps(A, S,X , π, s, b, c, χ, γ))

LL = A · S−1 · X · AT

δD = AT · π + s− c
dπ = LL(b− χ · A · S−1e− A · S−1 · XδD)
d s = −δD − A

T dπ
dx = S−1(−Xd s − X · Se+ χe)
βx = γ ·mink

{
−x(k)
dx (k)
: dx(k) < 0 ∧ dx(k) is finite

}
βπ = γ ·mink

{
−s(k)
ds(k)
: d s(k) < 0 ∧ d s(j) is finite

}
x = x + βxdx
s = s+ βπd s
π = π + βπdπ
X = diag(x)
S = diag(s)

return x, s, π,X , S
end function

is the point of minimum total squared Mahalanobis distance
between the two ellipses to each of the centers of the ellipses.
By the definition of ellipses, overlap exists when both squared
Mahalanobis distances to this point are less than 1. Formally,
the query point µ

ij
is given by

µ
ij
= 6(6−1i µ

i
+6−1j µ

j
) (21)

6 = (6−1i +6
−1
j)−1. (22)

These squared Mahalanobis distance tests filter approx-
imately 92% of cases; for the remaining cases, the least

Algorithm 9 Update Primal Variables
function LP_primal(x,Xq,Xj, α, β, u,m, nj, nq, ρ)

α = x[0 : nj]
β = x[nj : nj + nq]
φ = x[nj + nq]
u = Xq · β − X j · α
ρ = ||u||

∞

c =
[
0
ρ

]
A[1 : m, nj + nq + 1] = u

return α, β, φ, u, ρ, c,A
end function

squares minimization over a sphere algorithm (LSMOS) is
employed [24]. The squaredMahalanobis distance tests wrap
the LSMOS, which, in 2-D, is a quadratic programming
problem to find the closest point on the perimeter of a circle
to an ellipse.

Algorithm 10QPWhenMeans µ
i
, µ

j
and Covariances6−1i ,

6−1j Are Given

function check4interference({µ
i
, 6−1i }, {µj, 6

−1
j })

dij ← (µ
i
− µ

j
)T (6i +6j)−1(µi − µj)

if dij ≤ 2 then
di ← (µ

i
− µ

ij
)T (6i)−1(µi − µij)

if di < 1 ∧ (dij − di) < 1 then
verdict ← ′Overlap′

else
verdict, x ← LSMOS

(
{µ

i
, 6−1i }, {µj, 6

−1
j }

)
end if

else
verdict ← ′Separate′

end if
return verdict, x
end function

The LSMOS algorithm is formulated by transformation of
one ellipse by subtracting the mean of the other ellipse and
then multiplying by the square root of the inverse covariance
matrix of the other ellipse. This transformation establishes
a new ellipse, and a unit circle at the origin. The objec-
tive is to find the minimum point on the unit circle to the
ellipse.

The LSMOS is done using a Newton-Raphson algorithm.
Algorithm 11 is a modification of the least squares minimiza-
tion over a sphere from [30].

C. ELLIPSE AND POLYGON NARROW PHASE APPROACH
The case when an ellipse and a polygon are checked at the
narrow phase level employs an approximation of the ellipse
by a circumscribing polygon. The resulting polygons are
processed by the primal-dual path following Algorithm 6.
The ellipse is approximated by transforming n points around

2864 VOLUME 7, 2019

D. McMenemy et al.: Decision Support System for Managing the Water Space

Algorithm 11 Least Squares Minimization Over a Sphere
(LSMOS)

function LSMOS({µ
i
, 6−1i }, {µj, 6

−1
j })

G1 ← chol(6−11) F Cholesky Factor of 6−11
G2 ← chol(6−12) F Cholesky Factor of 6−12

F Compute Singular Value Decomposition of GT2G
−T
1

[U ,D,V] ← svd(GT2G
−T
1)

scaleFactor = min(diag(D))
D = D/scaleFactor
b̃ ← UTGT2 (G

−T
1)(µ

2
− µ

1
)/scaleFactor

temp =
∑

i
1

D(i,i) b̃(i)
if temp > 1 then

z ← NewtonRaphson(D,V , b̃) F [30]
else

for i = 1,2,3 do
z ← z+ 1

D(i,i) b̃(i)vi F V = [v1, v2, v3]
end for

end if
x ← scaleFactor · (G−T1)z
if
(
x − µ

2
+ µ

1

)T (62)−1(x − µ2
+ µ

1
) ≤ 1 then

verdict ← ′Overlap′

else
verdict ← ′Separate′

end if
return verdict , x
end function

the unit circle using the square root factor of the covariance
matrix for the ellipse. A method to bisect facets and scale the
vertices is proposed for finding a circumscribing polytope
around the unit sphere. These vertices are then transformed
using the square root factor of the covariance matrix of
the ellipse. The pseudocode given below details the process
for generating these circumscribing polygons and polytopes
to ellipses and ellipsoids, respectively. The MATLAB like
notation is used along with len(.) to indicate the number of
elements in a list, and mean(.) which is the mean computed
for each dimension. The scaleFactor is computed as the
magnitude of the projection of any vertex of a facet onto the
unit vector passing through the dual point of the facet. For the
initial octahedron, the magnitude of this projection is 0.5774.

VI. RESULTS
A. BROAD PHASE: TPR-TREE
The average time for building a TPR-tree and intersection
query times are shown in Table 4. The statistics are averages
over 100 Monte Carlo runs. The algorithms were run on an
i7 Processor with 8GB RAM running Ubuntu 16.04 LTS.
The build times are negligible at less than 60s for problem
sizes of 300,000 objects. For example, the tree build time
takes less than 1s for 10,000 objects or less. The broad
phase queries for 10,000 objects have responses on average

Algorithm 12 Generates a Polygon or Polytope to Circum-
scribe an Ellipse or Ellipsoid
R is the matrix of right singular vectors
3 is the matrix of singular values
p is the position of the elliptic region
function circumscribe(R, 3, p)

Determine if the input elliptical region is 2D or 3D.
if the input is 2D then

numVerts = 32
verts = circumscribe_circle(numVerts)

else
numBisections = 1
numVerts = 8 · 4numBisections

verts = circumscribe_sphere(numBisections)
end if
G = RT3−

1
2R

for i = 0 : 1 : (numVerts− 1) do
transformedVerts(i) = G · verts(i)+ p

end for
return transformedVerts
end function

Algorithm 13 Circumscribing a Circle
function circumscribe_circle(numVerts)

θ = π/numVerts F π radians
r = 1/ cos(θ)
angles = θ : 2θ : (2π − θ)
for i = 0 : 1 : (numVerts− 1) do

verts(i) = [r · cos(angles(i)), r · sin(angles(i))]
end for

return verts
end function

Algorithm 14 Circumscribing a Sphere
function circumscribe_sphere(nBisections)
F Start with a list of all the facets defined by the

octahedron with vertices given in Table 3
scaleFactor = 0.5774
for k = 1 : 1 : nBisections do

facets, scaleFactor = bisect_facets(facets)
end for
F Compute the dual points to reduce the number of

vertices
for 0 : 1 : (len(facets)− 1) do

dualVerts(i) = mean(facets(i).verts)
scaleFactor ·||mean(facets(i).verts)||2

end for return dualVerts
end function

in less than 6.5s. Computing intersection queries via the
TPR-Tree scales well beyond the application demands as
seen by solving a 300,000 object intersection problem in
less than 1.5 hours. A scenario requiring 5000 intersection
queries can be performed in less than 2s. Since the CON-

VOLUME 7, 2019 2865

D. McMenemy et al.: Decision Support System for Managing the Water Space

TABLE 3. Vertices of an octahedron which circumscribes the unit sphere.

Algorithm 15 Bisecting Facets
function bisect_facets(facets)

scaleFactor = 100
for each facet in facets do

for i = 0 : 1 : 2 do
v(i) = (facet.verts(i− 1)+ facet.verts(i))/2

end for
newFacets.append(facet.verts(0), v(0), v(1))
newFacets.append(facet.verts(1), v(1), v(2))
newFacets.append(facet.verts(2), v(2), v(0))
newFacets.append(v(0), v(1), v(2))

end for
p(i) = mean(facets(i).verts)

||mean(facets(i).verts)|| 2
scaleFactor = minnewFacets i{minvertex j{vj · p(i)}}

return newFacets, scaleFactor
end function

TABLE 4. TPR-tree Tests.

FIDENT algorithm should process the inputs at worst on
the order of minutes, the performance of the broad phase is
satisfactory.

B. NARROW PHASE
The narrow phase algorithms include primal-dual path fol-
lowing algorithm to solve the linear program (LP) [22], and
the QP approach developed in [24] for ellipses. To check for
interference between an ellipse and a polygon, the ellipse

FIGURE 5. TPR-tree build and query times for simple convex polygons
with 4 vertices.

TABLE 5. Narrow phase testing.

must be approximated as a polygon. Table 5 shows the aver-
age run times for 100 scenarios consisting of randomly gen-
erated elliptic safety regions (one per vessel). Here, the broad
phase is bypassed to evaluate the average runtimes of the
narrow phase portions of CONFIDENT.

The ellipses are approximated as polygons with 32 vertices
in order to compare the LP and QP run times on the scenarios.
The average time to approximate 45 ellipses is less than
50 ms. The average total run time for checking 990 com-
binations of polygons is 20.4 s. A single pair of polygons
is checked in 26.4 ms. Operationally, this performance is
satisfactory.

The average run times for determining interferences
between ellipses using the QP are shown in Table 5. The
eigenvalues and eigenvectors of the covariance matrix defin-
ing the ellipses are generated from the course angles and
safety region extents. The time required to compute the
covariance matrices are included in the average total run
times reported in Table 5. The QP can, on average, determine
interference between 990 pairs of ellipses in less than 45 ms.
A single pair of ellipses are checked in 150µs.When process-
ing mutual interferences between two ellipses, approximately
92% of cases are solved using the squared Mahalanobis

2866 VOLUME 7, 2019

D. McMenemy et al.: Decision Support System for Managing the Water Space

TABLE 6. CONFIDENT: ellipses only (8 CPUs).

distance checks, avoiding invocation of the LSMOS method.
The ellipse/ellipse interference detection is very satisfactory
in terms of processing time. Also, the benefit of having a
rapid algorithm for ellipse/ellipse interference detection is
the alternative application of tracking utilizing estimates of
location described through mean and covariance.

C. CONFIDENT SYSTEM
The run times for CONFIDENT for various input types and
scenarios are shown in Tables 6 - 8. These scenarios are gener-
ated using a constant number of objects positioned randomly
inside a box initialized to [−155,−145; 35, 45]. The area of
the box is enlarged by 8 degrees longitude and 2 degrees
latitude at each iteration. CONFIDENT processes ellipses
rapidly, as shown in Table 6. For example, a scenario with
5000 objects, and 6894 interferences identified by the broad
phase had a narrow phase processing time of less than 1s.
The average time per object in the broad phase is 0.13 µs.
The speed of the TPR-tree is due to its ability to collect all
of the members that intersect a query region in one step; this
results inO(N) complexity. The average time per object in the
narrow phase is 0.14 ms. The complexity of CONFIDENT is
O(N 2) due to the need for invoking narrow phase pair-wise.

Table 7 lists the run times for CONFIDENT on convex
polygons with a random number of vertices between 4 and
16. The LP narrow phase requires more time to process per
conflict identified at the broad phase level. For a scenario with
932 conflicts identified by the broad phase, the processing
time is 318.16s.

Table 8 shows the run times for CONFIDENT on scenarios
containing only non-convex polygons with a random num-
ber of vertices between 4 and 16. A python implementation
of A5m, termed Py2D, is used for convex decomposition
with holes. The non-convex polygons contain a single hole
that have 4 random vertices. The requirement to convexify
the polygon, for LP narrow phase processing, increases
the number of broad-phase conflicts as seen by compar-
ing Tables 7 and 8. In Table 8, the number of collisions
pre-narrow phase corresponds to the number of convex pieces
across area assignments that are in conflict. The number of
collisions post-narrow phase is the number of area assign-

TABLE 7. CONFIDENT: convex polygons only (8 CPUs).

TABLE 8. CONFIDENT: non-convex polygons with 1 hole only (8 CPUs).

ments in conflict. The larger number of pre-narrow phase
conflicts results in the increased run time for narrow phase
processing of non-convex inputs as compared to scenarios
with only convex inputs.

VII. CONCLUSION AND FUTURE WORK
CONFIDENT is a novel system that determines mutual inter-
ferences between any combination of ellipses and polygons of
any genus (number of holes). This system provides planners
the ability to define any 2-D model of obstacles and safety
regions in order to accurately define realistic descriptions
of interference at sea. Specifically, CONFIDENT solves an
essential problem for uncertain asset positions introduced by
submarine operations. The regions where a submarine oper-
ates must bemodeled by 2-D shapes due to the uncertain posi-
tion of a submerged submarine. Thus, planning for position
uncertainty, and modeling interferences, via CONFIDENT,
allows planners to generate safer operations. The planning
cycle using CONFIDENT is reduced to an estimated 2 to
4 man hours, which is a substantial savings when compared
to the estimated 120 man hours when done manually. The
algorithm scales to solve problems of practical scale, viz.,
thousands of objects, on the order of seconds.

CONFIDENT can be improved as follows. The 2-D con-
vex decomposition algorithm can be extended to moving

VOLUME 7, 2019 2867

D. McMenemy et al.: Decision Support System for Managing the Water Space

objects. Incorporating 3-D convex decomposition for static
and dynamic regions would complete the functionality for
processing any 2-D or 3-D interferences. A comparison with
other libraries that process polygon/polygon interference
queries is of interest to enhance the speed of processing.

ACKNOWLEDGMENT
G. V. Avvari was with the University of Connecticut, Storrs,
CT 06269-4157, USA.

REFERENCES
[1] J. McDermott. (Jul. 2011). Electric boat gets USS hartford back to

sea. The New London Day. [Online]. Available: http://www.theday.
com/article/20110717/NWS09/307179942/1018

[2] B. Mirtich, ‘‘Efficient algorithms for two-phase collision detection,’’ Mit-
subishi Electr. Res. Lab., Cambridge, MA, USA, Tech. Rep., Dec. 1997.
[Online]. Available: http://www.merl.com/publications/docs/TR97-23.pdf

[3] J. O’Rourke, Computational Geometry in C. Cambridge, U.K.:
Cambridge Univ. Press, 1994. [Online]. Available: http://dl.acm.org/
citation.cfm?id=521378

[4] M. Held, ‘‘FIST: Fast industrial-strength triangulation of polygons,’’
Algorithmica, vol. 30, no. 4, pp. 563–596, 2001. [Online]. Available:
https://link.springer.com/article/10.1007/s00453-001-0028-4

[5] R. Seidel, ‘‘A simple and fast incremental randomized algorithm for
computing trapezoidal decompositions and for triangulating polygons,’’
Comput. Geometry Theory Appl., vol. 1, pp. 51–64, Mar. 1989. [Online].
Available: http://dl.acm.org/citation.cfm?id=117043

[6] A. Narkhede and D. Manocha, ‘‘Fast polygon triangulation based on
Seidel’s algorithm,’’ in Graphics Gems V. San Diego, CA, USA: Elsevier,
1995. [Online]. Available: http://gamma.cs.unc.edu/SEIDEL/

[7] S. Hertel and K. Mehlhorn, ‘‘Fast triangulation of simple polygons,’’ in
Foundations of Computation Theory. Berlin, Germany: Springer-Verlag,
1983. [Online]. Available: https://link.springer.com/chapter/10.1007/3-
540-12689-9_105

[8] J. Fernández, L. Cánovas, and B. Pelegrín, ‘‘Algorithms for the decom-
position of a polygon into convex polygons,’’ Eur. J. Oper. Res.,
vol. 121, no. 2, pp. 330–342, 2000. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0377221799000338

[9] J. Fernández, B. Toth, L. Cánovas, and B. Pelegrín, ‘‘A practical algo-
rithm for decomposing polygonal domains into convex polygons by diag-
onals,’’ TOP, vol. 16, no. 2, pp. 367–387, 2008. [Online]. Available:
https://link.springer.com/article/10.1007/s11750-008-0055-2

[10] S. Gottschalk, M. C. Lin, and D. Manocha, ‘‘OBBTree: A hier-
archical structure for rapid interference detection,’’ in Proc. ACM
SIGGRAPH, 1996, pp. 171–180. [Online]. Available: http://gamma.cs.
unc.edu/SSV/obb.pdf

[11] C. L. Jackins and S. L. Tanimoto, ‘‘Oct-trees and their use in rep-
resenting three-dimensional objects,’’ Comput. Graph. Image Process.,
vol. 14, no. 9, pp. 249–270, 1980. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/0146664X80900556

[12] J. L. Bentley, ‘‘Multidimensional binary search trees used for associative
searching,’’ Commun. ACM, vol. 18, no. 9, pp. 509–517, 1975. [Online].
Available: http://dl.acm.org/citation.cfm?id=361007

[13] F. ganovelli, J. Dingliana, and C. O’Sullivan, ‘‘BucketTree: Improv-
ing Collision Detection Between Deformable Objects,’’ in Proc. Spring
Conf. Comput. Graph., 2000, p. 19. [Online]. Available: http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.38.3994

[14] Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos, and
Y. Theodoridis, R-Trees: Theory and Applications. New York, NY, USA:
Springer-Verlag, 2006.

[15] R. A. Finkel and J. L. Bentley, ‘‘Quad trees a data structure for retrieval
on composite keys,’’ Acta Inf., vol. 4, no. 1, pp. 1–9, Apr. 1974. [Online].
Available: https://link.springer.com/article/10.10072FBF00288933

[16] A. Guttman, ‘‘R-trees: A dynamic index structure for spatial searching,’’ in
Proc. ACM SIGMOD Int. Conf. Manage. Data, 1984, pp. 47–57. [Online].
Available: http://www.cs.uml.edu/~cchen/580-S06/reading/Gut84.pdf

[17] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, ‘‘The R*-tree:
An efficient and robust access method for points and rectangles,’’ in Proc.
ACM SIGMODRec., 1990, pp. 322–331. [Online]. Available: https://www.
cs.umd.edu/class/fall2002/cmsc818s/Readings/rstar-tree.pdf

[18] Y. Tao and D. Papadia, ‘‘Time-parameterized queries in spatio-
temporal databases,’’ in Proc. ACM SIGMOD, Jun. 2002, pp. 334–345.
[Online]. Available: https://pdfs.semanticscholar.org/5625db5a3c33cfda7
f0f135223400c16ccdd4c23.pdf

[19] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, ‘‘A fast procedure for
computing the distance between complex objects in three-dimensional
space,’’ IEEE J. Robot. Autom., vol. 4, no. 2, pp. 193–203, Apr. 1988.
[Online]. Available: http://ieeexplore.ieee.org/document/2083/

[20] G. van den Bergen, ‘‘A fast and robust GJK implementation for collision
detection of convex objects,’’ J. Graph. Tools, vol. 4, no. 2, pp. 7–25, 1999.
[Online]. Available: http://dl.acm.org/citation.cfm?id=334711

[21] S. A. Ehmann andM. C. Lin, ‘‘Accelerated proximity queries between con-
vex polyhedra by multi-level Voronoi marching,’’ in Proc. Int. Conf. Intell.
Robots Syst., Oct./Nov. 2000, pp. 2101–2106. [Online]. Available: http://
ieeexplore.ieee.org/document/895281/

[22] A. Akgunduz, P. Banerjee, and S. Mehrotra, ‘‘A linear program-
ming solution for exact collision detection,’’ Trans. ASME, vol. 5,
no. 1, pp. 48–55, 2005. [Online]. Available: http://computingengineering.
asmedigitalcollection.asme.org/article.aspx?articleid=1400139

[23] B. Mirtich, ‘‘V-Clip: Fast and robust polyhedral collision detection,’’ Mit-
subishi Electr. Res. Lab., Cambridge, MA, USA, Tech. Rep. 1, Dec. 1997.
[Online]. Available: http://dl.acm.org/citation.cfm?id=285860

[24] D. McMenemy, D. Sidoti, K. R. Pattipati, and F. A. N. Palmieri,
‘‘A conflict detection method for ellipsoidal safety regions,’’ IEEE
Trans. Aerosp. Electron. Syst., to be published. [Online]. Available:
https://ieeexplore.ieee.org/document/8531769

[25] W. Wang, J. Wang, and M.-S. Kim, ‘‘An algebraic condition for
the separation of two ellipsoids,’’ Comput. Aided Geometric Des.,
vol. 18, no. 6, pp. 531–539, 2001. [Online]. Available: http://dl.acm.org/
citation.cfm?id=510881

[26] S. B. Pope, ‘‘Algorithms for ellipsoids,’’ Cornell Univ., Ithaca, NY, USA,
Tech. Rep. FDA-08-01, Feb. 2008. [Online]. Available: https://tcg.mae.
cornell.edu/pubs/Pope_FDA_08.pdf

[27] P. A. Jensen and J. F. Bard, ‘‘Linear programming,’’ in Operations
Research Models & Methods, vol. 1, 1st ed. Hoboken, NJ, USA: Wiley,
2003. [Online]. Available: http://www.wiley.com/WileyCDA/WileyTitle/
productCd-0471380040.html

[28] International Maritime Organization. (Sep. 22, 2009). Colregs:
International Regulations for Preventing Collisions at Sea.
Accessed: Jun. 18, 2018. [Online]. Available: http://www.jag.navy.mil/
distrib/instructions/COLREG-1972.pdf

[29] M. Hadjieleftheriou. (2014). Libspatialindex. [Online]. Available: https://
libspatialindex.github.io/

[30] G. H. Golub and C. F. van Loan,Matrix Computations, 4th ed. Baltimore,
MD, USA: The Johns Hopkins Univ. Press, 2013, p. 409.

DONALD MCMENEMY received the B.S. degree
in electrical and computer engineering from the
University of Connecticut, Storrs, CT, USA,
in 2014, where he is currently pursuing the Ph.D.
degree under the supervision of Dr. K. R. Pattipati.
He was with Belcan, LLC, Windsor, CT, USA,
from 2014 to 2016. His research interests include
algorithms for path planning.

GOPI VINOD AVVARI received the B.Tech.
degree in electronics and communication engi-
neering from Acharya Nagarjuna University,
Guntur, India, in 2011, and the M.S and Ph.D.
degrees in electrical engineering from the Uni-
versity of Connecticut, in 2016 and 2018, respec-
tively. He is currently the Lead of the Data Sci-
ence Team, Aptiv, Kokomo, IN, USA. The primary
focus of his research interests includes developing
algorithms for the advanced driver assisting sys-

tems and autonomous driving.

2868 VOLUME 7, 2019

D. McMenemy et al.: Decision Support System for Managing the Water Space

DAVID SIDOTI received the B.S., M.S., and
Ph.D. degrees in electrical and computer engineer-
ing from the University of Connecticut, Storrs,
CT, USA, in 2011, 2016, and 2018, respectively,
under the supervision of Dr. K. R. Pattipati. His
current research interests include multi-objective
algorithms for dynamic scheduling, resource
management in weather-impacted environments,
information valuation, combining optimization
techniques with deep learning, and sailing vessel

routing. He was a co-recipient of the Tammy Blair Award for Best Student
Paper at FUSION 2016.

ADAM BIENKOWSKI received the B.S. and
M.Eng. degrees in electrical and computer engi-
neering from the University of Connecticut, Storrs,
CT, USA, in 2013 and 2017, respectively, where
he is currently pursuing the Ph.D. degree with
the Department of Electrical and Computer Engi-
neering Department, under the supervision of
Dr. K. R. Pattipati. He was an Electrical Engineer
with General Dynamics Electric Boat, Groton, CT,
USA, from 2013 to 2017. His current research

interests include modeling dynamic and uncertain environments for
asset allocation and path planning, context aware decision support systems,
and optimization and machine learning-based techniques for mission plan-
ning and coordination.

KRISHNA R. PATTIPATI (S’77–M’80–SM’91–
F’95) received the B.Tech. degree (Hons.) in elec-
trical engineering from IIT Kharagpur, Kharagpur,
in 1975, and the M.S. and Ph.D. degrees in con-
trol and communication systems from the Univer-
sity of Connecticut (UConn), Storrs, in 1977 and
1980, respectively. He was with AlphaTech, Inc.,
Burlington, MA, USA, from 1980 to 1986. He has
been with the Department of Electrical and Com-
puter Engineering, UConn, where he is currently

the Board of Trustees Distinguished Professor and the UTC Chair Professor
in systems engineering. He is also a Co-Founder of Qualtech Systems,
Inc., a firm specializing in advanced integrated diagnostics software tools
(TEAMS, TEAMS-RT, TEAMS-RDS, TEAMATE, and PackNGo), and
serves on the board of Aptima, Inc. His research activities are in the areas of
proactive decision support, uncertainty quantification, smart manufacturing,
autonomy, knowledge representation, and optimization-based learning and
inference. A common theme among these applications is that they are
characterized by a great deal of uncertainty, complexity, and computational
intractability.

Dr. Pattipati is an Elected Fellow of the IEEE and the Connecticut
Academy of Science and Engineering. He was selected by the IEEE Systems,
Man, and Cybernetics (SMC) Society as the Outstanding Young Engineer
of 1984, and received the Centennial Key to the Future Award. He was a
co-recipient of the Andrew P. Sage Award for the Best SMC Transactions
Paper for 1999, the Barry Carlton Award for the Best AES Transactions
Paper for 2000, the 2002 and 2008 NASA Space Act Awards for A Com-
prehensive Toolset for Model-Based Health Monitoring and Diagnosis, and
Real-time Update of Fault-Test Dependencies of Dynamic Systems: A Com-
prehensive Toolset for Model-Based Health Monitoring and Diagnostics,
and the 2003 AAUP Research Excellence Award at UConn. He has served
as the Editor-in-Chief of the IEEE TRANSACTIONS ON SYSTEMS, MAN, AND

CYBERNETICS–Part B, from 1998 to 2001.

VOLUME 7, 2019 2869

	INTRODUCTION
	MOTIVATION
	RELATED RESEARCH
	CONVEX DECOMPOSITION
	BROAD PHASE
	NARROW PHASE

	SCOPE AND ORGANIZATION OF THIS PAPER

	PROBLEM DESCRIPTION
	SOLUTION APPROACH
	BROAD PHASE ALGORITHMS
	EXTENSION TO 3-D

	NARROW PHASE ALGORITHMS
	INTERIOR POINT METHOD FOR A PAIR OF POLYGONS
	SQUARED MAHALANOBIS DISTANCE TESTS AND QP FOR A PAIR OF ELLIPSES
	ELLIPSE AND POLYGON NARROW PHASE APPROACH

	RESULTS
	BROAD PHASE: TPR-TREE
	NARROW PHASE
	CONFIDENT SYSTEM

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	DONALD MCMENEMY
	GOPI VINOD AVVARI
	DAVID SIDOTI
	ADAM BIENKOWSKI
	KRISHNA R. PATTIPATI

