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ABSTRACT High resolution and wide swath, which are related to imaging quality and observation
efficiency, are the key specifications for spaceborne synthetic aperture radar (SAR). Owing to the restrictions
of the Nyquist sampling theorem, it is difficult to improve both specifications simultaneously. The increase
of the swath width often leads to the decrease of the spatial resolution, e.g., in scanning SAR and terrain
observation with progressive scan SAR. For a sparse scene, an image containing only a few targets has
massive data but little useful information. This paper proposes a novel SAR observation mode, AgileSAR,
which is based on the time–space sampling method and can overcome the limitations of the Nyquist theorem.
It also increases the swath width while preserving the resolution of the sparse scene. AgileSAR steers the
antenna beam towards a different sub-swath, generally after one or two pulse intervals, and the average pulse
repetition rate corresponding to every sub-swath is much lower than that determined by the Nyquist theorem.
Compared with Sentinel-1, which can achieve 5-m resolution and 80-km swath, a single azimuth-channel
AgileSAR system can achieve 5-m resolution and 300-km swath for a sparse scene, once the corresponding
system parameters are designed. The l1 relaxation method is used to reconstruct sparse SAR images, and the
reconstruction performance is quantitatively analyzed based on the estimation error. The simulation results
validating the proposed method with sub-Nyquist samples can achieve approximately similar performance
as conventional SAR with Nyquist samples.

INDEX TERMS Synthetic aperture radar, sparse, time-space sampling, estimation error, wide swath.

I. INTRODUCTION
SAR transmits pulses and receives echoes from the target
region at the rate of the pulse repetition frequency (PRF). For
conventional SAR imaging, PRF should satisfy the Nyquist
sampling theorem and be higher than the instantaneous
Doppler bandwidth [1], [2]. If not, the azimuth spectrum of
the echo would be aliased, and the azimuth ambiguity would
be a serious challenge [1], [2]. In addition, the echo must
be completely received within one pulse repetition interval,
i.e., the reciprocal of PRF, such that an increase of the swath
width often leads to a decrease in the spatial resolution
for conventional SAR. However, the backscattering of most
targets in the target area observed by SAR is so weak that
such an area is considered to be sparse for the extraction of
strong scattering information [3], [4]. Therefore, the imaging
result corresponding to the area can be reconstructed from
an appropriately undersampled SAR echo according to the
compressive sensing (CS) theory. Under the assumption of
a sparse scene, this study will achieve a wide swath while

preserving the resolution using the sub-Nyquist sampling
method.

Research on sub-Nyquist sampling has been conducted
for several decades and has attracted renewed attention
since the CS theory is proposed. Sub-Nyquist sampling
is applied in numerous fields and relieves the strain on
the analog-to-digital converter (ADC) and storage media
as the amounts of data keep increasing. From the per-
spective of conducting or omitting waveform modulation
before sampling at a rate below Nyquist, the existing sam-
pling methods can be divided into two categories. In the
first, the input signal is modulated by a random or peri-
odic waveform, and then sampling is conducted at a lower
rate. It is adopted by single-pixel cameras [5]–[7], ran-
dom demodulators [8], and modulated wideband converters
(MWCs) [9]–[11]. A MWC is also applied on the
range dimension by lower rate ADC in SAR sys-
tems [12]. In the other category, sampling is con-
ducted directly at low rate without pre-processing.
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It includes multi-coset sampling [13], [14], random
equivalent sampling (RES) [15]–[17], randomly choosing
sub-Nyquist samples from the already receiving Nyquist
samples [18] or non-uniformly transmitting a smaller number
of pulses [12] on the azimuth dimension in the SAR system.

To achieve the wide swath SAR system without the loss of
resolution, sub-Nyquist sampling should be adopted on the
azimuth dimension. Because the SAR system has no source
of generating modulation, the first category of sub-Nyquist
sampling method is not applicable on the azimuth dimen-
sion in SAR systems. Multi-coset sampling and RES, among
the second category, are not applicable to achieve the wider
width SAR system, because the former is equal to sample at
a Nyquist rate and the latter may lead to conflict between the
transmitting and receiving in the SAR system. Only the con-
cept of the sub-Nyquist sampling on the azimuth dimension
in SAR system was presented, which puts on one sub-swath
to process [12], [18]. The practical sampling mechanism to
widen the swath is not proposed, as available space-time
resources are wasted.

This paper proposes a new SAR observation mode, Agile-
SAR, which achieves a much wider swath without the loss
of resolution for sparse scenes. SAR data acquisition can be
regarded as the sampling of scene information in the space
domain and the azimuth time domain. AgileSAR adopts a
sparse sampling method applied for SAR by comparing with
other sub-Nyquist sampling methods. It can achieve better
reconstructed performance, i.e., in terms of mean square
error. Fig. 1 illustrates the strip mapping mode and AgileSAR
mapping mode. As shown in Fig. 1(b), AgileSAR allocates
NNyquist consecutive Nyquist pulses for Q sub-swaths. The
observed order of sub-swath is random, and the beam is
steered towards the corresponding sub-swath. Comparedwith
the conventional strip mapping mode in Fig. 1(a), Agile-
SAR modifies the sampling in the space–time domain and
increases the total swath width to Q times that of the strip
mapping system, while the span of the Doppler frequency
shift for targets in every sub-swath is unchanged and the
resolution is preserved.

The paper is structured as follows. Section II adopts the
l1 optimization method to reconstruct the azimuth signal
using sub-Nyquist samples. Simultaneously, it fits the sta-
tistical distribution of a scene backscattering cross-section
with an ocean having several ships as an example, and
quantitatively estimates the SAR image reconstruction per-
formance under this prior distribution. Section III proposes
the pseudo-random sub-Nyquist sampling method according
to the reconstruction performance, and qualitatively proves
that this sampling method can achieve optimal performance.
Based on the pseudo-random sub-Nyquist sampling method,
a novel time–space sampling method to increase the swath
width with unchanged resolution for a sparse scene is pro-
posed, and the corresponding observed method named as
AgileSAR is introduced in Section IV. This section also
overviews the process of SAR focusing and compares it
with the reconstruction performance of conventional SAR.

FIGURE 1. Illustration of time–space sampling. Each dot on the
azimuth-time axis denotes one sample. (a) shows the conventional SAR
sampling. The swath is sampled by the rate of PRF in the azimuth
direction. The accumulated time is T1, which is determined by the
azimuth resolution. (b) shows the proposed time–space sampling.
Q consecutive pulses are randomly allocated to Q sub-swaths. The beam
needs to be steered towards the corresponding sub-swath. For each
sub-swath, the sampling rate is much smaller than PRF, and the
accumulated time is approximately T1, which lays the foundation for
preserving the azimuth resolution. In addition, sub-swaths except the Qth
sub-swath with the largest incidence angle in Q sub-swaths should be
squinted in the azimuth direction observed to guarantee echo completely
received during the beam position design.

The design example of AgileSAR and simulation results are
presented in Section V. Section VI concludes the paper.

II. SAR IMAGE RECONSTRUCTION BASED ON CS
Usually, spaceborne SAR is assumed to remain stationary
while transmitting one pulse and receiving the correspond-
ing echo before moving to the next position [1], [2]. Under
this assumption, the echo from M point targets on the same
nearest slant range can be modelled as follows:

s0 (τ, η) =
M∑
m=1

σmWm (τ, η) rect
{(
τ −

2Rm (η)
c

)/
Tr

}

· exp

{
jπKr

[
τ −

2Rm (η)
c

]2
− j4π

Rm (η)
λ

}
+ n (τ, η), (1)

where τ denotes the fast time in the range direction, and η
represents the slow time in the azimuth direction. σm and
Wm (τ, η) are the backscattering cross-section and theweight-
ing factor of themth point target, respectively. Kr denotes the
frequency modulation rate of the pulse. Rm(η) represents the
distance between the radar and the mth point target at η. Tr is
the pulse width. c is the light speed, and λ is the wavelength.
n(τ, η) denotes the noise.
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After range compression and range cell migration correc-
tion, the signal is given by the following:

sc (τ, η)

=

M∑
m=1

σmWm (τ, η)Tr · sinc

{
KrTr

[
τ −

2Rm
(
ηcm

)
c

]}

· exp
{
−
j4πRm(η)

λ

}
+ n (τ, η), (2)

where ηcm is the beam centre crossing time for themth target.
Equation (2) at many azimuth sampling instants can also

be expressed as a vector-matrix form as follows:

sN×1 =



sc (τ, η1)
sc (τ, η2)

...

sc (τ, ηn)
...

sc (τ, ηN )


N×1

= DN×MσM×1 + nN×1, (3)

where

nN×1 = [n (τ, η1) , n (τ, η2) , · · · , n (τ, ηN )]T ,

σM×1 = [σ1, σ2, · · · , σM ]T , DN×M = {Dnm}
N ,M
n=1,m=1 ,

Dnm = Wm (τ, ηn) · Tr · sinc

{
KrTr

[
τ −

2Rm
(
ηcm

)
c

]}
· exp

[
−j4πRm (ηn)

/
λ
]}
,

and N is the number of samples in the azimuth direction.
When the number of columns in the matrix DN×M is more

than the number of rows, and the reconstructed vector σM×1
is sparse, i.e., most elements of σM×1 are zero or very small,
σM×1 can be reconstructed by adopting the appropriate algo-
rithms under a certain condition. A typical l1 regularization
formulation [19] as follows:

σ̂ = min
σ

{
‖sN×1 − DN×MσM×1‖

2
2 + γ ‖σM×1‖1

}
(4)

is used to accomplish the azimuth processing and reconstruct
the image in this study. Here, ‖·‖1 and ‖·‖2 represent l1-norm
and l2-norm, respectively [20]. γ is a trade-off parameter
balancing sparsity and the quality of fitness.

Usually, the noise nN×1 is assumed to satisfy Gaussian
distribution with zero-mean and variance σ 2

n [19]. Under
this assumption, maximum a posteriori (MAP) estimation
explains that the approximation equation in (4) equals adopt-
ing the Laplace prior on the vector σM×1 [19], [21]. Simulta-
neously, Laplace priors heavily enforce the sparsity constraint
so that most elements of σM×1 close to zero are preferred.
However, using the Laplace prior directly to analyse vari-
ous prior on the vector σM×1 is not readily accomplished.
Different priors corresponding to different hypotheses about
underlying truth can be invoked [22]. The prior distribution
of a scene backscattering cross-section is affected by the
observation incidence angle, wavelength, and surface struc-
ture, and many effect factors are not totally accounted for

by a simple deterministic model [23]. Therefore, we hope to
achieve the prior distribution from an SAR image, although
speckle noise exists. The statistics of SAR images have been
investigated under the assumption of Gaussian statistics for
the backscattering cross-section [24], [25]. The simulation
in Fig. 2 takes ships on the ocean as an example of a sparse
scene to analyze in this study, and it also validates that the
backscattering cross-section of ships on the ocean obeys the
Gaussian distribution.

FIGURE 2. (a) is an SAR image of ships on the ocean. (b) and (c) are the
statistical distributions of the real and imaginary parts of the SAR image
in (a), respectively. The histogram of SAR image data fits well with a
Gaussian distribution with a nearly zero mean.

Therefore, this kind of sparse scene satisfies the Gaussian
distributionwith zero-mean and variance σ 2

x . Under the above
assumption about the noise n without the subscript, it means
the following:

pn (n) = ps|σ (s|σ ) = 1
√
2πσn

exp
{
−
‖s−Dσ‖22

2σ 2n

}
pσ (σ ) =

1
√
2πσx

exp

{
−
‖σ‖22
2σ 2

x

}
,

(5)

The reconstruction performance based on CS is interest-
ing. As the reconstructed algorithm is an estimation method,
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a classical point target evaluation system (e.g., 3 dB resolu-
tion, PSLR and ISLR) is not available in the CS-SAR system.
For a given vector σ , the reconstruction performance can be
evaluated using the estimation error E{σ̂ − σ )2}, where σ̂
is the reconstruction result, and σ is the real backscattering
cross-section. Under the distribution in (5), the reconstruction
performance of σ̂ satisfies (see APPENDIX I)

E
{
(σ̂ − σ )2

}
≥

{
−E

[
∂2 ln ps/σ (s/σ )

∂σ 2

]
− E

[
∂2 ln pσ (σ )

∂σ 2

]}−1
≥ o (log (M)) · trace

(FHN×SFN×S
σ 2
n

+
I
σ 2
x

)−1
>

o(log(M )) · S · σ 2
x

SNR · L ·
[
1+ 1

/
2 · (1− u)

]
+ 1

, (6)

where trace (·) denotes the trace of a matrix, and SNR =
σ 2
x
/
σ 2
n is the signal-to-noise ratio in the SAR image. I is

the unit matrix. L is the number of samples in one aperture
time and is proportional to the number of samples N when
the scene sizeM is certain. The mutual coherence coefficient
as follows:

u = max
1≤m1 6=m2≤M

∣∣〈Dm1 ,Dm2

〉∣∣∥∥Dm1

∥∥
2 ·
∥∥Dm2

∥∥
2

(7)

reflects the maximum similarity between any two different
columns m1, m2 in DN×M . FN×S is the submatrix formed
by taking S columns from DN×M , which are specified by the
index vector3 and each element in3 satisfies the following:

σ3l � 0 (l = 1, 2, · · · , S) .

The inequality (6) indicates that a higher number of sam-
ples N , larger SNR and smaller u lead to better reconstruction
performance. This study uses sub-Nyquist sampling for every
sub-swath, which reduces the number of samples N and
affects the mutual coherence coefficient u. To compensate
for the deterioration of reconstruction performance owing to
the decrease of N , SNR can be improved by increasing the
transmitting power. The error caused by u can only be com-
pensated for by choosing the optimum sub-Nyquist sampling
principle to make u as small as possible, which is discussed
in the next section.

III. PSEUDO-RANDOM SUB-NYQUIST SAMPLING
Restricted isometry property (RIP) of the reconstructed
matrix DN×M is a sufficient and necessary condition for
reconstructing a sparse scene [26]. RIP implies that ran-
domness plays a crucial role in constructing the recon-
structed matrix. The more random the reconstructed matrix
is, the more easily RIP is satisfied. The sub-Nyquist sam-
pling method and the form of the azimuth receiving sig-
nals affect the randomness of the reconstructed matrix. The
azimuth receiving signal in an SAR system is decided by
the Doppler movement between movement platform and the

observed scene, and it does not have randomness. Therefore,
the randomness of the reconstructed matrix is improved by
the sub-Nyquist sampling method.

Random sub-Nyquist sampling is a commonly used
method for reconstructing sparse signals, and achieves good
performance [27]. Fig. 3(a) demonstrates the corresponding
azimuth sampling series. From the perspective of probabil-
ity theory, each sampling instant η in random sub-Nyquist
sampling method is a continuous random variable with prob-
ability density p (η) in the [0,T1] interval. All the sampling
instants are mutually independent and identically distributed,
and mean value ūr , the numerical characteristic of random
variable, is used to substitute the mutual coherence ur in
random sub-Nyquist sampling method (see APPENDIX II)
as follows:

ūr = lim
A→∞

A∑
inf =0

A∑
i(nf +1)=0

· · ·

A∑
inl=0

∣∣∣∣∣∣
nl∑

n=nf

exp
{
j
4πVed
λR0

(
in
A
T1

)}∣∣∣∣∣∣ ·
(
inf
A
T1

)

·p
(
inf+1
A

T1

)
· · · p

(
inl
A
T1

)
·
T1
A
·
T1
A
· · ·

T1
A

)/
L2,

(8)

where nf and nl are the first and last index of a row in
which elements of two columns with maximum correlation
are non-zero, respectively. Ve is the equivalent velocity of
the satellite. R0 is the nearest slant range between SAR and
the M point targets. d is the ground spacing between two
point targets corresponding to two columns with maximum

FIGURE 3. Comparison between the random and pseudo-random
down-sampling. (a) shows the conflict between the transmitting pulses
and echoes caused by the random sampling. (b) illustrates that only one
pulse is randomly selected from Q consecutive Nyquist pulses with a
certain PRF, which avoids the conflict in (a).
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correlation. L denotes the l2-norm of one column. The ran-
dom sub-Nyquist sampling can achieve small u, because it
can break the correlation inside the azimuth signal. However,
random sub-Nyquist sampling method possibly causes the
conflict between the transmitting and the receiving because
SAR system uses a common antenna to transmit pulse sig-
nals and receive echoes, as shown in Fig. 3(a). Consider-
ing this unavoidably conflict, a pseudo-random sub-Nyquist
sampling is proposed. As shown in Fig. 3(b), samples in
pseudo-random sub-Nyquist sampling method are randomly
chosen from the number of Nyquist samples NNyquist with
a certain PRF. Each sampling instant η in this sub-Nyquist
sampling method is a discrete random variable and the set of
possible values is as follows:

� =

{
T1

NNyquist − 1
· 0,

T1
NNyquist − 1

· 1, · · · ,

T1
NNyquist − 1

· (NNyquist − 1)
}
, (9)

where NNyquist is the number of Nyquist samples with a
certain PRF. Similarly, mean value upr , i.e., the numerical
characteristic of a random variable, is used to substitute the
mutual coherence upr in the pseudo-random sub-Nyquist
sampling method as follows: (see APPENDIX II)

ūpr =
NNyquist−1∑
inf =0

NNyquist−1∑
i(nf +1)

=0

· · ·

NNyquist−1∑
inl=0

×

∣∣∣∣∣∣
nl∑

n=nf

exp
{
j
4πVed
λR0

·

(
in

NNyquist − 1
T1

)}∣∣∣∣∣∣
· p
(

inf
NNyquist − 1

· T1

)
· p
( i(nf+1)
NNyquist − 1

· T1

)
· · · p

(
inl

NNyquist − 1
· T1

)
·

T1
NNyquist

·
T1

NNyquist
· · ·

T1
NNyquist

)/
L2, (10)

Equation (8) and Equation (10) denote the summation of
the infinite and finite series, respectively. When the number
of finite series NNyquist is very large and the interval length
T1 is very small, the summation of the infinite series is
nearly equal to the summation of the finite series. In SAR
system, the number of Nyquist samples NNyquist is very large
and the sampling duration T1 is very small, so ur ≈ upr .
The simulation shown in Fig. 4 also verifies this, and the
corresponding simulation parameters are given in Table 1.
Therefore, pseudo-random down-sampling can achieve opti-
mal performance and is adopted in this study.

IV. SPACE-TIME SAMPLING AND AGILESAR
Based on pseudo-random sub-Nyquist sampling, a novel
time–space sampling is proposed to achieve wide swath for
the sparse scene in a spaceborne SAR system, illustrated
in Fig. 5. Like the existing wide-swath working modes, e.g.,

FIGURE 4. Illustration of mutual coherence coefficients. Two curves
approximately overlap, which indicates that the mutual coherence
coefficients achieved by random and pseudo-random sub-Nyquist
sampling are basically the same.

TABLE 1. Simulation parameters.

ScanSAR [29] and TOPSAR [30], wide-swath coverage is
also mosaicked by several range sub-swaths. ‘Time sam-
pling’ of time–space sampling means the pseudo-random
sub-Nyquist sampling on the azimuth dimension, and ‘space
sampling’ of time–space sampling means the range beam is
adjusted to observe different sub-swaths generally after one
or two pulse intervals. During the observation period, the
SAR system transmits pulses at the rate of PRF and receives
echoes. Suppose there are Q sub-swaths. bNNyquist/Qc pulses
from NNyquist consecutive Nyquist pulses with a certain PRF
are randomly selected for one sub-swath, which indicates
that the sampling method for every sub-swath satisfies the
pseudo-random sub-Nyquist sampling principle presented in
Section III, where b•c is the floor function. NNyquist consec-
utive Nyquist pulses with a certain PRF are allocated to Q
sub-swaths.

We name this working mode AgileSAR in this study
because the beam must be adjusted towards different
sub-swaths between adjacent pulses if two adjacent pulses are
not assigned to the same sub-swath.

A. AGILESAR
To introduce AgileSAR, it is compared with TOPSAR:
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FIGURE 5. Illustration of AgileSAR. (a) shows the geometry between SAR
and the swath. Different sub-swaths correspond to different squint
angles. The maximum squint angle is applied to the first sub-swath. The
Qth sub-swath is observed with zero squint angle. (b) demonstrates the
relationships between transmitting pulses and echoes. Although the
AgileSAR works at the rate of PRF, the average sampling rate for every
sub-swath is only 1/Q of PRF.

1) TIME INTERVAL OF SAMPLES IN EACH SUB-SWATH
Transmitting one pulse is essentially one sample in SAR sys-
tem. From the perspective of trans-receiver, the time interval
of every two pulses is certain and satisfies the Nyquist sam-
pling theorem. However, from the perspective of the sampled
sub-swath, the time interval of every two samples in each
sub-swath is not certain and the average sampling frequency
is smaller than the Nyquist frequency in AgileSAR. In com-
parison, PRF satisfies the Nyquist sampling theorem in each
sub-swath of TOPSAR to guarantee an exact reconstruction
of scene. The antenna beam steers to the different sub-swath
after TOPSAR transmits many pulses during the dwell time,
which is designed to meet azimuth resolution, but the beam
steers to a different sub-swath after one or two pulses in
AgileSAR.

2) JUMPING RULE OF THE RANGE ANTENNA BEAM AMONG
ALL THE SUB-SWATHS
After the dwell time, the antenna beam of TOPSAR jumps
from the qth sub-swath to the (q + 1)th sub-swath or
from the Qth sub-swath to 1st sub-swath, where q ∈
{1, 2, · · · , (Q− 1)} is the serial number of the sub-swath.
In AgileSAR, the antenna beam randomly jumps to any one
of all the sub-swaths to transmit one pulse after receiving one
echo, and then the antenna beam leaps on the sub-swath of
echo arrival to receive the echo.

3) ROTATING RULE OF AZIMUTH ANTENNA
In TOPSAR, the azimuth antenna has a dwell time in each
sub-swath and rotates the antenna throughout the dwell time

from backward to forward. The rotating angle of antenna
continuously varies. This rotating mechanism guarantees the
consistency of antenna weighting and the azimuth ambiguity
in each sub-swath to solve the problems of scalloping and
azimuth-varying ambiguities. In AgileSAR, to avoid the over-
lap among the echoes of different sub-swaths as the swath is
ultra-wide and the conflict between transmitting and receiv-
ing as illustrated in Fig. 3(a), it adopts squinted acquisition
to make the echo delays of all the sub-swaths same. Except
the sub-swath with the biggest incidence angle working in the
side-looking scheme, all the sub-swaths have specific squint
angles, the squint angle of each sub-swath is as follows:

θq = arccos
(
Rq
/
RQ
)
,

0 ≤ θq ≤ π/2, q = 1, 2, · · · , (Q− 1), (11)

where q is the serial number of the sub-swath from small
incidence to large incidence. θq denotes the squint angle of
the qth sub-swath. Rq is the slant range on the center beam
of the qth sub-swath. RQ is the slant range on the center beam
of the Qth sub-swath. (11) indicates that the closer the sub-
swath away from the nadir is, the larger the squint angle is.

When the range antenna beam jumps from one sub-swath
to another sub-swath, accordingly the azimuth antenna also
rotates from one squint angle to another squint angle. The
rotating angle of antenna discretely and randomly varies,
and only has Q values. After the squinting scheme, all the
sub-swaths have the same echo delays, and the PRF of
transmitting pulses is certain. Therefore, like the transmit-
ting and receiving method in one sub-swath in TOPSAR,
AgileSAR also adopts the same method, i.e., it transmits one
pulse and then receives one echo from the perspective of the
trans-receiver.

4) AZIMUTHAL SPECTRUM WIDTH
In the TOPSAR mode, the antenna beam dwells on one
sub-swath for a period of time determined by the azimuth res-
olution and jumps to the next sub-swath. As a result, the cor-
responding azimuthal spectrum width for each sub-swath is
approximately 1/ (Q+ 1) of the entire Doppler bandwidth
decided by the azimuth antenna length, which results in
decreased azimuth resolution. Although the azimuthal spec-
trum corresponding to each sub-swath is sparse for Agile-
SAR, its span is equal to the entire Doppler bandwidth. This
lays a good foundation for the image reconstruction with full
resolution based on CS.

5) DATA PROCESSING ALGORITHM
For the transmitting signals in these two working modes,
both of which are linear frequency modulated (LFM) signals,
the range compression methods are the same. Range migra-
tion of TOPSAR data is corrected using the sin c function
interpolation method or frequency scaling method [2] while
AgileSAR corrects range migration by back projection [31].
Here, matched filtering (MF) or CS can be adopted to com-
press the azimuth signals satisfying the Nyquist theorem in
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TOPSAR, and the azimuth signals in AgileSAR are com-
pressed only based on CS. The details of the processing
algorithm are explained later.

B. ALGORITHM OF RECONSTRUCTION
Section II already mentioned that no matter which algorithm
is adopted, the algorithm of reconstruction includes three
steps: the range compression, RCMC, and the azimuth com-
pression. The demonstration of the reconstruction process is
as follows:

1) RANGE COMPRESSION
As long as the transmitted signal is an LFM signal, the range
signal can be compressed based on MF [2]. Assuming that
matched filter H (fτ ) of the range signal in the frequency
domain is denoted as follows:

H (fτ ) = rect
(

fτ
|Kr |Tr

)
exp

(
jπ
f 2τ
Kr

)
, (12)

the signal src (τ, η) after range compression is achieved by
the following:

src (τ, η)

= IFFTτ {S0 (fτ , η)H (fτ )}

=

M∑
m=1

σmWm (τ, η)Tr · sin c

{
KrTr

[
τ −

2Rm
(
ηcm

)
c

]}

· exp
{
−
j4πRm(η)

λ

}
+ n (τ, η). (13)

where S0 (fτ , η) is the Fourier transform of the signal s0 (τ, η)
in the range and IFFTτ {·} is the inverse Fourier transform in
the range.

2) RCMC
In the traditional SAR system, the azimuthal signal is nearly
an LFM signal so that there is one-to-one and linear corre-
spondence between the time domain and frequency domain
in the azimuth dimension. Because targets in the same range
cell have the same range migration in the azimuth frequency
domain, most algorithms, e.g., range Doppler algorithm [2]
and chirp scaling algorithm [2], correct range cell migra-
tion in the azimuth frequency domain. To correct the range
migration of one target is equivalent to correcting that of all
the targets in the same range cell, so that correcting range
migration in the azimuth frequency domain is highly efficient.
In the AgileSAR system, sampling is non-uniform so that the
frequency also non-uniformly varies and the rangemigrations
of the targets on the same range cell are different in the
azimuth frequency domain. RCMC is implemented in the
azimuth time domain in this study. The procedure of RCMC
is: i) First, it should choose the imaging area that is guaranteed
to contain all targets in the raw data. For the cell division
of the imaging area, even if the cell of the imaging area is
divided more precisely, the resolution will not change, which
seriously affects the imaging efficiency. Therefore, the cell

TABLE 2. AgileSAR parameters.

division of the imaging area should be slightly smaller than
or equal to that in the raw data. ii) It takes the ascending
sampling to range dimension of raw data. To calculate the
slant range from each division cell of imaging area to radar at
each sampling instant, find the position of each division cell
at each azimuth sampling instant on the ascending sampling
range cell and take the data on this position. Sum up the data
of division cell on the same nearest slant range. After RCMC,
the signal is denoted as (2).

3) AZIMUTH COMPRESSION
Based on the analysis in section II, the azimuth signal in sub-
Nyquist sampling method can be recovered by the optimiza-
tion equation (4) in AgileSAR system.

C. ANALYSIS OF RECONSTRUCTED PERFORMANCE
In addition to the swath width and spatial resolution, the
reconstruction performance should be compared with con-
ventional SAR. As mentioned in Section II, CS is applied
to reconstruct sparse signals. Here, the least square (LS) is
adopted to process the signals satisfying the Nyquist theorem,
and the estimation σ̂ LS satisfies the following:

E
{
(σ̂ LS−σ )

2
}
>

o (log (M)) · S · σ 2
x

SNR · L ·
[
1+1

/
2 · (1−ūpr ) · uLS

/
ūpr
] .

(14)

where ūpr and uLS are the mean mutual coherence in (10) and
the mutual coherence in (7).

By comparing (6) and (14), it can be observed that the fac-
tors influencing the estimation error are the mutual coherence
coefficient, the number of samples, and SNR. AgileSAR uses
pseudo-random sub-Nyquist sampling to make ūpr approach
uLS , and improves SNR by increasing the transmitting power
to make the multiplication of SNR and L a constant. As a
result, the lower bounds of the l1 approximation method
and LS estimation are almost equal, and the reconstruction
performances for AgileSAR and the conventional SAR are
approximately the same.

V. VALIDATION AND ANALYSIS
After having understood the observation method of Agile-
SAR, a design example is presented so that the reader can
comprehend the expected wide swath system. The system
parameters decide the performance of the SAR system. Some
system parameters are typical of a conventional SAR system,
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TABLE 3. Parameters and specifications for every sub-swath.

FIGURE 6. Reconstruction results. The ships enclosed by the red
rectangles are enlarged to be the right parts. Compared with the result
achieved by the conventional SAR, i.e., (a), the main details of ships are
preserved in (c), i.e., the result corresponding to the AgileSAR. Although
the sampling is sparse in AgileSAR, satisfactory reconstruction
performance is achieved. A single point target is placed in the middle of
the scene to evaluate the resolution, and the corresponding point spread
functions on two dimensions and on the azimuth dimension are
illustrated in (b) and (d), respectively.

such as the incidence angle and squint angle of the sub-swath.
Other parameters, i.e., the selected time–space sampling
method and the estimation error, are peculiar to AgileSAR.
These are described in sections III and IV, respectively. Com-
pared with Sentinel-1, which can acquire 5-m resolution and

TABLE 4. Simulation parameters for conventional SAR.

80-km swath in the strip mapping mode [32], AgileSAR can
realize the same resolution and a wide swath of 300 km using
a single azimuth-channel, for which the design parameters
are listed in Table 2. To cover the 300-km swath, the swath
is composed of five sub-swaths. The spaceborne AgileSAR
transmits one pulse every 513.6 µs. For every sub-swath,
the average PRF is 389.4 Hz. In addition to resolution and the
swath width, the incidence and squint angles corresponding
to every sub-swath are also listed in Table 3.

Although the sampling is sparse, the span of the Doppler
frequency shift for targets in every sub-swath is unchanged
so that the resolution is preserved. Therefore, the achieved
azimuth resolutions are the same as those of a conventional
SAR system while a wide continuous swath is covered.
To demonstrate the reconstruction performance, simulations
of AgileSAR and the conventional SAR are compared. One
TerraSAR-X image is selected and put at the 5th sub-swath in
the AgileSAR simulation. The corresponding result is shown
in Fig. 6(c). For conventional SAR simulation, the parameters
are given in Table 4, and the result is shown in Fig. 6(a).
By comparing Fig. 6(a) and (c), the main details of the target
remain, which indicates that the reconstruction performance
of AgileSAR approaches that of conventional SAR. A single
point target is placed in the middle of the scene to evaluate
the resolution, and the evaluated resolution in Fig. 6(d) is
approximately the same as in (b).

VI. CONCLUSION
This paper presents a novel time-space sampling method for
spaceborne SAR to increase the swath width while preserving
the resolution. Moreover, the following two major findings
have been obtained:

(1) From the deducted mean square error, we analyse that
a higher number of samples N , larger SNR and smaller u lead
to better reconstruction performance when the scene size M
is certain. The pseudo-random sub-Nyquist sampling method
is analysed and has nearly the same mutual coherence as
random sub-Nyquist sampling, so that it can achieve optimal
reconstruction performance and avoid the conflict between
the transmitting and receiving on one sub-swath when the
number of samples and SNR are certain.
(2) When the pseudo-random sub-Nyquist sampling

method is applied on Q sub-swaths, the overlap between
transmitting and receiving still exists. This study adopts the
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squinting scheme to let all sub-swathes have the same echo
delays. Simultaneously, to guarantee the reconstruction qual-
ity of SAR images compared with the conventional method,
it should increase transmitting power.

The observed mode is applied to not only the strip mapping
mode but also othermodes such as sliding spotlight and TOPS
modes. Further research will focus on developing the source
of generating random waveforms in the SAR system, when
the first category of sub-Nyquist samplingmethod is analyzed
and applied.

APPENDIX I
The equation (3) without subscript is rewritten as follows:

s = Dσ + n. (15)

A. PROOF OF FORMULA (6)
Assuming that the vector σ is a random variable vector,
the mean square error (MSE) of the estimation σ̂ in a
Bayesian framework is denoted by [34] the following:

MSE
(
σ̂
)

=

M∑
m=1

E
{(
σ̂m − σm

)2}
≥ trace

({
−E

[
∂2 ln ps,σ (s, σ )
∂σm1∂σm2

]}−1)

= trace

({
−E

[
∂2 ln ps/σ (s/σ )
∂σm1∂σm2

]
−E

[
∂2 ln pσ (σ )
∂σm1∂σm2

]}−1)
.

(16)

where σ̂m and σm are the mth elements of σ̂ and σ , respec-
tively. trace (·) denotes the trace of a matrix. ps,σ (s, σ ),
ps/σ (s/σ ) and pσ (σ ) are the joint probability density function
of the vector s and σ , the conditional probability density func-
tion of the vector s and σ , and the prior probability density
function of the vector σ , respectively. The data information
matrix JD and the prior information matrix JP represent

−E
[
∂2 ln ps/σ (s/σ )
∂σm1∂σm2

]
and − E

[
∂2 ln pσ (σ )
∂σm1∂σm2

]
,

respectively.
The following analyses the Bayesian information matrix

JB = JD + JP from these two information matrices:
1) Calculation of the data information matrices JD:

JD = −E
[
∂2 ln ps/σ (s/σ )
∂σm1∂σm2

]
= E

[
1

2σ 2
n
·
∂ ‖s− Dσ‖22
∂σm1∂σm2

]

= E
{

1
2σ 2

n
·

∂

∂σm1∂σm2

[
sH s− sHDσ

−σHDHσ + σHDHDσ
] }

= E
{

1
2σ 2

n
·

∂

∂σm2

[
2DHDσ − 2DH s

]}
=

DHD
σ 2
n

(17)

2) Calculation of the prior information matrix JP as fol-
lows:

JP = −E
[
∂2 ln pσ (σ )
∂σm1∂σm2

]
= E

[
1

2σ 2
x
·
∂ ‖σ‖22

∂σm1∂σm2

]
=

I
σ 2
x
, (18)

where I is the unit matrix. Substituting (17) and (18)
into (16), we obtain the following:

E
{
(σ̂ − σ )2

}
≥

(
DHD
σ 2
n
+

I
σ 2
x

)−1
≥ trace

[(
DHD
σ 2
n
+

I
σ 2
x

)−1]
. (19)

References [34] and [35] explains that the estimation error
is a logarithmic factor of the oracle performance as follows:

E
{(
σ̂ − σ

)}
≥ o (logM) · trace

[(
FHF
σ 2
n
+

I
σ 2
x

)−1]
. (20)

Assume that A = FHF, B =
(
FHF
σ 2n
+

I
σ 2x

)
, and their

eigenvalues are λ1, λ2, · · · , λS and α1, α2, · · · , αS , respec-
tively. Based on the structure form of the reconstructedmatrix
DN×M in (3) during the reconstruction, the element of the
reconstruction matrix ignores the weighting, and l2-norm of
each column are nearly equal and assuming ‖Dl‖

2
2 ≈ L,

where L is the number of samples in one aperture time. L is
proportional to the number of samples N when the point tar-

getM is certain. Then,
S∑
l=1
λl = L ·S, αl = 1

σ 2x
(SNR · λl + 1)

and
S∑
l=1

λl ·

S∑
l=1

λ−1l ≥ S2 ⇒
S∑
l=1

λ−1l ≥
S
L

S∑
l=1

αl ·

S∑
l=1

α−1l ≥ S2 ⇒
S∑
l=1

α−1l ≥
S2 · σ 2

x
S∑
l=1
(SNR · λl + 1)

=
S · σ 2

x

SNR · L + 1
Gail’s circle theorem indicates that∣∣∣∣αl − SNR · L + 1

σ 2
x

∣∣∣∣ ≤ ūpr (S − 1) ·
SNR · L
σ 2
x

SNR · L + 1
σ 2
x

− ūpr (S − 1) ·
SNR · L
σ 2
x

≤ αl ≤
SNR · L + 1

σ 2
x

+ ūpr (S − 1)

·
SNR · L
σ 2
x
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Therefore,

S∑
l=1

α−1l ≥
S · σ 2

x

SNR · L ·
[
1+ ūpr (S − 1)

]
+ 1

E
{
(σ̂ − σ )2

}
≥

o(logM ) · S · σ 2
x

SNR · L ·
[
1+ ūpr (S − 1)

]
+ 1

Reference [36] indicates that the sharpness bound is S <
1
2

(
1
ūpr
+ 1

)
, so

E
{
(σ̂ − σ )2

}
≥

o(log(M )) · S · σ 2
x

SNR · L ·
[
1+ 1

/
2 · (1− ūpr )

]
+ 2

(21)

B. PROOF OF FORMULA (14)
When LS is adopted to process the signals, the estimation
error is [30] as follows:

MSE
(
σ̂
)
= σ 2

n · trace
[(

FHF
)−1]

Proving using the same method as with formula (6), which
is not repeated here

E
{
(σ̂ LS − σ )

2
}
>

o (log (M)) · S · σ 2
x

SNR · L · [1+ uLS (S − 1)]

Similarly, the bounds of sparsity defined as S <
1
2

(
1
ūpr
+ 1

)
is applied, then

E
{
(σ̂ LS − σ )

2
}
>

o (log (M)) · S · σ 2
x

SNR · L ·
[
1+1

/
2 · (1− ūpr ) · uLS

/
ūpr
]

(22)

APPENDIX II
Fig. 7 shows the imaging geometry of SAR. In this figure, the
SAR sensor travels parallel to the y-axis and the velocity isVe.
η denotes a sampling instant ranged in the [0, T1] interval. H
is the orbit height. Assuming that C is the tracking position of
one sample, A and B are two point targets corresponding to
two columns with maximum correlation in the reconstructed
matrix DN×M . R0 is the nearest slant range between SAR

FIGURE 7. SAR imaging geometry.

and M point targets on the same nearest slant range. At the
sampling instant η, two slant ranges between SAR sensor and
point target A, and between SAR sensor and point target B are

Ra (η) =
√
R20 + (Ve · (η − T1/2)− Ta)2

≈ R0 +
(Ve · (η − T1/2)− Ta)2

2 · R0

Rb (η) =
√
R20 + (Ve · (η − T1/2)− Tb)2

≈ R0 +
(Ve · (η − T1/2)− Tb)2

2 · R0
,

respectively.
The mutual coherence coefficient u is denoted by the

following:

u = max
1≤m1 6=m2≤M

∣∣〈Di,Dj
〉∣∣

‖Di‖2 ·
∥∥Dj

∥∥
2

=

∣∣∣∣∣ nl∑
n=nf

exp
{
j 4π
λ
(Ra (ηn)− Rb (ηn))

}∣∣∣∣∣
‖Dm1‖2 · ‖Dm2‖2

=

∣∣∣∣∣ nl∑
n=nf

exp
{
j 2π
λR0
·

[
2Ve

(
ηn−

T1
2

)
(Tb−Ta)−

(
T 2
b −T

2
a
)]}∣∣∣∣∣

‖Dm1‖2 · ‖Dm2‖2

=

∣∣∣∣∣ nl∑
n=nf

exp
{
j 4π ·Veηn·(Tb−Ta)

λR0

}∣∣∣∣∣
‖Dm1‖2 · ‖Dm2‖2

·

∣∣∣∣∣exp
{
−j

2π
(
T 2
b − T

2
a + VeT1 (Tb − Ta)

)
λR0

}∣∣∣∣∣
=

∣∣∣∣∣ nl∑
n=nf

exp
{
j 4π ·Veηn·(Tb−Ta)

λR0

}∣∣∣∣∣
‖Dm1‖2 · ‖Dm2‖2

=

∣∣∣∣∣ nl∑
n=nf

exp
{
j 4π ·Veηn·|Tb−Ta|

λR0

}∣∣∣∣∣
‖Dm1‖2 · ‖Dm2‖2

, (23)

Assume that d denotes the spacing |Tb − Ta| between point
target A and point target B. Based on the structure form of
the reconstructed matrix DN×M in (3), the l2-norm of each
column is nearly equal, and assume that ||Di||2 ≈ L2. (23) is
simplified to the following:

u =

∣∣∣∣∣ nl∑
n=nf

exp
{
j 4πVed
λR0

ηn

}∣∣∣∣∣
L2

(24)

When the mutual coherence is calculated in the random
sub-Nyquist sampling method, the sampling instant η is a
continuous random variable ranged in the [0,T1] interval, and
assume that the probability density function of η is p (η).
Mean value ūr in the numerical characteristics of random
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variable is used to analyse ur :

ūpr

= max
1≤m1 6=m1≤M

|〈Dm1,Dm2〉|

‖Dm1‖2 · ‖Dm2‖2

=

E

(∣∣∣∣∣ nl∑
n=nf

exp
{
j 4πVed
λR0

ηn

}∣∣∣∣∣
)

L2

=

∫ ∫
· · ·

∫
︸ ︷︷ ︸
ηn∈[0,T1]

(∣∣∣∣∣ nl∑
n=nf

exp
{
j 4πVed
λR0

ηn

}∣∣∣∣∣
L2

·

p
(
ηnf , η(nf+1), · · · , ηnl

))
dηnf , dη(nf+1), · · · , dηnl

L2
(25)

All the sampling instants are independent and identi-
cally distributed, so p

(
ηnf , η(nf+1), · · · , ηnl

)
= p

(
ηnf
)
·

p
(
η(nf+1)

)
· · · p

(
ηnl
)
. Then

ūr =

∫ ∫
· · ·

∫
︸ ︷︷ ︸
ηn∈[0,T1]

∣∣∣∣∣ nl∑
n=nf

exp
{
j 4πVed
λR0

ηn

}∣∣∣∣∣
L2

·

p
(
ηnf
)
p
(
η(nf+1)

)
· · · p

(
ηnl
)
dηnf dη(nf+1) · · · dηnl

L2
(26)

For this, the definite integral is transformed into the sum-
mation of infinite series, ūr in random sub-Nyquist sampling
method is expressed as

ūr = lim
A→∞

A∑
inf =0

A∑
i(nf +1)

=0

· · ·

A∑
inl=0

∣∣∣∣∣∣
nl∑

n=nf

exp
{
j
4πVed
λR0

(
in
A
T1

)}∣∣∣∣∣∣
· p
(
inf
A
T1

)
· p
( i(nf+1)

A
T1

)
· · · p

(
inl
A
T1

)

·
T1
A
·
T1
A
· · · ·

T1
A

/L2. (27)

When the mutual coherence is calculated in the pseudo-
random sub-Nyquist samplingmethod, the sampling instant η
is a discrete random variable and the set of all possible values
as follows:

� =

{
T1

NNyquist − 1
· 0,

T1
NNyquist − 1

· 1, · · · ,

T1
NNyquist − 1

· (NNyquist − 1)
}
,

where NNyquist is the number of samples in the Nyquist sam-
pling method. Assuming that the probability of η is f (η),
mean value ūpr in the numerical characteristics of random
variable is used to analyze upr (28), as shown at the bottom of
this page, where each sampling instant η is independent and
identically distributed, so

f
(
ηnf , η(nf+1), · · · , ηnl

)
= f

(
ηnf
)
· f
(
η(nf+1)

)
· · · f

(
ηnl
)
.

In essence, the difference between random sub-Nyquist
sampling method and pseudo-random sub-Nyquist sampling
method is the sampling instant. The sampling instant of the
former is a continuous random variable and that of the latter is
a discrete random variable. To analyze the impact of different
sampling methods on the mutual coherence, both should have
the same distribution, e.g., if the former obeys a continuous
Gaussian distribution with mean 0 and variance 1, the latter
also should obey discrete Gaussian distribution with mean 0
and variance 1. Therefore, we set the following:

f (
in

NNyquist − 1
T1) =

∫ T1
NNyquist

·(in+1)

T1
NNyquist

·in
p (η)dη (29)

ūpr = max
1≤m1 6=m1≤M

|〈Dm1,Dm2〉|

‖Dm1‖2 · ‖Dm2‖2
=

E

(∣∣∣∣∣ nl∑
n=nf

exp
{
j 4πVed
λR0

ηn

}∣∣∣∣∣
)

L2

=

NNyquist−1∑
inf =0

NNyquist−1∑
i(nf +1)

=0
· · ·

NNyquist−1∑
inl=0

∣∣∣∣∣ nl∑
n=nf

exp
{
j 4πVed
λR0

ηn

}∣∣∣∣∣ · f (ηnf , · · · , ηnl )
L2

=

NNyquist−1∑
inf =0

NNyquist−1∑
i(nf +1)

=0

· · ·

NNyquist−1∑
inl=0

∣∣∣∣∣∣
nl∑

n=nf

exp
{
j
4πVed
λR0

·

(
in

NNyquist − 1
T1

)}∣∣∣∣∣∣
f (

inf
NNyquist − 1

T1) · f (
i(nf+1)

NNyquist − 1
T1) · · · f (

inl
NNyquist − 1

T1) ·
T1

NNyquist
·

T1
NNyquist

· · ·
T1

NNyquist

)/
L2. (28)
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Substituting (29) into (28), the equation (28) is simplified
to the following:

upr

=

NNyquist−1∑
inf =0

NNyquist−1∑
i(nf +1)

=0

· · ·

NNyquist−1∑
inl=0

∣∣∣∣∣∣
nl∑

n=nf

exp
{
j
4πVed
λR0

·

(
in

NNyquist − 1
T1

)}∣∣∣∣∣∣
·

∫ T1
NNyquist

·

(
inf +1

)
T1

NNyquist
·inf

p (η)dη ·
∫ T1

NNyquist
·

(
i(nf +1)

+1
)

T1
NNyquist

·i(nf +1)

p (η)dη

· · ·

∫ T1
NNyquist

·
(
inl+1

)
T1

NNyquist
·inl

p (η)dη ·
T1

NNyquist
·

T1
NNyquist

· · ·
T1

NNyquist

/L2 (30)

For this, the sampling duration T1 is very small and the
number of Nyquist samples NNyquistis very large,∫ T1

NNyquist
·(in+1)

T1
NNyquist

·in
p (η)dη ≈ p

(
in

NNyquist − 1
· T1

)
·

T1
NNyquist

.

(31)

Then

ūpr

=

NNyquist−1∑
inf =0

NNyquist−1∑
i(nf +1)

=0

· · ·

NNyquist−1∑
inl=0

∣∣∣∣∣∣
nl∑

n=nf

exp
{
j
4πVed
λR0

·

(
in

NNyquist − 1
T1

)}∣∣∣∣∣∣
· p
(

inf
NNyquist − 1

· T1

)
· p
( i(nf+1)
NNyquist − 1

· T1

)
· · · p

(
inl

NNyquist − 1
· T1

)

·
T1

NNyquist
·

T1
NNyquist

· · ·
T1

NNyquist

/L2 (32)

Comparing equation (27) with equation (32), ūr ≈ ūpr
when the number of Nyquist samples NNyquist approaches
infinity. In reality, NNyquist is much larger; therefore, we can
assume that ūr ≈ ūpr .
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