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ABSTRACT In traditional static wireless sensor networks (WSNs), the unbalanced communication overhead
in different regions will result in premature death of some monitoring nodes. The introduction of mobile sink
in WSNs can not only balance the node traffic load, but also obtain even energy consumption of nodes, thus
effectively avoiding the ‘‘hot spot’’ problem and prolonging the network lifetime. However, the mobility of
the sink will lead to frequent changes in the aspect of network topology, which can aggravate the overhead
of the node’s reorganization in hierarchical WSNs. Therefore, it is essential to obtain the optimal trajectory
design of the mobile sink so as to improve the ability of data gathering. In this paper, a mobile sink-based path
optimization strategy inWSNs using artificial bee colony algorithm is proposed. First, the problem of overall
energy consumption in the network can be transformed into the minimization of the total hops between all
subnodes and the rendezvous points of the mobile sink. The objective function and the constraint criterion
should be established. Second, an improved artificial bee colony algorithm is proposed to solve the problem.
On the one hand, the cumulative factor is introduced to the position update of the employed bee stage to
speed up the convergence of the algorithm. On the other hand, the Cauchy mutation operator is presented
to increase the diversity of the feasible solution and enhance the global search ability of the algorithm. The
simulation results show that the proposed algorithm is better than the traditional methods in the aspects of
energy efficiency and the real-time performance of data collection.

INDEX TERMS Wireless sensor networks, mobile sink, path optimization, artificial bee colony algorithm.

I. INTRODUCTION
Wireless sensor networks (WSNs) are considered as a type of
large-scale and distributed network, which consists of mas-
sive low-cost and battery-constrained sensor nodes deployed
in the environment [1]. In traditional static wireless sensor
networks, the sensor nodes will perceive the environmental
information periodically, and transmit the collected data to
the base station or the Sink node [2]. It is worth pointing
out that all nodes are stationary and single-hop or multi-hop
data transmission mode is exploited for data delivery to the
destination. It leads to a rapid death of nodes near sink due to
excessive forwarding of data, and the emergence of ‘‘funnel
effect’’ or ‘‘hot spot’’ problem may be arisen, which will
generate energy holes and affect network lifetime [3]. Sub-
sequently, the mobile wireless sensor network is introduced
to alleviate the energy consumption of fixed nodes in data
fusion process. In such case, the length of communication
path between sensor nodes and the destination is greatly

reduced, and Sink nodes can communicate directly with sens-
ing nodes or reduce the communication hops. In addition,
mobile wireless sensor networks can connect multiple sub-
nets organically to avoid the formation of isolated area.

Originally, Ma and Yang [4] introduced a mobile data
observer, i. e. a mobile robot or vehicle with inexhaustible
power capacity, to operate as a mobile sink for data collec-
tion in wireless sensor networks, which triggered a boom
of investigation in the fields of the mobile wireless sensor
networks. Many factors should be taken into consideration in
the system architecture of mobile converging wireless sensor
networks, such as the number of nodes, the data collection
mode of the forwarding hops, Mobile path planning and
the data flow of the Perceptive nodes, and so on [5], [6].
Compared to static networks, mobile nodes acting as MDC
(mobile data collector) canmake the set of nodes at each point
of residence change at any time. Specifically, the node set
optimization and reasonable path planning can balance the
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load of nodes, thereby alleviating the problem of premature
death of some nodes. In addition, the mobility of sink node
can also reduce the number of hops for data forwarding so
as to reduce the energy consumption effectively. However,
due to the limitation of sink mobile speed and the long
period of data collection, the real-time performance will be
poor. Meanwhile, the path optimization problem of mobile
nodes should be solved according to the specific scenario and
node distribution. In this paper, we focus on the optimization
of mobile sink’s trajectory design to improve the ability of
data gathering, and propose the concept of rendezvous points
(RPs) to formulate traveling salesman problem.

The rest of this paper is organized as follows: In Section 2,
we briefly introduce related work. We describe the assump-
tions and explain the details of our method in Section 3.
In section 4, the detailed algorithm is described. At next
section, the experimentsmethod is shown and the result is dis-
cussed regarding the performance evaluation of our method.
Finally, we conclude this paper and discuss the future work
in Section 6.

II. RELATED WORKS
Route planning for sink nodes is a hot topic inmobile wireless
sensor networks [8]. In general, the methods of generating
mobile sink node can be divided into categories, such as,
random path, predictable path and controllable path.

The random mobile strategy is that the direction and speed
of sink nodes in the monitoring area are random. In this
manner, the sensor node stores the sensing data, and then
sends the collected data to the sink when the Sink node
arrives. This strategy can solve the ‘‘hot spot’’ problem to
a certain extent, because it can maximize the probability of
balancing the energy consumption of nodes in the network.

Munari et al. [9] proposed a stochastic mobile algorithm
for mobile Sink path prediction. All nodes can obtain their
own location information, and the location based routing and
forwarding strategy is applied in the communication between
mobile Sink and nearby sensors. This random mobile mode
can reduce the energy consumption of relay nodes and
extend the network lifetime. In view of the problem of
Periodic broadcasting in traditional data collection process,
Guo et al. [10] presented a stochastic compressive data col-
lection protocol to reduce the amount of non-effective data.
Some nodes can be selected as collector with a certain prob-
ability, and other common nodes will send the collected data
to collector through orientated determination. When mobile
Sink moves randomly in adjacent region, the collector can
transfer the data to the Sink node. To achieve the shortest
routes for data delivery, Chen et al. [11] proposed a con-
vergecast algorithm with Virtual Circle Combined Straight
Routing. Considering that the routes between the sink and
the sensors being reconstructed dynamically, a spanning tree
is constructed to collect data periodically on the basis of
some cluster heads located near the virtual backbone. This
method can reduce the cost of the reconstruction link and
increase the data transmission rate. However, excessive nodes

participating in the routing will increase the network load
undoubtedly. In [12], the concept of the agent node, which
locates between the mobile Sink and the source node, is intro-
duced to track the location of mobile Sink. By minimizing
the update overhead of the path, the energy consumption
of all nodes for tracking Sink nodes with random move-
ment can be reduced. Nevertheless, the uncertainty caused
by random mobility is inevitable, which result in some blind
areas and the real-time performance of data transmission
not be guaranteed. By using distributed Mobile trajectory
selection method, Lee et al. [13] established a mixed linear
programming model, which combines some factors, such
as, initial location, routing, residence time. When the resid-
ual energy of neighbor nodes is greater than average level,
the sink will interact with its neighbors to complete data
collection. In [14], a novel swarm Intelligence-based sensor
selection algorithm is presented to meets predefined quality
of service (QoS) constraint with uncontrollable sink’s mobil-
ity. In [15], a random geometric graphs (RGG) model is
introduced to deal with spatial proximity for wireless sensor
network, and conduct the randomwalk with inertia to traverse
distant neighbor nodes towards reducing area overlap as well
as accelerate the coverage time.

In fact, the mobile problem of mobile sink can be trans-
formed into a path selection problem. Compared with the ran-
dom strategy, the Sink in the fixed mobile strategy can move
along the pre set trajectory in the monitoring area, which can
be considered in accordance with the data load and commu-
nication overhead of the nodes in the region, so as to get
better benefits. In [16], the route planning problem with path
length constraint is discussed, and the heuristic scheme of
multi-path planning is proposed to extend network’s lifetime
by redundant coverage of Perceived nodes. In [17], a delay
constrained data collection method based on fixed trajectory
is proposed. According to the predetermined time sequence,
the mobile sink can access fixed position and data collection
by multi-hop manner. However, this method is only suitable
for a uniform distributed network, and the multi-hop manner
may cause energy imbalance. Han and Jeong [18] presented
theminimumWiener Index spanning treemethod for wireless
sensor networks in case of multiple mobile sinks. Multiple
mobile Sink is used to collect data to improve efficiency,
and reduce energy consumption by using the shortest path.
But the disadvantage is that the combination of multi hop
transmission and fixed trajectory will make the node near
path deplete its energy faster. From the point of view of
energy saving, the tour planning for mobile data-gathering
mechanism is proposed [19], in which All nodes send the
collected data to the mobile Sink in single hop manner.
However, in large-scale wireless sensor networks, mobile
Sink needs to access a large number of traversing points,
which will increase the time delay of data collection and
make it unsuitable for real-time aware applications. In [20],
an adaptive optimization model of stop times for low latency
data collection is introduced, of which mobile Sink moves
along the boundary of the divided square areas in the region
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for data collection. As the length of the square is less than
the single hop communication radius of the node, the mobile
path of Sink will pass through the communication range of
all nodes in the network, so that all nodes can send the data
to the mobile Sink by single hop communication. However,
due to the long path length of mobile Sink, it can easily lead
to larger data transmission delay. Therefore, the algorithm is
not suitable for applications which are more sensitive to time
delay.

As mentioned above, fixed movement can solve the prob-
lem of obstacle collision in random mobile strategy, and
achieve the balance of all nodes’ time delay for data collec-
tion. Compared with the random mobile strategy, the fixed
trajectory method has a poor effect on alleviating the ‘‘hot
spot’’ problem. This is due to the fact that once the tra-
jectory is fixed no longer, it will cause heavy burden on
the nodes on both sides of the trajectory, resulting in the
uneven energy consumption and the premature death of some
nodes. In [2], a rendezvous-based approach enabling energy-
efficient sensory data collection with mobile sinks is pro-
posed. According to the distance from the mobile sink’s trail,
the whole region is divided into two parts, and the selection
of cluster heads is executed in different ways. In addition,
the nodes with sufficient energy are chosen as Rendezvous
sensor node to keep the communication with the mobile Sink
for data forwarding. The collected data is transmitted to the
corresponding Rendezvous sensor node by cluster head, and
finally the aggregated result will be sent to the Sink node.

However, the fixed path strategy is obviously not flexible
to meet the real-time requirement of sensor networks. There-
fore, the controllable mobile strategy [21] is proposed. In this
mode, the Sink node can determine the moving direction and
location of the next step according to the real time situation of
the network and the timely feedback from the sensor nodes,
and adjust the moving path and speed of the node to ensure
the path optimization. In 2011, Zhao and Yang [22] proposed
a data gathering algorithm with load balanced clustering,
which mainly contribute to extend the network lifetime and
improve data collection delay. All nodes in the network are
divided into three layers: the lowest level is the ordinary
node layer, the cluster head nodes are distributed in the
middle layer, and the SenCar data collector is situated at the
top level. There must be at least one cluster head node in
its one hop range to ensure the single hop transmission of
data, and mobile Sink uses multi-hop MIMO (multiple-input
and multiple-output) to select traversal points in each clus-
ter for mobile data collection. Salarian et al. [8] presented a
weighted rendezvous planning protocol for mobile wireless
sensor networks. By defining the Rendezvous Point (RP) as
the final traversal position of the Sink, the selection of RPs
is based on the weight with the maximum cost to reduce
the load of the relay node in the multi hop transmission.
When RPs is determined, the traveling salesman algorithm
is exploited to calculate the shortest path, which can traverse
all RPs and achieve the purpose of reducing data transmission
delay.

In order to ensure the relative equilibrium of the energy
consumption among the nodes, an energy-aware sink reloca-
tion method is proposed [23], in which the sensor nodes are
divided into hierarchies and the data direction of the relay
nodes is determined according to the residual energy. In [24],
an intelligent mobile data gathering scheme is presented
to implement dynamical changes of data gathering tour of
cluster’s neighbor information table (NIT). And the mobile
data collector decides to choose the optimal path to traverse
between cluster heads based on the NIT information. In [25],
the problem of mobile sink’s data gathering is formulated
as general random walks, and a Markovian random-walk
movement strategy is proposed for mobile collectors to move
over a graph.

During the process of data collection, the primary goal of
using the controllable mobile strategy is to improve the data
collection rate, to balance the network energy consumption
and to ensure the real-time data transmission. In general,
the controllable mobile strategy is relatively flexible in aspect
of path planning, but also more complex and challenging.
Therefore, how to design the mobile trajectory to improve the
performance of the network is particularly important.

III. SYSTEM MODEL AND PROBLEM DESCRIPTION
A. MODEL ANALYSIS
For simplicity, we assumed that the sensor nodes are ran-
domly deployed in the square area to form a self-organizing
network topology to meet the following conditions: (1) all
sensor nodes are stationary and have unique identities. The
sink node is capable of mobility, and the direction and speed
of its movement can be regulated according to the settings.
In addition, the moving process remains at a constant speed;
(2) all sensor nodes are provided with same communication
radius r and initial energy E0; (3) some nodes are selected
as cluster heads, which will be traversed in turn by mobile
sink node in each round; (4) When the mobile sink node
moves to the cluster head’s position, the member nodes in
the communication range will send the collected data to the
sink in multi hop manner with the optimal route; (5) The data
collection process allows a certain time delay; (6) as for the
clustering in all grids, the cluster heads are selected by the
traditional method LEACH [26].

B. PROBLEM DESCRIPTION
As shown in Figure 1, the geographical range of a cluster
marked by a dotted line, and the sink moves according to
the planned path. The RPs indicate the temporary stay set
of mobile sink for data gathering according to the optimized
path, of which the sensor nodes within the communicate
range can send the data directly to the sink. When the sink
node does not move to the communication range, the RPs can
put the data into the cache and then wait for data transmission.
This can reduce the total delay of data transmission. As shown
in Figure 1, the monitoring area is divided into grids of
uniform size with side length L(L < Rc), where Rc is the
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FIGURE 1. Data collection process with mobile sink.

communication radius for sensor nodes. LetVS represents the
RPs set, and CH is the cluster heads set, and |VS| = |CH | =
m. n sensor nodes are randomly distributed in the monitoring
area, and the number of nodes in i-th grid is Si. Accessing
each sensor node will increase the path length of mobile
Sink, which will lead to high time delay of data collection.
Therefore, the rendezvous points set model is put forward to
implement data gathering by mobile Sink’s access a series to
multi RPs. In order to reduce network energy consumption
and data transmission delay, the establishment of RPs should
take full consideration of the distribution of nodes and the
number of hops to the sink.

In this paper, the energy consumption will be estimated by
proposed model in [8]. For sending and receiving message,
the energy consumption in each round by all nodes can be
expressed as:

Etotal =
n∑
i=1

(etrk it + ereck
i
r ) (1)

where etr and erec represent the energy consumed by sending
or receiving the data of per unit, and k it and k

i
r indicate the

amounts of data being received or transmitted at node i.
Suppose that the amount of data generated by sensor node

during the process of monitoring per round is q, and the
amount of data received and forwarded by node i from other
nodes is k ir . Without considering the data fusion within,
the amount of data that the node being forwarded can be
expressed as: k it = k ir+q. If the minimum hop count between
node hi and aggregate node is hi, the energy consumption of
data transmission and the hop count can be represented as the
following relations:

n∑
i=1

k ir =
n∑
i=1

hiq (2)

As a result, the overall energy consumption of the network
can be given as:

Etotal =
n∑
i=1

(etrk it + ereck
i
r ) =

n∑
i=1

[etr (k ir + q)+ ereck
i
r ]

= q[netr +
n∑
i=1

(etr + erec)hi] (3)

From the above analysis, it can be deduced that the overall
energy consumption of the whole network can reach mini-
mum value as well as the minimization of the sum of hops
of all nodes to RP. The number of hops is positively related
to the distance from the node to the sink. Therefore, the path
selection of the mobile sink will have an impact directly on
the overall energy consumption of the network. The network
energy consumption problem is equivalent to the Selection
and path planning of RPs.

In the traditional way, the access to every sensor node in
turn will increase the path length of the mobile Sink, and
it will lead to great delay for data collection. Owing to the
selection of the RPs, the sensor nodes can send the collected
data in advance, and the mobile sink only needs to visit
a series of RPs. It can improve the traverse efficiency of
mobile sink in the premise of ensuring that static sensor nodes
send data to destination under the condition of certain delay
constraint.

Hence, the mathematical model of minimum energy con-
sumption for data collection in mobile sink wireless sensor
networks can be summarized as follows:

f = min{
m∑
i=1

Hi × dTSP} (4)

s.t. dis(VSi,CHi) ≤ Rc, i = 1, 2, · · · ,m;

Rc ≥ 0;

εti ≤ qSi. (5)

where Hi represents the number of hops of gird i, and dTSP is
the path length of traversing the RPS in each grid by mobile
sink. In addition, represents the data Collection Rate of the
Mobile Sink, ti represents the residence time of mobile sink
during the rendezvous point VSi.

Suppose that the number of hops {h1, h2, · · · , hn} is a ran-
dom variable and obeys Poisson distribution with the expec-
tation µ and the standard deviation σ , they are independent
and identically distributed. Consequently, the sum of hops

from all child nodes to corresponding cluster heads, i.e.
n∑
i=1

hi,

which is approximately normal distribution. Assuming that

Hopt is the sum of optimal hops, the probability that
n∑
i=1

hi is

greater than Hopt can be derived from Lindburg-Levy central
limit theorem:

lim
n→∞

P{
1

σ
√
n
(
n∑
i=1

hi − nµ) ≤ λ} = 8(λ) (6)

where λ is any real number.
Using Hsum to represent the sum of all the sub nodes to

their convergent points, we have

P{Hsum > Hopt } = 1−
n∏
i=1

P{hi ≤ Hopt }

= 1−8(
Hopt − nµ
√
nσ 2

) (7)
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When P{Hsum > Hopt } is smaller, the probability of Hsum
less than Hopt is larger. At this time, the probability of the
total hops to reach the optimal number is smaller. Conversely,
when P{Hsum > Hopt } is larger, the probability of total hops
smaller thanHopt is low, which means the value ofHsum close
to the optimal value. Therefore, if Hopt−nµ

√

nσ 2
= 0, i.e. Hopt =

nµ, the total hops of the all sub nodes can obtain theminimum
value. At this point, the number of hops between the child
nodes to the RPs tends to the average path length in single
cluster, and will achieve the minimum value of total path of
traversing all RPs by mobile sink.

Therefore, the additional constraints can be expressed as

∀i, Hi ≤
1
n

n∑
i=1

li, 1 ≤ i ≤ m (8)

IV. DATA GATHERING OPTIMIZATION
A. MODEL ANALYSIS
In the ABC algorithm, the bee searching for food can be
regarded as the whole process of searching the global opti-
mal solution [27]. The feasible solution can be expressed
by the food source, and the quality of the feasible solution
is determined by the quality of the food’s source [28]. The
artificial bee colony algorithm divides bees into three cat-
egories: scouts, onlookers, and employed bees. Classically,
the bee colony initially contains only the employed bees and
the onlookers, which have the same number of populations.
Because the food source corresponds to the onlookers one
by one, the number of the three groups, including the food
source, onlookers and the employed bees, are equal as well.
The ABC algorithm can be concluded into following steps.
First of all, SN employed bees are randomly selected to search
the whole feasible area to generate initial food sources. After
that, the information of food source will be provided to all
onlookers, and those bees were observed to determine the
probability of every food source being selected based on the
received information. Then, the food source is determined
to search for by roulette method. Explicitly, the better the
quality of food source is, the greater the probability of being
selected. After the search process, the quality of the new food
source and the current one can be compared, and the better
food source will be reserved. Finally, the onlookers return
to their nests, and the employed bees go back to search for
their food sources near the optimal source’s area. The above
steps will iterate until the termination condition is satisfied,
and the optimal solution will be obtained. Once employed
bees or onlookers search for a certain number of times around
a food source and Can’t find a better new source of food,
the employed bees or onlookers corresponding to the food
source will be converted into a scout and looking for new
food sources near the hive. After that, the mutated scouts
will be turned into employed bees or onlookers to continue
searching [29].

In the initialization stage, the specific parameters includes
the number of food sources SN , the maximum cycle number
MCN , and the failed times for continuous updating of food

sources K . Let Xi = (Xi,1,Xi,2, · · · ,Xi,D) denote the loca-
tion of the individual i in the population with D being the
vector dimension of the optimization problem. The random
generation of each individual in a population can be given as

Xi,j = Xmin
j + randi,j(Xmax

j − Xmin
j ) (9)

where i is the sequence number of the individual being ini-
tialized, j is the random value with the array of {1, 2, · · · ,D}.
Besides, Xmin

j and Xmax
j are the upper and lower bounds of the

entire search space, respectively. randi,j represents a random
number within the range of (0, 1).

After the initialization of the individuals being complete,
their fitness should be determined as follows.

fiti =


1

1+ f (Xi)
, if (f (Xi) ≥ 0)

1+ abs(f (Xi)), otherwise
(10)

where fiti is the fitness value of the individual, and f (Xi) is
the function value of Xi relative to the optimization problem.

In this paper, the objective of the problem is to find the opti-
mum value, namely, the smaller the function value is, and the
better the fitness value will be. Since all employed bees have
a unique individual and try to find a better individual around
the individual, each new individual has only one dimension
different from the original individual. Then, the population
updating can be estimated by

Vi,j = Xi,j + φi,j(Xi,j − Xk,j) (11)

where Vi,j represents the new value of the individual i with
j-th dimension. k is a random value within the range of
{1, 2, · · · , SN }, and k 6= i. Besides, φi,j is a random real
number between [−1, 1].
Next, we need to determine the fitness of the new indi-

vidual and compare with the original individual. If the new
generated individual is provided with higher fitness, replace
the original individual with the new on and record the counter
w(i) with the value of zero. Otherwise, the original indi-
vidual will be reserved and execute w(i) + 1. After all the
employed bees completed their search task, the individual
related information will be shared by all of them and entered
the onlookers stage. In the latter stage, the individual’s prob-
ability of evolution will be estimated according to the fitness
of the individual, and then the onlookers will choose the
individuals based on Roulette method for further exploration.
The individual’s probability can be estimated by

pi = fiti/
SN∑
i=1

fiti (12)

It can be deduced that the higher the fitness of an indi-
vidual, the greater the probability of being selected will be.
Each scout will fly to the individual being chosen and use the
Eq. (9) to generate a new individual. Similarly to the stage
of employed bees, the fitness of Vi and Xi will be compared.
If Vi > Xi, replace the original individual with the new on
and rewrite the counter w(i) with 0. Otherwise, the original
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individual can be reserved and execute w(i) + 1. When the
search of the scouts is completed, the optimal individual can
be selected from the counter set. If w(i) > MCN , the corre-
sponding employed bee or the onlooker will be converted into
scout. Thus, the new individual will be produced, and w(i) is
reset to 0. After that, the scouts turn into the role of employed
bee or onlookers.

B. OPTIMIZATION STRATEGY
Due to the random functions being applied in location’s
update of bee groups, the basic artificial bee colony algo-
rithm is easy to fall into local optimum and the convergence
speed is limited [30]. For the optimization of nonlinear func-
tions, the convergence rate of evolutionary strategies con-
ducts slowly especially in solving some high-dimensional
optimization problems. n order to improve the convergence
speed, the specific methods include promoting the capability
of mutation, and improving the efficiency of recombination
or selection. Therefore, the speed of convergence of evolu-
tionary strategies is closely related to variation.

In most practical applications, the probability distribution
of physical quantities is either Gauss distribution or approx-
imate Gauss’s. Furthermore, the stochastic phenomena
depicted by Gauss random variables are more common
and conform to the process of cognition in human society.
According to [31], Gauss mutation has strong local search
ability and can maintain diversity of populations. When
searching for food sources, the quality of food sources is
proportional to the follow probability of the employed bees.
On this account, the Gauss distribution [32] can be discussed
in the location update stage of the algorithm. Therefore,
the Gauss mutation operator is introduced in the employment
bee stage to increase the convergence speed of the algorithm.

According to the description of Gauss distribution in the
principle of probability, if the probability density function of
random variable x is given as

Pr(x) =
1

√
2πσ

exp(−
(x − µ)2

2σ 2 ) (13)

where µ and σ denotes constants and σ > 0, then x obeys
the Gauss distribution, and x ∼ N (µ, σ 2).
If the food search by employed bees can be regarded as an

event, using di to show whether there is a better event than
the previous search result, the function Pr(di) can be defined
as follows to represent the cumulative factor about the search
result.

Pr(di) =
1

√
2πσ

exp(−
(di − µ)2

2σ 2 ) (14)

Then, the cumulative factor is introduced into the position
updating of employed bee as follows.

Vi,j = Xi,j Pr(di)+ φi,j(Xi,j − Xk,j) (15)

In this way, the convergence speed of the algorithm can be
accelerated.

In addition, in order to increase the diversity of the feasi-
ble solution and enhance the global searching ability of the
algorithm, it is necessary to tune the mutation operator prop-
erly. In general, the Cauchy distribution is easy to produce a
random number away from the original point [33]. Generally,
the peak value of Cauchy distribution is relatively small at the
origin, but the distribution is longer at both ends. Therefore,
Cauchy mutation can generate much more disturbance near
the mutated individuals and result in making the variation
range much wider [34]. If the Cauchy mutation is used to
replace the mutation of the original evolutionary strategy to
produce offspring, it means that the new solution of the muta-
tion is likely to quickly jump from the local minimum area.
To increase the diversity of the feasible solution, the Cauchy
mutation operator is adopted in the phase of scout to avoid
the local optimal solution of the algorithm.

The density function of Cauchy distribution is defined as:

C(x) =
1
π
×

γ

γ 2 + x2
, −∞ < x < +∞ (16)

If the variety of the optimized parameter exceeds the
boundary of the search space, the parameter is equal to the
boundary value. Here, the probability percent is introduced
to describe the density function parameter γ of the Cauchy
distribution quantificationally.

CQ(x) =
∫ xmax

j

xmin
j

1
π

γ

γ 2 + x2
dx =

1
π
arctan

x
γ

∣∣∣∣xmax
j

xmin
j

(17)

where Xmin
j and Xmax

j represents the upper and lower bounds
of the entire search space, respectively.

Therefore, the probability density function parameter of
Cauchy distribution can be calculated as:

γ =
xmax
j − xmin

j

2 tan[πCQ(x)2 ]
(18)

As the global optimal fitness function value is in the latest
N0 iteration, if the absolute value of the change is less than
the threshold value, then the mutation operations can be per-
formed on the global optimal position in terms of the density
function of Cauchy distribution probability.

RandCQ(x) =
∫ Xi

−∞

1
π

γ

γ 2 + (x − Xgbestj )
dx (19)

where Xgbestj denotes the global optimal solution found at
present.

The location of the food source has not been updated
after Maximum cycles, and it means that the location of the
food source has fallen into local optimum. At this point,
the onlookers should abandon the food source and turn into
scout, and randomly generate a new food source position
instead of the original one. Hence, the random number gen-
erated by the above Cauchy distribution function can be
introduced into the generation of food source’s location.

Xi,j = xmin
j RandCQ(x)+ (Xmax

j − Xmin
j ) (20)
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Algorithm 1 Local Information Exchange Mechanism
Input: Population number SN ; evaluation number K ;

Maximum cycle number MCN ;
Output: The optimal individual in the current popula-

tion.
01: for i = 1 to SN
02: broadcast for adjacent nodes and place them into

neighbor nodes set NS
03: if NS 6= ∅
04: for k = 1 to |NS|
05: determine the best individual in the visual

range
06: Vi,j = Xi,j Pr(di)+ φi,j(Xi,j − Xk,j)
07: end for
08: else
09: produce new individual Vi;
10: end if
11: evaluate the fitness value Vi;
12: if fit(Vi) < fit(Xi)
13: replace Xi with Vi, and set w(i) = 0;
14: else
15: w(i)++;
16: end if
17: K ++;
18: if K = MCN
19: record the optimal solution so far
20: jump out of the outermost while loop to end

algorithm
21: end if
22: end for
23: return L(SN ,K )

The Cauchy mutation detection strategy based on the cur-
rent optimal solution can effectively avoid the randomness of
the solution, speed up the convergence speed, and improve the
accuracy of the solution. Briefly, it can not only enhance the
global searching ability of the algorithm, but also maintain
the diversity of the population.

C. ILLUSTRATION OF PROPOSED ALGORITHM
Since the artificial bee colony optimization only changes
on dimension at each time and the lack of information
exchange between bees of the same kind, there is only
one dimension between the new individual and the original
individual, which is equivalent to a limited search in the
vicinity of the original individual to search for individu-
als with better quality near the nest. After completing the
search in turn, the employed bees provide the scouts with
relevant information, including nectar content, the distance
between the food source and hive, difficulty of mining, and
so on. Then, the scouts can determine the probability of
each individual being selected according to the above infor-
mation, and selects the appropriate individual for further
search.

Algorithm 2 Pseudo-Code of Proposed MSPO-ABC Algo-
rithm

Input: Population number SN ; Maximum cycle number
MCN , Dimension of Vectors D, Lower bound and Upper
bound of each element;
Output: The optimal individuals.
01: initialize population;
02: for i = 1 to SN
03: evaluate the aggregate fitness function
04: end for;
05: while K < MCN
06: for each employed bee
07: obtain new solution using Eq. (15)
08: evaluate the fitness value of new solution
09: if fit(Xi) < fit(Vi)
10: Xi = Vi
11: end if
12: L(SN ,K )
13: end for
14: evaluate RandCQ(x) for solution Xi using Eq.

(19)
15: for each onlooker bee
16: Obtain a solution Xi based on Eq. (20)
17: end for
18: produce new solution Vi using Eq. (15)
19: evaluate fitness value of new solution
20: if fit(Xi) < fit(Vi)
21: Xi = Vi
22: else
23: K ++
24: end if
15: record the optimal solution so far
26: end while

Therefore, we implemented a local information exchange
mechanism to achieve the exchange between the employed
bees, which can be applied in both the employed bees and
onlookers. By this means, it can not only enhance the com-
munication between the same kinds of bees, but also guide
the search by using high quality individual information to
improve the search ability of the ABC algorithm. The details
of local information exchange mechanism are presented in
Algorithm 1.

The details of MSPO-ABC are presented in Algorithm 2.
In algorithm MSPO-ABC, the problem of overall energy
consumption in the network can be transformed into the
minimization of the total hops between all sub nodes and
the rendezvous points of mobile sink. The objective func-
tion and the Constraint criterion should be established. And
then, the cumulative factor is introduced to the position
update of the employed bee stage to speed up the conver-
gence of the algorithm. Furthermore, the Cauchy mutation
operator is presented to increase the diversity of the fea-
sible solution and enhance the global search ability of the
algorithm.
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TABLE 1. Simulation parameters.

V. RESULTS AND ANALYSIS
To illustrate the effectiveness and performance of the pro-
posed MSPO-ABC algorithm, we test and compare its per-
formance with a number of competing clustering design pro-
tocols, namely, Rendezvous-based Data Collection algorithm
(RDCA) [35] and Indegree-based Path Design for Mobile
Sink algorithm (IPDMS) [36]. The parameter values for these
approaches are selected in accordance with the values speci-
fied in [15] and [31], and the following simulation parameters
are used in Table 1.

First, the convergence of the algorithm is verified. Accord-
ing to the optimization procedures, the cumulative factor is
introduced to the position update of the employed bee stage
to speed up the convergence of the algorithm. Moreover,
the Cauchy mutation operator is presented to increase the
diversity of the feasible solution and enhance the global
search ability of the algorithm. Figure 2 demonstrates the
relationship between the total path length and iteration times
of MSPO-ABC and the traditional ABC algorithm. It can be
seen from the results that MSPO-ABC algorithm has obvious
improvement in aspect the accuracy and convergence speed
compared with the traditional ABC algorithm.

Figure 3 shows the comparison of lifetime with different
node’s density and the threshold of maximum hops R. The FL
is defined as the time elapsed until the first node in the net-
work depletes its energy. It can be seen from the experimental
result that FL decreases with the increase of node’s density.
In addition, when R is too large or too small, the appearance
of first died node is relatively earlier. That is because the
cluster heads as relay nodes will consumemore energy, which
increases significantly with the increase of node density.
However, when R is small, the nodes far from the RP have
to consume more energy for data delivery through single hop
mode. Moreover, the hops between the RPs and the member
nodes on the transmission path will increase as well as the
value of R, and the transmission cost will be increased and
result inmore communication energy consumption.When the

FIGURE 2. The relationship between the total path length and iteration
times.

FIGURE 3. The first node died in different node’s density.

residual energy of nodes is insufficient, more hops will be
used to send the data collected to RPs.

Figure 4 shows the time required to traverse all grids by
mobile sink per round.When the value ofR is large, the length
of Sinkmobile pathwill be shortened. This ismainly reflected
in the fact that the number of traverses on the horizontal
side is less, and its required time is reduced. In addition,
as shown in the results, the increase of Sink’s moving speed
has an obvious influence on the length of the single round
data collection cycle.

Figure 5 illustrates the data collection efficiency. The data
collection efficiency is defined as the ratio of the data col-
lected by mobile Sink to the total data generated by all sensor
nodes per round. From the results, when the R takes a larger
value, the time of Sink traversing the whole network will
be shortened, and the data collected by the node can be
completely collected by the mobile Sink. Otherwise, when
R is small, the node’s capacity is limited and it may lead to
buffer overflow. Thus, the data collection efficiency can’t be
guaranteed at a higher level.

Figure 6 shows the mean square deviation of the energy
consumption of the nodes with the running time under
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FIGURE 4. The time required to traverse all grids.

FIGURE 5. The data collection efficiency.

different node’s densities. In all cases, the average variance of
energy consumption in all cases is less than 0.3, and it demon-
strates that our algorithm can achieve better energy balance.
Comparatively, in the case of R = 2 or 3, the proposed
schemes result into more balanced energy consumption. The
reason is that the high value of R means the excessive com-
munication cost of CHs. In addition, the nodes at the edge of
the grid area will consume more energy in single hop mode.
Thus, it will have a certain impact on the balance of energy
consumption.

Next, we compared our algorithm with RDCA and IPDMS
in aspect of network lifetime, the amount of data collection
and time delay. Figure 7 shows the comparison of active
nodes in different rounds. From the results, the round of first
died node in MSPO-ABC algorithm is obviously later than
the other algorithms. That is due to employ the grid area
as the basic data collection unit of mobile Sink. In every
round of data collection process, mobile Sink only needs
to interact with less cluster heads, thus reducing the energy
consumption of the whole network. With the operation of the
network, the cluster head will be rotated, and the nodes with

FIGURE 6. The standard deviation of sensor’s residual energy.

FIGURE 7. The number of active sensor nodes.

high residual energy and less communication cost in the grid
will be possible to gain opportunities. Therefore, it will be
further beneficial to the energy balance of nodes. Because
of the limitation of cluster head selection in IPDMS, it is
likely to cause cluster heads to be distributed in a certain
area non-uniformly. Then, that is not conducive to reduce the
communication cost of the nodes at the edge of the area or far
from the cluster heads. In RDCA, the Sink’s mobile trajectory
is too fixed to fit for the changing of network topology.
Then, the performance of energy efficiency is weaker than
MSPO-ABC.

Figure 8 compares the amount of collected data by mobile
sink between different algorithms. In this experiment, the rate
of data collection of each node is 5bps. It can be seen from
the results that the amount of data in RDCA and IPDMS
increases slowly in the early stage of the network. Compara-
tively,MSPO-ABC shows a steady and rapid growth in aspect
of the amount of collected data by mobile sink, which fully
reflects the effect of mobile Sink on data collection efficiency
based on the optimal path. In addition, the growth rate of data
collection of RDCA and IPDMS began to converge earlier.
This is due to the increasing number of death nodes appearing
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FIGURE 8. The amount of data being gathered by mobile sink.

FIGURE 9. The time delay of data gathering.

in the network, which directly affects the length of time for
data gathering.

Considering that the total delay of the network is not lim-
ited, the mobile sink stays at the RPs to receive the message
and move to the next one only if all the monitoring data in the
grid are sent completely. Figure 9 demonstrates the total time
delay by different algorithms. Taking into account the differ-
ent lifecycle of each algorithm, the sampled rounds without
died node are selected in the experiment. Suppose that the
velocity of mobile sink is equal to 10m/s, and ε is 100kbit/s.
The simulation result proves that the proposed schemes result
into less time delay of data gathering. In RDCA, too much
number of nodes should be traversed directly, and the distri-
bution of RPs in the network is too dispersive to implement
the traversal of mobile sink. In IPDMS, the data collection
tour is the perimeter of the sensing area and longer path length
results in higher latency in data gathering.

VI. CONCLUSIONS
In this paper, a mobile sink-based path optimization strat-
egy in wireless sensor networks using artificial bee colony
algorithm (MSPO-ABC) is proposed. Firstly, the problem

of overall energy consumption in the network can be trans-
formed into theminimization of the total hops between all sub
nodes and the rendezvous points ofmobile sink. The objective
function and the Constraint criterion should be established.
Secondly, an improved artificial bee colony algorithm is pro-
posed to solve the problem. On the one hand, the cumulative
factor is introduced to the position update of the employed bee
stage to speed up the convergence of the algorithm. On the
other hand, the Cauchy mutation operator is presented to
increase the diversity of the feasible solution and enhance
the global search ability of the algorithm. In the next work,
we will further study the sink mobile strategy under the time
delay constraints, as well as the mobile data collection in the
multi sink environment and the cooperative communication
between nodes.
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