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ABSTRACT A novel frequency-dependent wall insertion loss model at 3–6 GHz is proposed in this paper.
The frequency-dependence of the wall insertion loss is modeled by the Fourier triangular basis neural
network. A method to determine the optimal weighted vector and the number of the neurons is introduced.
In addition, the impact of the wider continuous spectrum on the wall insertion loss is analyzed and extensive
measurements are performed to validate the proposed model. The results obtained with the proposed model
match better with the measured results than other models. The proposed model can be used in future indoor
Internet-of-Things applications such as service computing.

INDEX TERMS Wall insertion loss, neural network, 3-6 GHz, internet of things (IoT).

I. INTRODUCTION
As one of the key technologies in future wireless
communication system, the internet of things (IoT) will
gradually be integrated into daily life [1]. Service com-
puting plays an important role in the IoT applications [2].
Through the information interaction between a huge number
of devices and the computing among various services, the IoT
can provide various kinds of smart applications [3], [4].
Among them, indoor services such as personal health-
care and smart home, are typical services provided by the
IoT. Understanding the indoor propagation characteristics is
very important for constructing the indoor IoT [5]. How-
ever, the densely and randomly distributed walls under the
indoor environment makes the propagation properties much
more complex. Accordingly, only modeling the wall inser-
tion loss correctly can offer several useful options for the
follow-up work, such as wireless coverage and interference
suppression.

Towards this objective, various wall insertion models
have been proposed in the past few decades. In general,
these models can be classified into the material-dependent,

angle-dependent and thickness-dependent models. In the
material-dependent model, the wall insertion loss for typi-
cal materials, such as brick, glass, concrete, has been mea-
sured and analyzed [6]–[8]. In the angle-dependent model,
the influence of the angle of incidence on the wall inser-
tion loss has also been measured and analyzed [9], [10].
The thickness-dependent model indicates that the wall inser-
tion loss in decibel has a linear relationship with the
thickness [8], [11].

Basically, the above studies mainly focused on studying
the wall insertion loss over the narrowband spectrum. Thus,
the frequency dependence of the wall insertion loss was
not considered in those studies. In the future IoT systems,
a wider continuous spectrum may be allocated and a general,
empirical, frequency-dependent wall insertion loss model
may be more useful. In a previous study [12], the experi-
mental results showed that the expectation of the wall inser-
tion has a linear relationship with the frequency. However,
the wall insertion loss may fluctuate significantly over such
wider spectrum due to the inhomogeneity of the sampled
wall. Thus, the wall insertion loss may show a complex and
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non-linear relationship with the frequency. Unfortunately,
traditional algebraic approaches may not describe this
frequency-dependence accurately. Therefore, it is a challeng-
ing task to develop a frequency-dependent wall insertion loss
model.

In this situation, the neural network (NN) may play a sub-
stantial role in learning the complex non-linear dependence.
Previous studies have shown that the NN can approximate
any nonlinear function with lower estimated errors [13]–[16].
Motivated by the need of future indoor IoT systems, a novel
NN-based frequency-dependent wall insertion loss model is
proposed in this paper. The main contributions of this paper
are the following:

• A novel, empirical, frequency-dependent wall insertion
loss model based on a NN is proposed in this paper. The
frequency-dependence of the wall insertion loss is fitted
by a NN with the Fourier triangular basis. The formula
to calculate the optimal weighted vector is derived and
the procedure to determine the number of neurons in
the hidden layer is introduced. Then the algorithm for
simulating the wall insertion loss at each discrete fre-
quency is given. Extensive measurements are performed
to validate the proposed model. Compared with the lin-
ear model, the results obtained with our proposed model
match better with the measured results. Compared with
the back propagation (BP) NN method, our proposed
model has faster calculation speed to achieve approxi-
mation performances.

• The impact of the wider continuous spectrum on the
parameters and the wall insertion loss are analyzed. The
results show that the m-parameters have no significant
correlation with the frequency but the � parameters
show a declined trend with the frequency. In addition,
the wall insertion loss will rise with the frequency and
fluctuate significantly during the rise.

• In order to verify the universality of the proposed model,
we perform extensive measurements at another similarly
sampled wall. The measured wall insertion loss is com-
pared with the ones predicted by the proposed model.
The results demonstrate the accuracy and universality of
the proposed frequency-dependent model for predicting
the wall insertion loss.

The rest of this paper is organized as follows. The
NN-based frequency-dependent wall insertion loss model is
proposed in Section II. The measurement environment and
setup are described in Section III. The analysis of the model-
ing results and validation of the universality of the proposed
model are presented in Section IV. The conclusions drawn
from this study are given in Section V.

II. NN-BASED FREQUENCY-DEPENDENT WALL
INSERTION LOSS MODEL
In this section, a novel NN-based frequency-dependent wall
insertion loss model is proposed. A Nakagami fading channel
is assumed to describe the statistical properties of the wall
insertion loss [17].

FIGURE 1. the structure of NN for modeling the frequency-dependence of
the parameters.

A. PROPOSED MODEL
The wall insertion loss (dimensionless) is defined as the ratio
of the instantaneous power in the absence (abs-link) and
presence (pre-link) of the wall [18]. Previous studies have
shown that the wall insertion loss over a Nakagami fading
channel has a generalized beta prime distribution [19]. The
probability distribution function (PDF) of the wall insertion
is expressed as

fWloss (x) =
(x · �2

�1
·
m1
m2

)
m1−1(1+ x · �2

�1
·
m1
m2

)
−m1−m2

�1
�2
·
m2
m1
B(m1,m2)

(1)

where m1, �1 and m2, �2 are the frequency-dependent
parameters of the abs-link and pre-link respectively.

Then we use a NN with the Fourier triangular basis to
model the frequency-dependence of the parameters. The
structure of the Fourier triangular basis NN is shown in Fig.1,
where the activation functions of the hidden layer are a couple
of the orthogonal trigonometric functions. The Fourier trian-
gular basis NN is constructed based on the fact that a sum
of the orthogonal trigonometric functions can approximate to
any objective function at the interval [a, b] [16].

y(x) ≈
N−1∑
i=0

ωiϕi(x) (2)

ϕi(x) =


1, i = 0

cos[(i+ 1) ·
π

2(b− a)
x), i = 1, 3, 5, · · ·

sin(i ·
π

2(b− a)
x), i = 2, 4, 6 · · ·

(3)

We use the following function to define the error between
the objective and approximated functions

e =
1
2

M∑
j=1

[y(xj)− ysim(xj)]2 (4)

ysim(x) =
N−1∑
i=0

ωiϕi(x) (5)

where y(xj) and ysim(xj), (j = 1, ...M ), represent each sample
of the objective and approximated functions, respectively.
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Thus, the objective of the NN is to find the optimal
weighted vector ω∗ =

(
ω∗0 ω

∗

1 · · · ω
∗

N−1

)
corresponding to

the minimum error emin.
The typical training algorithm, such as Levenberg-

Marquardt and Bayesian regularization [16] can achieve the
optimal weighted vector ω∗ by many iterations. However,
these iterations cost plenty of training time. To avoid the
lengthy iterated process, we can obtain the optimal weighted
vector ω∗ directly as follows:

ω∗ = (XTX)−1XTY (6)

X =


ϕ0(x1) ϕ1(x1) · · · ϕN−1(x1)
ϕ0(x2) ϕ1(x2) · · · ϕN−1(x2)
...

...
...

...

ϕ0(xM ) ϕ1(xM ) · · · ϕN−1(xM )

 (7)

Y = ( y(x1) y(x2) · · · y(xM ) )T (8)

where X and Y are defined as the eigen matrix and objective
vector, respectively. (·) represents the transpose of the matrix.

Proof: The NN uses the gradient descent algorithm to
find the optimal weighted vector ω∗. The iterative formula of
the weighted coefficients can be expressed as

ωi(l + 1) = ωi(l)− η
∂e
∂ωi

(9)

where η is defined as the learning rate.
Substituting (4) and (5) into (9), we can get

ωi(l + 1) = ωi(l)− η
M∑
j=1

{[
N−1∑
p=0

ωp(l)ϕp(xj)− y(xj)]ϕi(xj)}

(10)

In matrix form, equation (10) can be expressed as:

ω(l + 1) = ω(l)− ηXT [Xω(l)− Y ] (11)

where thematrixX andY are defined as equations (7) and (8),
respectively.

The vector ω(l) is the weighted vector obtained from the
l th iterative step.

ω(l) =
(
ω0(l) ω1(l) · · · ωN−1(l)

)T (12)

Thus, the optimal weighted vector ω∗ can be obtained by
taking the limit of both sides in (11).

ω∗ = lim
l→∞

ω(l) = (XTX)−1XTY (13)

Therefore, the optimal weighted vector of each parameter
can be estimated according to equation (6).

Next, the number of neurons in the hidden layer needs to
be determined. The fitting may not be the best if the number
of neurons is too low. On the other hand, overfitting may
occur when the number of neurons is too large. Therefore,
the number of neurons plays an important role in a NN.
In this paper, the number of neurons is determined through
the procedure depicted in Fig. 2.

FIGURE 2. The flowchart of the method to determine the number of
neurons in the hidden layer.

B. PARAMETERS EXTRACTION
The algorithm for extracting the parameters m1, m2, �1, �2
at each frequency can be expressed as

m1k = E2(Pabsk )/Var(Pabsk ) (14)

�1k = E(Pabsk ) (15)

m2k = E2(Pprek )/Var(Pprek ) (16)

�2k = E(Pprek ) (17)

where Pabsk and Pprek are the instantaneous power of the abs-
link and pre-link at each frequency, respectively.

To obtain a consistent threshold when determining the
number of the neurons, all the parameters are normalized as

m̄1j =
m1j −min(m1)

max(m1)−min(m1)
(18)

�̄1j =
�1j −min(�1)

max(�1)−min(�1)
(19)

m̄2j =
m2j −min(m2)

max(m2)−min(m2)
(20)

�̄2j =
�2j −min(�2)

max(�2)−min(�2)
(21)

where min(·) and max(·) are the functions to calculate the
maximum and minimum values over all the samples of each
parameter.
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FIGURE 3. the flowchart of generating the wall insertion loss.

C. PARAMETERS EXTRACTION
The simulated procedure for the wall insertion loss is depicted
in Fig. 3 . First, the parameters at each frequency are extracted
from the measured data. Then a Fourier triangular basis NN
is set up. The number of neurons in the hidden layer is deter-
mined through the procedure depicted in Fig. 2. Next, each
parameter is simulated according to its own optimal weighted
vector. Eventually, the wall insertion loss at each frequency
is generated according to the PDF of the wall insertion
loss.

III. MEASUREMENT SETUP
Extensive measurements are performed to determine the
accuracy of the proposed model. In theory, the measure-
ments should be conducted in an anechoic chamber. How-
ever, the experimental conditions do not allow us to perform
the measurements in a microwave anechoic chamber. In the
previous studies, several wall insertion loss measurements
were performed under different environments. These studies

FIGURE 4. The layout of the environment.

FIGURE 5. Block diagram of frequency-domain measurement system.

showed that the approximate results could also be achieved if
an approximated sampled wall was chosen [6], [9], [12].

A. ENVIRONMENT
In this study, the measurements are performed in a corridor
in an office building. We choose a concrete wall with 17-cm
thickness to perform the measurement. The sampled wall is
large enough that the diffracted wave can be ignored [20].
The sampled wall is 4 m away from the sided wall. During
the measurements, there are no the other objects or persons.
The layout of the measured environment is depicted in Fig. 4.

B. MEASUREMENT SYSTEM
A frequency-domain measurement is performed using the
Agilent 8720ET vector network analyzer (VNA), as shown
in Fig. 5 [21]. The VNA generates a 10-dBm, 151-point
sweeping signal from 3-6 GHz. The synchronization between
the transmitted and received signal is achieved through a
15m-long coaxial feeder. Both the transmitter and receiver
antennas are isotropic and vertical polarized antennas fixed
at a height of 1.5 m. The gain of each antenna is 3 dBi.
The measurement data are transmitted to the laptop computer
through a GPIB interface. The calibration of this system is
performed by the electronic calibration module. A higher
dynamic range and lower noise level can be achieved with
this measurement system.
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TABLE 1. Number of neurons in the hidden layer for each parameter.

C. MEASUREMENT PROCEDURE
First, the frequency response in the absence of the wall is
measured to establish a reference. Then we measure the
frequency response in the presence of the sampled wall. The
Tx-Rx distance is the same as that of the reference measure-
ment and large enough to ensure that the sampled wall is
in the far field. Both measurements are performed at 5 × 5
grids and the interval between the adjacent interval is 15 cm.
At each grid, the measurements are repeated 8 times to reduce
the noise.

IV. MODELING RESULTS
A. MODEL PARAMETERS EXTRACTION
The measured wall insertion loss at each discrete frequency
point fi(i = 1...151) is computed as previously reported [6],
as follows:

IL(fi) = 10log10
1

200

8∑
j=1

25∑
k=1

∣∣Href (tj, gk ; fi)∣∣2
− 10log10

1
200

8∑
j=1

25∑
k=1

∣∣H (tj, gk ; fi)
∣∣2 (22)

where H (tj, gk ; fi) and Href (tj, gk ; fi) are the measured fre-
quency responses of the pre-link and abs-link, respectively;
tj( j = 1...8) stands for the temporal samples; gk (k = 1...25)
stands for the sample at each grid.

Then, we can extract the parameters of the pre-link and abs-
link from the measured frequency responses according to the
equations (14)-(17).

B. NUMBER OF NEURONS IN THE HIDDEN LAYER
For each parameter, the number of neurons is determined by
following the steps in Section II, subsection A. The results
are summarized in Table 1. Only the parameter �2 needs the
lower number of neurons. Then we save the error and the
optimal weighted vector corresponding to each parameter.

C. CORRELATION OF THE PARAMETERS WITH THE
FREQUENCIES
Using the optimal weighted vector, we can simulate the
parameter at each input frequency. The parameters against
the frequencies are depicted in Fig. 6-9. Specifically,
in Fig. 6 and 7, the m-parameters of both links show no sig-
nificant correlation with frequency because the m-parameter
depends mainly on the propagation environment. Besides,
the m2 parameter is larger than 1 at several frequencies since
the principal component is even present in the pre-link. Fur-
thermore, the results shown in Fig. 8 and 9 indicate that the

FIGURE 6. The frequency dependence of parameter m1.

FIGURE 7. The frequency dependence of parameter m2.

FIGURE 8. The frequency dependence of parameter �1.

�1 and �2 parameters show a declined trend with the fre-
quency as a result of the increased power loss.

D. FREQUENCY-DEPENDENCY OF THE WALL
INSERTION LOSS
The simulated and measured wall insertion loss versus the
frequency are shown in Fig. 10-Fig.12. Since the modeled
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FIGURE 9. The frequency dependence of parameter �2.

FIGURE 10. The measured and fitted wall insertion loss versus the
frequency at 10% quantile.

FIGURE 11. The measured and fitted wall insertion loss versus the
frequency at 50% quantile.

and measured cumulative distribution functions (CDFs) at
each discrete frequency point cannot be clearly graphically
depicted, we choose the 10%, 50%, 90% quantile at each
frequency. Previous studies indicate that the wall insertion

FIGURE 12. The measured and fitted wall insertion loss versus the
frequency at 90% quantile.

FIGURE 13. The measured and fitted �1/�2 versus the frequency.

loss is mainly determined by the ratio of the parameter �1
and �2. Then, the ratio of the parameter �1 and �2 versus
the frequency is shown in Fig.13. These results reveal that the
ratio of the parameters �1 and �2 show an uptrend with the
frequency. Thus, as seen in Fig.10-Fig.12, the wall insertion
loss rise with the frequency due to the increased �1/�2.
However, due to the inhomogeneity of the sampled wall,
the wall insertion loss will fluctuate significantly during the
rise.

E. COMPARED WITH OTHER MODELS
In a previous study [12], the expectation of the wall insertion
loss was found to be linearly correlated with the frequency.
Therefore, we compare the proposed model with the linear
model so as to obtain a scientific quantification of the perfor-
mance. In the linear model, the wall insertion loss against the
frequency can be expressed as previously reported [12]:

Iloss = aIloss f + bIloss (23)

Then we can estimate aIloss and bIloss from the measured
data and simulate the wall insertion using the linear model.
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FIGURE 14. The proposed modeled wall insertion loss versus the
measured results at 10% quantile.

FIGURE 15. The linear modeled wall insertion loss versus the measured
results at 10% quantile.

Each of the simulated wall insertion loss from the proposed
model and linear model versus the measured results at each
quantile are displayed in Fig.14-19. The R-square values
and the fitting functions at each quantile are summarized
in Table 2-4. The R-square value indicates the fitting per-
formance between the simulated and measured results. The
fitting with R-square = 1 is a perfect fitting. The nearer the
fitting function approximates to the function y = x, the better
the fitting is. As shown in Table 2-4, the proposed method is
more accurate for modeling the wall insertion loss than the
linear method.

In this paper, we also use a typical BP NN to model
the frequency-dependence of the wall insertion loss [16].
The NN still includes three layers, namely the input layer,
hidden layer, and output layer. The sigmoid function is used
for the activation function of the hidden layer. The number
of neurons in the hidden layer is the same as that in the
Fourier triangular basis NN. Bayesian regularization training
algorithm is used to train the NN.

The results obtained from the BP method are displayed
in Fig. 20-22 The modeled results are compared with those

FIGURE 16. The proposed modeled wall insertion loss versus the
measured results at 50% quantile.

FIGURE 17. The linear modeled wall insertion loss versus the measured
results at 50% quantile.

FIGURE 18. The proposed modeled wall insertion loss versus the
measured results at 90% quantile.

of the proposed model, as shown in Table 5. The comparison
shows that the proposed model requires less computational
time to achieve the approximation performances compared
with the BP method. This demonstrates that the proposed
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FIGURE 19. The linear modeled wall insertion loss versus the measured
results at 90% quantile.

TABLE 2. The R-square values and the fitting functions of the proposed
and the linear model at 10% quantile.

TABLE 3. The R-square values and the fitting functions of the proposed
and the linear model at 50% quantile.

TABLE 4. The R-square values and the fitting functions of the proposed
and the linear model at 90% quantile.

TABLE 5. The computational time and R-square values of the proposed
method and BP method.

model ismore effective because it does not require the lengthy
iterative process.

F. VALIDATION OF THE UNIVERSALITY OF
THE PROPOSED MODEL
In order to validate the universality of the proposed wall
insertion loss model, we perform measurements at another
similarly sampled wall. This sampled wall is also made of
concrete with a thickness of 17 cm. The sampled wall is
also large enough so as to ignore the diffracted wave. Then,

FIGURE 20. The wall insertion loss obtained from the BP method versus
the measured results at 10% quantile.

FIGURE 21. The wall insertion loss obtained from the BP method versus
the measured results at 50% quantile.

FIGURE 22. The wall insertion loss obtained from the BP method versus
the measured results at 90% quantile.

we use the proposed model to predict the wall insertion
loss and compare the predicted results with the measured
data. The predicted wall insertion loss versus the measured
ones are shown in Fig. 23-25 The R-square values at the
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FIGURE 23. the predicted wall insertion loss versus the measured results
at 10% quantile.

FIGURE 24. the predicted wall insertion loss versus the measured results
at 50% quantile.

FIGURE 25. the predicted wall insertion loss versus the measured results
at 90% quantile.

three quantiles are 0.6720, 0.7445, 0.6016 respectively. These
results demonstrate the accuracy and universality of the pro-
posed frequency-dependent model for predicting the wall
insertion loss.

G. APPLICATION OF THE PROPOSED MODEL
The proposed wall insertion loss model can be employed in
future indoor IoT applications. For example, it can be used
in service computing when a link budget is required. The
attenuation caused by the interior wall can be estimated by
the proposed model and the link budget under the indoor
propagation environment with random distributed walls will
be more accurate. Thus, the service computing will be more
effective.

In addition, this model can be expanded to be multi-
dimensional. Since the wall insertion loss may be affected
by several factors such as the frequency, thickness, material,
a multi-dimensional model based on the NN algorithm will
be feasible and useful.

Furthermore, we can also study other methods to further
enhance the fitting performances. For example, we can design
the NN with different orthogonal basis functions and try to
calculate the optimal weighted vector with these orthogonal
basis functions. Additionally, we can explore the other opti-
mization methods to determine the optimal weighted vector.

V. CONCLUSION
In this paper, an empirical frequency-dependent wall inser-
tion loss model at 3−6 GHz is proposed for IoT applications.
A Fourier triangular basis NN is used to model the frequency-
dependence of the distributed parameters of the wall insertion
loss. The optimal weighted vector is given directly and the
algorithm to determine the number of neurons in the hidden
layer is introduced.

Extensive wall insertion loss measurements are performed
to validate the proposed model. The m-parameters show no
significant correlation with the frequency and most of them
are larger than 1 due to the principal component. On the other
hand, the� parameters show a fluctuating and declining trend
with the frequency. Furthermore, the wall insertion loss will
rise with the frequency as a result of the increased ratio of the
parameters �1 and �2.

To obtain a scientific quantification of the performance,
the proposed method is compared with method involving
the linear model and the BP algorithm. The R-square values
and the fitting function indicate that the proposed model is
more accurate than the linear model. Moreover, the proposed
model requires the less computational time to achieve the
approximation performances compared with the BP model.
This finding demonstrates that the proposed model is more
effective.

In order to confirm the universality of the proposed wall
insertion loss model, we perform extensive measurements at
another similarly sampled wall. We use the proposed model
to predict the insertion loss at this sampled wall and compare
it with the measured results. The R-square values between the
predicted and measured results demonstrate the effectiveness
and universality of the proposed frequency-dependent model
for predicting the wall insertion loss.

The proposed wall insertion loss model can be employed
in future indoor IoT applications, such as the link budget,
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network optimization and the evaluation of electromagnetic
interference. Furthermore, this model can be expanded to be
multi-dimensional.
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