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ABSTRACT Vague sets, as well as intuitionistic fuzzy sets, are extensions of fuzzy sets. Based on fuzzy
sets, vague sets generalize the membership degree from a single value to an interval value. Vague sets
have a more powerful ability to process fuzzy information than fuzzy sets to some degree. In addition
as we all know, human cognition is usually a gradual process. As a result, in a given multi-granularity
space, how to characterize a vague concept and further measure its uncertainty, become a hot issue worth
studying. However, the uncertainty of vague sets in rough approximation spaces is still lacking relative
studies. Therefore, in order to more effectively excavate knowledge from vague sets, this paper focuses
on the uncertainty of vague sets and reveals its hidden rules. First, change rules of the average fuzziness
of the vague value with changing its truth membership degree and false membership degree are discussed.
Second, in rough approximation spaces, the uncertainty of vague sets, i.e., the uncertainty of average-step-
vague sets are analyzed. Then, its change rules with changing granularity are analyzed and discussed. Next,
to better approximate a vague concept, change rules of uncertainty for approximation sets of vague sets with
changing knowledge granularity are discussed. Finally, several illustration examples are listed to verify the
obtained conclusions. These rules are in accordance with human cognitive mechanisms in multi-granularity
knowledge spaces.

INDEX TERMS Vague sets, intuitionistic fuzzy sets, uncertainty, rough approximation, multi-granularity.

I. INTRODUCTION
In artificial intelligence research, granular computing (GrC)
is a new methodology for simulating human thinking and
solving complicated problems [34], [35], [46], [62]–[64].
GrC is regarded as an umbrella covering the theories, method-
ologies and techniques on granularity [69] and a powerful
tool for solving complex problems in different fields, such as
data mining, fuzzy information processing, large-scale com-
puting, cloud computing, etc. [8], [16], [17], [48]. There are
three main GrC theoretical models: fuzzy sets, rough sets and
quotient space. As an important tool for dealing with uncer-
tain and imprecise problems, fuzzy sets [65] were proposed
by Zadeh in 1965. Since then, plenty of researchers have paid
much attention to this theory and applied it to many different
fields, such as fuzzy system [51], [53]–[55], [75], [78], fuzzy
clustering [18], [19], [49], fuzzy control [6], [37], [52], [74],
fuzzy reasoning [7], [62], [66], fuzzy decision [24], [33],
[59], etc. As the generalization models of fuzzy sets,

intuitionistic fuzzy sets [2] were proposed by Atanassov
and vague sets [14] were introduced by Gau and Buehrer.
Subsequently, Bustince and Burillo pointed out that vague
sets and intuitionistic fuzzy sets are essentially the same [5].
They investigated the similarities and differences between
vague sets and intuitionistic fuzzy sets in the literature [26]
and concluded that vague sets are more universally applicable
than intuitionistic fuzzy sets to some degree. As a result, intu-
itionistic fuzzy sets and vague sets are collectively referred to
as vague sets in this paper.

Vague sets, as a typical soft computing method, have
attracted much attention and have been applied to var-
ious fields [1], [56], [57], [59], [71], [76], [77]. Applied in
decision-making, pattern recognition, knowledge discovery,
etc., research on uncertainty of vague sets has also become a
hot issue [11], [21], [25], [27], [30], [68], [72], [73]. Vague-
ness, as well as fuzziness and roughness, has been
introduced to characterize the uncertainty of vague
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concepts [22], [29], [39]. On the basis of fuzzy sets, the fuzzy
entropy was proposed to measure the uncertainty of vague
sets [23], [24] and intuitionistic fuzzy sets [21]. Based on
vague-rough sets, Feng et al. [12], [13] used the uncertainty
knowledge acquisition to measure uncertainty. Based on
the similarity among sets, Zhang et al. [72] proposed the
similarity measure of vague sets. Based on intuitionistic
fuzzy soft sets, Muthukumar and Krishnan [28] introduced
the weighted similarity measure. Moreover, a similarity
measure based on implication functions was proposed
by Zeng et al. [67]. Summing up and analyzing exist-
ing methods, Zhang et al. [71] further characterized the
uncertainty of vague sets with integral calculus method
and produced a series of concepts, i.e., fuzziness inter-
val of vague sets, average fuzziness of vague value and
a new measuring method. However, in real applications,
decision-making is usually a step-by-step process. Thus,
with the development of GrC, multi-granularity knowledge
discovery has become an important direction in the research
of artificial intelligence. The uncertainty of the decision
information systems is an important parameter for obtain-
ing a good decision-making [9], [20], [38], [40], [50], [61].
In a great deal of literatures [15], [22], [29], [31], [32], [39],
many researchers came into conclusion that how to describe
a vague concept with an approximation set in rough knowl-
edge space is the priority. Plenty of well-known researchers,
such as Skowron, Szczuka, Dutta, Nguyen, Bazan and
Polkowski, have conducted many research studies in this
field [3], [10], [36], [41]–[45], [47]. Based on these afore-
mentioned works, putting the vague sets in rough approx-
imation spaces, Zhang proposed the approximation sets of
a vague concept if there is no additional information and
focused on constructing the approximation set of a vague
set, such as the 0.5-crisp set, approximation set, step-vague
set and average-step-vague set [70]. Furthermore, the change
rules of the similarity degree between vague sets and its
approximation sets with different knowledge granularity are
summed up. On this foundation, several researchers studied
on vague sets in rough approximation spaces including uncer-
tainty. Bonikowski and Wybraniec-Skardowska [4] proposed
a new formal approach to vagueness, and many important
conditions concerning the membership relation for vague sets
were established as well. John and Amirtharaj [20] proposed
a novel similarity measure based on statistical confidence
intervals and discussed its rules in multi-granularity spaces.

However, there are still several shortcomings in current
research as follows:

(1) In data mining, it is important to understand the rules
and internal structure of a model. However, there is still few
theoretical analysis on the change rules of uncertainty of
vague sets when changing its intrinsic parameters;

(2) In real applications, decision-making is usually a step-
by-step progress and data are also accumulating. Thus, it is
necessary to excavate the change rules of uncertainty from
the perspective of changing knowledge granularity;

(3) In decision-making, how to characterize a vague con-

cept is a hot issue of great interest. There is little research
on the change rules of uncertainty for characterizing a vague
concept, as well as the uncertainty of the approximation set
in rough approximation spaces.

Thus, in order to solve these aforementioned problems,
in this paper, the main contribution are as follows:

(1) We would further study fuzziness of the vague sets and
excavate its hidden rules. It could provide a good theoretical
foundation for judging system stability in uncertain informa-
tion processing;

(2) We focus on the vague sets in rough approximation
spaces and discuss the change rules of uncertainty of vague
sets with changing knowledge granularity. The rules of uncer-
tainty with changing granularity which we excavate provide
an important basis for granularity selection and decision
making.

Many relevant preliminary concepts are reviewed briefly
and presented in Section 2. In Section 3, change rules of
average fuzziness of the vague value with changing its truth
membership degree and false membership degree are dis-
cussed and proved. Examples are cited to verify these rules.
In Section 4, the uncertainty of vague sets in rough approx-
imation spaces is established and discussed. Furthermore,
with changing knowledge granularity, change rules of uncer-
tainty of average-step-vague sets and change rules of uncer-
tainty for approximation sets of vague sets are found and
proved.

II. PRELIMINARIES
In order to better present the context of this paper, many
preliminary concepts, definitions and results related to vague
sets and uncertainty measure are reviewed as follows.
Definition 1 (Fuzzy Set [60], [65], [66]):Given a mapping

in a universe of discourse U ,

µA : U → [0, 1] ,

x 7→ µA (x) ,

where U = {x1, x2, ..., xn}, A = {〈x, µA (x)〉 |x ∈ U }
is called a fuzzy set in U , and µA (x) is called a
membership function of A. The membership degree
µA (x) (0 ≤ µA (x) ≤ 1) denotes the degree of the element
belonging to the fuzzy set A.
Definition 2 (Vague Set [14]): A vague set V in a universe

of discourse U is characterized by a truth membership func-
tion tV (x) and a false membership function fV (x). tV (x)
is a lower bound on the grade of membership of x derived
from the evidence for x, and fV (x) is a lower bound on
the negation of x derived from the evidence against x. Both
tV (x) and fV (x) associate a real number in the interval [0, 1]
with each point in x, where tV (x) + fV (x) ≤ 1. That is,
tV (x) : U → [0, 1] and fV (x) : U → [0, 1]. When U is
continuous, a vague set V can be represented by

V =
∫
U

[tV (x) , 1− fV (x)]
/
xdx.
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When U is discrete, a vague set V can be represented by

V =
n∑
i=1

[tV (xi) , 1− fV (xi)]
/
xi.

Here, [tV (x) , 1− fV (x)] denotes a vague value of x, where
tV (x) ≤ µV (x) ≤ 1 − fV (x). Actually, the fuzzy set is a
special vague set (that is, tV (x) = 1− fV (x)), i.e., if a vague
value interval [tV (x) , 1− fV (x)] becomes a single point set,
the vague set will degenerate into a fuzzy set.
Definition 3 (Intuitionistic Fuzzy Set [2]):An intuitionistic

fuzzy set I = {〈x, µI (x) , vI (x)〉 |x ∈ U } in a universe of
discourse U is characterized by a membership function, µI ,
and a non-membership function, vI , as follows, µI : U →
[0, 1], vI : U → [0, 1] and 0 ≤ µI + vI ≤ 1.
Definition 4 [58]: Given an information system S =

(U ,A), where U = {x1, x2, ..., xn}, A is an attribute set.
Let R be a subset of A(R ⊆ A). For any vague set V =
{[tV (x) , 1− fV (x)] |x ∈ U } in a universe of discourse U ,
and a pair of parameters (α, β) (0 ≤ β < α ≤ 1), the upper
approximation set and lower approximation set of the vague
set are defined as follows:

R(α,β) (V ) = {x ∈ U |tV (x) ≥ α },

R
(α,β)

(V ) = {x ∈ U |1− fV (x) > β }.

The discourse U is divided into three disjoint regions as
follows:

POS(α,β)R (V ) = {x ∈ U |tV (x) ≥ α },

BND(α,β)R (V ) = {x ∈ U |tV (x) < α ∧ 1− fV (x) > β },

NEG(α,β)R (V ) = {x ∈ U |1− fV (x) ≤ β }.

Definition 5 (Step-Vague Set [70]): Let V be a vague set
on U ; R be an equivalence relation on U and U

/
R =

{X1,X2, ...,Xm}. If for any x ∈ X1, [tV (x) , 1− fV (x)] =
[t1, 1− f1] is always satisfied, and for any x ∈ X2, [tV (x) ,
1− fV (x)] = [t2, 1− f2] always is satisfied, ..., and for any
x ∈ Xm, [tV (x) , 1− fV (x)] = [tm, 1− fm] is held also,
then the vague set V is called a step-vague set on U

/
R,

and denoted as VJ , where 0 ≤ ti ≤ 1, 0 ≤ fi ≤ 1 and
ti + fi ≤ 1 (i = 1, 2, ...,m).
Definition 6 (Average-Step-Vague Set [70]): Let V be a

vague set onU ,R be an equivalence relation onU andU/R =
{[x]R|x ∈ U}. For any x(x ∈ U ).

V J (x) =

[∑
y∈[x]R

tV (y)

|[x]R|
, 1−

∑
y∈[x]R

fV (y)

|[x]R|

]
.

Then the vague set V J is called average-step-vague set in the
approximation space (U ,R).
Definition 7 (Average Fuzziness of Vague Value [71]): Let

[tV (x) , 1− fV (x)] be a vague value of x (x ∈ U), the aver-
age fuzziness of x is defined as follows,

HV (x)

=
4

1−fV (x)−tV (x)

∫ 1−fV (x)

tV (x)
µV (x) [1−µV (x)]dµV (x).

If the discourse U is discrete, the average fuzziness of vague
set V is defined as follows:

HV (U) =
1
|U |

|U |∑
i=1

HV (xi).

If the discourseU is continuous in an interval [a, b], the aver-
age fuzziness of the vague set V is defined as follows:

HV (U) =
1

b− a

∫ b

a
HV (x)dx.

Definition 8 (Containment [26]): A vague set V1 is con-
tained in another vague set V2, i.e., V1 ⊆ V2, if and only if
tV1 (x) ≤ tV2 (x) and 1− fV1 (x) ≤ 1− fV2 (x) for any point x
in U .
Definition 9 (Intersection [26]): The union of two vague

sets V1 and V2 is a vague set V3, written as V3 = V1 ∪
V2, whose truth membership and false membership func-
tions are related to those of V1 and V2, that is, tV3 (x) =
max

{
tV1 (x) , tV2 (x)

}
and fV3 (x) = min

{
fV1 (x) , fV2 (x)

}
.

Definition 10 (Union [26]): The intersection of two vague
sets V1 and V2 is a vague set V3, written as V3 = V1 ∩
V2, whose truth membership and false membership func-
tions are related to those of V1 and V2, that is, tV3 (x) =
min

{
tV1 (x) , tV2 (x)

}
and fV3 (x) = max

{
fV1 (x) , fV2 (x)

}
.

Definition 11 (Complement [26]): The complement of a
vague set V is denoted by∼ V and∼ V is defined as follow:
for any point x in a universe of discourse U , t∼V (x) = fV (x)
and f∼V (x) = tV (x).

III. CHANGE RULES OF UNCERTAINTY OF
A VAGUE VALUE
Uncertainty is an important characteristic of vague sets, and
many researchers have focused on how to measure uncer-
tainty of vague sets [11], [24], [25], [27], [29], [68]. Compar-
ing with existing methods, Zhang et al. [71] proposed a new
method for measuring fuzziness of vague sets, which was
named the average fuzziness of a vague value. Furthermore,
exploring properties of average fuzziness is also an essential
study. In this section, change rules of an average fuzziness of
the vague value with changing truth membership degree and
false membership degree are discussed respectively.

Let V be a vague set in a universe of discourse U ,
[tV (x1) , 1− fV (x1)] be a vague value of x1 (x1 ∈ U) and
[tV (x2) , 1− fV (x2)] be a vague value of x2 (x2 ∈ U).
According to Definition 7, for any x(x ∈ V ), the average
fuzziness of x is shown as follows:

HV (x)

=
4

1− fV (x)−tV (x)

∫ 1−fV (x)

tV (x)
µV (x) [1−µV (x)]dµV (x)

= 2 (1− fV (x))+ 2tV (x)−
4
3
(1− fV (x))2 −

4
3
t2V (x)

−
4
3
tV (x) (1− fV (x)). (1)

Next, the size of HV (x1)−HV (x2) would be discussed in
the following situations:
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Case 1: tV (x1) = tV (x2) = t and 1−fV (x1) ≥ 1−fV (x2).
Thus, we could obtain

HV (x1)− HV (x2)

= 2 (1−fV (x1))−
4
3
(1− fV (x1))2 −

4
3
t (1− fV (x1))

−

[
2 (1−fV (x2))−

4
3
(1−fV (x2))2−

4
3
t (1− fV (x2))

]
.

(2)

Suppose 1 − fV (x) is an independent variable and
Y [1− fV (x)] = − 4

3 (1− fV (x))
2
+

(
2− 4

3 t
)
(1− fV (x))

is a dependent variable. Then HV (x1) − HV (x2) =
Y [1− fV (x1)]− Y [1− fV (x2)].
Therefore, we just need to discuss the variation trend

of Y [1− fV (x)] when 1 − fV (x) increases. Additionally,

1 − fV (x0) = −
−

(
2− 4

3 t
)

2×
(
−

4
3

) = − 1
2 t +

3
4 . In other words,

if 1− fV (x) ≥ − 1
2 t +

3
4 , Y [1− fV (x)] would decrease with

increasing 1−fV (x), and 1−fV (x) < − 1
2 t+

3
4 , Y [1− fV (x)]

would increase with increasing 1− fV (x).

1) When t ≥ 1
2 , 1 − fV (x0) = − 1

2 t +
3
4 ≤

1
2 . Thus,

we can obtain 1 − fV (x1) ≥ 1 − fV (x2) ≥ t ≥ 1
2 ≥

1−fV (x0). ThenHV (x1) ≤ HV (x2) is obtained. Every
case is illustrated in Fig 1.
In order to verify the above conclusion, Example 1 is
shown as follows:
Example 1: Let U = {x1, x2, x3, x4, x5, x6, x7, x8, x9,
x10}, and V be a vague set in a universe of discourseU :

V

=
[0.1, 0.6]

x1
+

[0.1, 0.7]
x2

+
[0.2, 0.4]

x3
+

[0.2, 0.6]
x4

+
[0.3, 0.4]

x5
+
[0.3, 0.45]

x6
+
[0.3, 0.6]

x7
+
[0.3, 0.7]

x8

+
[0.3, 0.9]

x9
+

[0.4, 0.6]
x10

+
[0.4, 0.8]

x11
+

[0.4, 0.9]
x12

+
[0.7, 0.8]

x13
+
[0.7, 0.9]

x14
+

[0.8, 0.9]
x15

.

For [0.7,0.8]
x13

and [0.7,0.9]
x14

, according to Definition 7,
we have

HV (x13) ≈ 0.7467, HV (x14) ≈ 0.6267.

A fact is drawn that tV (x13) = tV (x14) = 0.7 > 1
2 ,

1− fV (x14) < 1− fV (x13) and HV (x14) < HV (x13).
This fact validates the conclusion.

2) When t < 1
2 , 1 − fV (x0) = − 1

2 t +
3
4 > 1

2 . Thus,
if 1

2 ≥ 1 − fV (x1) ≥ 1 − fV (x2) and 1 − fV (x0) ≥
1− fV (x1) ≥ 1− fV (x2) are constant, then HV (x1) ≥
HV (x2) is obtained.
(continued) Example 1. For [0.3,0.4]

x5
and [0.3,0.45]

x6
,

we have

HV (x5) ≈ 0.9067, HV (x6) = 0.93.

A fact is drawn that tV (x5) = tV (x6) = 0.3 < 1
2 ,

1
2 > 1− fV (x6) > 1− fV (x5) and HV (x6) > HV (x5).
This fact validates the conclusion.

3) When t < 1
2 , because t ≥ 0 is constant, 1 − fV (x0) =

−
1
2 t +

3
4 ≤

3
4 . Thus, if 1 − fV (x1) ≥ 1 − fV (x2) ≥ 3

4
and 1−fV (x1) ≥ 1−fV (x2) ≥ 1−fV (x0) are constant,
then HV (x1) ≤ HV (x2) is obtained.
(continued) Example 1. For [0.4,0.8]

x11
and [0.4,0.9]

x12
,

we have

HV (x11) ≈ 0.9067, HV (x12) ≈ 0.8267.

A fact is drawn that tV (x11) = tV (x12) = 0.4 < 1
2 , 1−

fV (x12) > 1− fV (x11) > 3
4 and HV (x12) < HV (x11).

This fact validates the conclusion.
4) According to above three conditions, when t < 1

2 and
3
4 > 1−fV (x1) ≥ 1−fV (x2) > 1

2 , the size relationship
between HV (x1) and HV (x2) is uncertain.
(continued) Example 1.
• For [0.1,0.6]

x1
and [0.1,0.7]

x2
, we have

HV (x1) ≈ 0.8267, HV (x2) = 0.84.

A fact is drawn that tV (x1) = tV (x2) = 0.1 < 1
2 ,

1
2 < 1− fV (x1) < 1− fV (x2) < 3

4 and HV (x1) <
HV (x2).

• For [0.3,0.6]
x7

and [0.3,0.7]
x8

, we have

HV (x7) = 0.96, HV (x8) ≈ 0.9467.

A fact is drawn that tV (x7) = tV (x8) < 1
2 ,

1
2 < 1−

fV (x7) < 1− fV (x8) < 3
4 andHV (x7) > HV (x8).

In conclusion, when tV (y) = tV (z) < 1
2 and 1

2 < 1 −
fV (y) ≤ 1− fV (z) < 3

4 (y, z ∈ U), the size relationship
between HV (y) and HV (z) is uncertain.

Case 2: 1− fV (x1) = 1− fV (x2) = f and tV (x1) ≥ tV (x2)
Similarly, suppose tV (x) is an independent variable and

Y [tV (x)] = − 4
3 t

2
V (x) +

(
2− 4

3 f
)
tV (x) is a dependent

variable. ThenHV (x1)−HV (x2) = Y [tV (x1)]−Y [tV (x2)].

And tV (x0) = −
−

(
2− 4

3 f
)

2×
(
−

4
3

) = − 1
2 f +

3
4 . In other words,

if tV (x) < − 1
2 f +

3
4 , Y [tV (x)] would increase with increas-

ing tV (x), and if tV (x) ≥ − 1
2 f +

3
4 , Y [tV (x)] would decrease

with increasing tV (x).
1) When f < 1

2 , tV (x0) = −
1
2 f +

3
4 >

1
2 . Thus, we can

obtain tV (x0) > 1
2 > f ≥ tV (x1) ≥ tV (x2). Then

HV (x1) ≥ HV (x2) is obtained.
(continued) Example 1. For [0.2,0.4]

x3
and [0.3,0.4]

x5
,

we have

HV (x3) ≈ 0.8267, HV (x5) ≈ 0.9067.

A fact is drawn that 1 − fV (x3) = 1 − fV (x5) < 1
2 ,

tV (x5) > tV (x3) and HV (x5) > HV (x3). This fact
validates the conclusion.

2) When f ≥ 1
2 , tV (x0) = −

1
2 f +

3
4 ≤

1
2 . Thus if

tV (x1) ≥ tV (x2) ≥ 1
2 and tV (x1) ≥ tV (x2) ≥ tV (x0)

are constant, then HV (x1) ≤ HV (x2) is obtained.
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FIGURE 1. Various circumstances with changing [tV (x) , 1 − fV (x)].

(continued) Example 1. For [0.7,0.9]
x14

and [0.8,0.9]
x15

,
we have

HV (x14) ≈ 0.6267, HV (x15) ≈ 0.5067.

A fact is drawn that 1 − fV (x14) = 1 − fV (x15) > 1
2 ,

tV (x15) > tV (x14) > 1
2 and HV (x15) < HV (x14).

This fact validates the conclusion.
3) When f ≥ 1

2 , because f ≤ 1 is constant, tV (x0) =
−

1
2 f +

3
4 ≥

1
4 . Thus if 1

4 ≥ tV (x1) ≥ tV (x2)
and tV (x0) ≥ tV (x1) ≥ tV (x2) are constant, then
HV (x1) ≥ HV (x2) is obtained.
(continued) Example 1. For [0.1,0.6]

x1
and [0.2,0.6]

x4
,

we have

HV (x1) ≈ 0.8267, HV (x4) ≈ 0.8867.

A fact is drawn that 1 − fV (x1) = 1 − fV (x4) > 1
2 ,

1
2 > tV (x4) > tV (x1) and HV (x4) > HV (x1). This
fact validates the conclusion.

4) According to above three conditions, when f ≥ 1
2 and

1
2 > tV (x1) ≥ tV (x2) > 1

4 , the size relationship
between HV (x1) and HV (x2) is uncertain.
(continued) Example 1.
• For [0.3,0.6]

x7
and [0.4,0.6]

x10
, we have

HV (x3) = 0.96, HV (x6) ≈ 0.9867.

A fact is drawn that 1 − fV (x7) = 1 − fV (x10) >
1
2 ,

1
4 < tV (x7) < tV (x10) < 1

2 and HV (x7) <
HV (x10).

• For [0.3,0.9]
x9

and [0.4,0.9]
x12

, we have

HV (x9) = 0.84, HV (x12) ≈ 0.8267.

A fact is drawn that 1 − fV (x9) = 1 − fV (x12) >
1
2 ,

1
4 < tV (x12) < tV (x15) < 1

2 and HV (x9) >
HV (x12).

In conclusion, when 1 − fV (y) = 1 − fV (z) ≥
1
2 and 1

4 < tV (y) ≤ tV (z) < 1
2 (y, z ∈ U),

the size relationship between HV (y) and HV (z) is
uncertain.

Note: In this section, change rules of average fuzziness of
the vague value with changing truth membership degree and
false membership degree are discussed respectively. These
conclusions provide a basis for understanding the uncertainty
structure of a vague value. These examples and diagrams
show that these aforementioned conclusions are consis-
tent with human cognition. Therefore, these conclusions
lay the foundation for further data mining based on vague
sets.

IV. UNCERTAINTY OF VAGUE SETS IN ROUGH
APPROXIMATION SPACES
Based on the view of granular computing, Zhang et al. [70]
put vague sets in rough approximation spaces and pro-
posed average-step-vague sets. In this section, with
changing knowledge granularity, change rules of uncer-
tainty for average-step-vague sets and change rules of
uncertainty for approximation sets of vague sets are
discussed.
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A. UNCERTAINTY OF AVERAGE-STEP-VAGUE SETS IN
ROUGH APPROXIMATION SPACES
In rough approximation spaces, given an equivalence relation,
vague sets would become corresponding average-step-vague
sets. Then the uncertainty of the average-step-vague sets
could be obtained as follows:
Example 2: LetU = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10,

x11, x12, x13, x14, x15}, V be a vague set in a universe of
discourse U and R1 be an equivalence relation on U .

V =
[0.1, 0.6]

x1
+

[0.2, 0.4]
x2

+
[0.2, 0.5]

x3
+

[0.2, 0.6]
x4

+
[0.2, 0.7]

x5
+

[0.3, 0.8]
x6

+
[0.4, 0.7]

x7
+

[0.5, 0.6]
x8

+
[0.5, 0.7]

x9
+

[0.5, 0.8]
x10

+
[0.6, 0.7]

x11
+

[0.6, 0.8]
x12

+
[0.6, 0.9]

x13
+

[0.7, 0.8]
x14

+
[0.8, 1]
x15

.

U/R1 = {{x1, x2} , {x3, x4, x5} , {x6, x7, x8} ,

{x9, x10, x11, x12} , {x13, x14, x15}}.

According to the Definition 6, we have

V
R1
J
(x1) = V

R1
J
(x2)

=

[
0.1+ 0.2

2
,
0.6+ 0.4

2

]
= [0.15, 0.5].

Similarly, the average-step-vague set of the vague set based
on R1 is obtained:

V
R1
J
=

[0.15, 0.5]
x1

+
[0.15, 0.5]

x2
+

[0.2, 0.6]
x3

+
[0.2, 0.6]

x4

+
[0.2, 0.6]

x5
+

[0.4, 0.7]
x6

+
[0.4, 0.7]

x7
+

[0.4, 0.7]
x8

+
[0.55, 0.75]

x9
+

[0.55, 0.75]
x10

+
[0.55, 0.75]

x11

+
[0.55, 0.75]

x12
+
[0.7, 0.9]

x13
+
[0.7, 0.9]

x14
+
[0.7, 0.9]

x15
.

Next,

H
V
R1
J
(x1) = H

V
R1
J
(x2)

=
4

0.5− 0.15

∫ 0.5

0.15
µV (x) [1− µV (x)]dµV (x)

≈ 0.8367.

Similarly,

H
V
R1
J
(x3) = H

V
R1
J
(x4) = H

V
R1
J
(x5) ≈ 0.9067,

H
V
R1
J
(x6) = H

V
R1
J
(x7) = H

V
R1
J
(x8) = 0.96,

H
V
R1
J
(x9) = H

V
R1
J
(x10) = H

V
R1
J
(x11) = H

V
R1
J
(x12)

≈ 0.8967,

H
V
R1
J
(x13) = H

V
R1
J
(x14) = H

V
R1
J
(x15) ≈ 0.6267.

Finally, the uncertainty of this average-step-vague set could
be calculated as follows:

H
V
R1
J
(U) =

1
|U |

|U |∑
i=1

H
V
R1
J
(xi)

=
1
15

(0.8367× 2+ 0.9067× 3+ 0.96× 3

+ 0.8967× 4+ 0.6267× 3)

≈ 0.8494.

Furthermore, the uncertainty of the corresponding average-
step-vague set H

V
R
J
(U) satisfies the following conditions or

properties:

1) If a vague set V degenerates into a crisp set, H
V
R
J
(U)

reaches its minimal value 0. In other words, the uncer-
tainty of a crisp set in all rough approximation spaces
is equal to 0.

2) If a vague set V degenerates into a fuzzy set, H
V
R
J
(U)

becomes an ordinary fuzziness equation.
3) In all rough approximation spaces, H

V
R
J
(U) = H

∼V
R
J

(U ) is always held, where ∼ V
R
J
is the complement set

of V
R
J
.

Proof:

1) If a vague set V degenerates into a crisp set, that
is, for any point x in U , tV (x) = 1, fV (x) = 0 or
tV (x) = 0, fV (x) = 1. In rough approximation spaces,
V
R
J
(x) = [1, 1] or V

R
J
(x) = [0, 0]. According to

Section 3, H
V
R
J
(x) = 0. Then H

V
R
J
(U) = 0 is always

held.
2) If a vague set V degenerates into a fuzzy set, that is

to say, for any point x in U , tV (x) is equal to 1 −
fV (x). The V

R
J
is also a fuzzy set. Then according to

literature [26], 2) is easy to prove.
3) V

R
J
is a vague set V in a universe of discourse U . Thus,

according to literature [26], 3) is easy to prove.

With changing knowledge granularity, vague sets corre-
sponding average-step-vague sets would change. As a result,
the uncertainty of vague sets is different in different rough
approximation spaces. Therefore, change rules of the uncer-
tainty of vague sets with changing knowledge granularity
would be discussed as follows:
Theorem 1: Let V be a vague set in a universe of discourse

U , R1 and R2 be two equivalence relations on U . If R1 ⊆ R2,
then H

V
R1
J
(U) ≥ H

V
R2
J
(U).

Proof: Suppose U
/
R1 = {X1,X2, ...,Xm} and U

/
R2

= {Y1,Y2, ...,Yk}. Because R1 ⊆ R2, U
/
R1 � U

/
R2. Thus,

for any Yi ∈ U
/
R2, ∃Xj ∈ U

/
R1, Yi ⊆ Xj. For simplicity,

we suppose there only exists one granule X1
(
X1 ∈ U

/
R1
)

which is subdivided into two finer sub-granules (the more
complicated cases can be transformed into this case; there-
fore, we do not repeat them here). Suppose X1 = Y1 ∪ Y2,
X2 = Y3, X3 = Y4, ..., Xm = Yk (k = m+ 1). Thus, we can
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obtain

H
V
R1
J
(U)− H

V
R2
J
(U)

=
1
|U |

∑
xi∈U

H
V
R1
J
(xi)−

1
|U |

∑
xi∈U

H
V
R2
J
(xi). (3)

Therefore,

|U |
[
H
V
R1
J
(U)− H

V
R2
J
(U)

]
=

∑
xi∈U

H
V
R1
J
(xi)−

∑
xi∈U

H
V
R2
J
(xi)

=

∑
xi∈X1

H
V
R1
J
(xi)+

∑
xi∈U−X1

H
V
R1
J
(xi)−

∑
xi∈Y1

H
V
R2
J
(xi)

−

∑
xi∈Y2

H
V
R2
J
(xi)−

∑
xi∈U−Y1−Y2

H
V
R2
J
(xi)

=

∑
xi∈X1

H
V
R1
J
(xi)−

∑
xi∈Y1

H
V
R2
J
(xi)−

∑
xi∈Y2

H
V
R2
J
(xi). (4)

Because V J is an average-step vague set, H
V
R
J
(x) =

H
V
R
J
([x]R).

|U |
[
H
V
R1
J
(U)− H

V
R2
J
(U)

]
= |X1|HVR1J

(X1)− |Y1|HVR2J
(Y1)− |Y2|HVR2J

(Y2). (5)

For convenience, let X1 = {x1, x2, ..., xa+b}, Y1 = {x1, x2,
. . . , xa} and Y2 = {xa+1, xa+2, ..., xa+b}. Thus, tV (X1) =
1

a+b

a+b∑
i=1

tV (xi), 1 − fV (X1) =
1

a+b

a+b∑
i=1

(1− fV (xi)),

tV (Y1) = 1
a

a∑
i=1

tV (xi), 1 − fV (Y1) = 1
a

a∑
i=1
(1− fV (xi)),

tV (Y2) = 1
b

a+b∑
i=a+1

tV (xi) and 1 − fV (Y2) = 1
b

a+b∑
i=a+1

(1− fV (xi)). According to Section 3,

HV (x) = 2 (1− fV (x))+ 2tV (x)−
4
3
(1− fV (x))2

−
4
3
t2V (x)−

4
3
tV (x) (1− fV (x)). (6)

Thus,

H
V
R1
J
(X1) = 2 (1− fV (X1))+ 2tV (X1)−

4
3
(1− fV (X1))2

−
4
3
t2
V
(X1)−

4
3
tV (X1) (1− fV (X1)), (7)

H
V
R2
J
(Y1) = 2 (1− fV (Y1))+ 2tV (Y1)−

4
3
(1− fV (Y1))2

−
4
3
t2
V
(Y1)−

4
3
tV (Y1) (1− fV (Y1)), (8)

H
V
R2
J
(Y2) = 2 (1− fV (Y2))+ 2tV (Y2)−

4
3
(1− fV (Y2))2

−
4
3
t2
V
(Y2)−

4
3
tV (Y2) (1− fV (Y2)). (9)

Therefore, |U |
[
H
V
R1
J
(U)− H

V
R2
J
(U)

]
=(a + b)H

V
R1
J
(X1)

− aH
V
R2
J
(Y1)− bHV

R2
J
(Y2) .

Because X1 = Y1 ∪ Y2, suppose
a∑
i=1
(1− fV (xi)) = A,

a+b∑
i=a+1

(1− fV (xi)) = B,
a∑
i=1

tV (xi) = G,
a+b∑
i=a+1

tV (xi) = H .

Thus,

3
4
|U |

[
H
V
R1
J
(U)− H

V
R2
J
(U)

]
=

A2 + G2
+ AG

a
+
B2 + H2

+ BH
b

−
1

a+ b

[
(A+ B)2

+ (G+ H)2 + (A+ B) (G+ H)
]

=
1

ab(a+ b)

[
b2A2 + b2G2

+ b2AG+ a2B2 + a2H2
+ a2

×BH − 2abAB− 2abGH ]. (10)

Because ab(a+ b) > 0, we can obtain,

3
4
ab(a+ b) |U |

[
H
V
R1
J
(U)− H

V
R2
J
(U)

]
= b2A2 + b2G2

+ b2AG+ a2B2 + a2H2
+ a2BH − 2ab

×AB− 2abGH

= (bA− aB)2 + (bG− aH)2 + b2AG+ a2BH ≥ 0. (11)

As such, H
V
R1
J
(U) − H

V
R2
J
(U) ≥ 0. In other words,

H
V
R1
J
(U) ≥ H

V
R2
J
(U). Hence, Theorem 1 is proven suc-

cessfully.
In order to verify Theorem 1, Example 2 is shown as

follows:
(continued) Example 2. Let R2 be an equivalence relation

on U and R1 ⊆ R2. So U
/
R1 � U

/
R2.

U
/
R2 = {{x1, x2} , {x3} , {x4, x5} , {x6, x7, x8},

{x9, x10} , {x11, x12} , {x13, x14, x15}}.

Then, the average-step-vague set of the vague set based on R2
is obtained:

V
R2
J

=
[0.15, 0.5]

x1
+

[0.15, 0.5]
x2

+
[0.2, 0.5]

x3
+

[0.2, 0.65]
x4

+
[0.2, 0.65]

x5
+

[0.4, 0.7]
x6

+
[0.4, 0.7]

x7
+

[0.4, 0.7]
x8

+
[0.5, 0.75]

x9
+

[0.5, 0.75]
x10

+
[0.6, 0.75]

x11
+

[0.6, 0.75]
x12

+
[0.7, 0.9]

x13
+

[0.7, 0.9]
x14

+
[0.7, 0.9]

x15
.

Next,

H
V
R2
J
(x1) = H

V
R2
J
(x2) ≈ 0.8367,H

V
R2
J
(x3) = 0.88,

H
V
R2
J
(x4) = H

V
R2
J
(x5) = 0.91,

H
V
R2
J
(x6) = H

V
R2
J
(x7) = H

V
R2
J
(x8) = 0.96,

H
V
R2
J
(x9) = H

V
R2
J
(x10) ≈ 0.9167,

H
V
R2
J
(x11) = H

V
R2
J
(x12) = 0.87,
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H
V
R2
J
(x13) = H

V
R2
J
(x14) = H

V
R2
J
(x15) ≈ 0.6267.

Thus, we can obtain:

H
V
R2
J
(U) =

1
|U |

|U |∑
i=1

H
V
R2
J
(xi)

=
1
15
(0.8367× 2+ 0.88+ 0.91× 2+ 0.96

× 3+ 0.9167× 2+ 0.87× 2+ 0.6267× 3)

≈ 0.8471.

According to Example 2, when R1 ⊆ R2, HVR1
J
(U) >

H
V
R2
J
(U) holds. The example validates Theorem 1.

In this paper, equivalence relations corresponding to the
finest rough approximation spaces and the coarsest rough
approximation spaces in an information system are denoted
by RO and RU , respectively. Then, we have the following
corollaries,
Corollary 1: Let V be a vague set in a universe of dis-

course U and R be an equivalence relation on U . Then
H
V
R
J
(U) ≥ H

V
RO
J
(U) holds.

Proof: From Theorem 1, Corollary 2 is easy to prove.

Corollary 2: Let V be a vague set in a universe of
discourse U , R be an equivalence relation on U . Then
H
V
R
J
(U) ≥ H

V
RU
J
(U) holds.

Proof: From Theorem 1, Corollary 2 is easy to prove.

In order to verify Corollary 1 and Corollary 2, Example 2
is shown as follows:

(continued) Example 2. Let RO be an equivalence relation
corresponding the finest rough approximation spaces on U
and let RU be an equivalence relation corresponding the
coarsest rough approximation spaces on U . Thus,

U
/
RU � U

/
R1 � U

/
R2 � U

/
RO.

U
/
RU = {{x1} , {x2} , {x3} , {x4} , {x5} , {x6} , {x7} , {x8} ,

{x9} , {x10} , {x11} , {x12} , {x13} , {x14} , {x15}} ,

U
/
RU = {{x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12,

x13, x14, x15}}

Then, we have V
RO
J
= V .

H
V
RO
J
(x1) ≈ 0.8267,H

V
RO
J
(x2) ≈ 0.8267,

H
V
RO
J
(x3) = 0.88,H

V
RO
J
(x4) ≈ 0.8867,

H
V
RO
J
(x5) ≈ 0.9067,H

V
RO
J
(x6) ≈ 0.9067,

H
V
RO
J
(x7) = 0.96,H

V
RO
J
(x8) ≈ 0.9867,

H
V
RO
J
(x9) ≈ 0.9467,H

V
RO
J
(x10) = 0.88,

H
V
RO
J
(x11) ≈ 0.9067,H

V
RO
J
(x12) ≈ 0.8267,

H
V
RO
J
(x13) ≈ 0.72,H

V
RO
J
(x14) ≈ 0.63,

H
V
RO
J
(x15) ≈ 0.3533.

H
V
RO
J
(U) =

1
|U |

|U |∑
i=1

H
V
Ro
J
(xi) ≈ 0.8296.

Additionally,

V
RU
J

=
[0.42, 0.7067]

x1
+

[0.42, 0.7067]
x2

+
[0.42, 0.7067]

x3

+
[0.42, 0.7067]

x4
+

[0.42, 0.7067]
x5

+
[0.42, 0.7067]

x6

+
[0.42, 0.7067]

x7
+

[0.42, 0.7067]
x8

+
[0.42, 0.7067]

x9

+
[0.42, 0.7067]

x10
+

[0.42, 0.7067]
x11

+
[0.42, 0.7067]

x12

+
[0.42, 0.7067]

x13
+

[0.42, 0.7067]
x14

+
[0.42, 0.7067]

x15
.

H
V
RU
J
(U)

=
1
|U |

|U |∑
i=1

H
V
Ro
J
(xi) ≈ 9565.

According to Example 2, H
V
RU
J
(U) > H

V
R1
J
(U) >

H
V
R2
J
(U) > H

V
Ro
J
(U). The example validates Corollary 1

and Corollary 2.
In this section, a conclusion is excavated that the finer

the granularity, the smaller uncertainty. On the contrary,
the coarser the granularity, the larger uncertainty. In other
words, the more information we obtain, the more certainty
the information system would be.

B. UNCERTAINTY OF APPROXIMATION SET IN ROUGH
APPROXIMATION SPACES
In rough approximation spaces, given a universe, it is usually
necessary to make a decision through approximating a target
concept. As a result, change rules of the uncertainty for upper
approximation sets of vague sets with changing knowledge
granularity are discussed as follows.

Suppose U
/
R1 = {X1,X2, ...,Xm}, U

/
R2 =

{Y1,Y2, ..., Yk}. Because R1 ⊆ R2, U
/
R1 � U

/
R2 holds.

Thus, for any Yi ∈ U
/
R2, ∃Xj ∈ U

/
R1, Yi ⊆ Xj

holds. For simplicity, we suppose there only exists one
granule X1

(
X1 ∈ U

/
R1
)
which is subdivided into two finer

sub-granules (the more complicated cases can be transformed
into this case. Therefore, we do not repeat them here).
Suppose X1 = Y1 ∪ Y2, X2 = Y3, X3 = Y4, ..., Xm =
Yk (k = m+ 1).
There is

H
(
R(α,β)R1

(V )
)
=H

(
POS(α,β)R1

(V )
)

=
1∣∣∣POS(α,β)R1

(V )
∣∣∣

∑
x∈POS(α,β)R1

(V )

H (x). (12)
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For convenience, let X1 = {x1, x2, ..., xa+b}, Y1 = {x1, x2,
..., xa} and Y2 = {xa+1, xa+2, ..., xa+b}. Thus, tV (X1) =
1

a+b

a+b∑
i=1

tV (xi), 1 − fV (X1) =
1

a+b

a+b∑
i=1

(1− fV (xi)),

tV (Y1) =
1
a

a∑
i=1

tV (xi), 1 − fV (Y1) =
1
a

a∑
i=1

(1− fV (xi)), tV (Y2) = 1
b

a+b∑
i=a+1

tV (xi) and 1 − fV (Y2) =

1
b

a+b∑
i=a+1

(1− fV (xi)). Next we discuss as follows:

Case 1: If tV (X1) = 1 − fV (X1) = 1, then tV (Y1) =
1 − fV (Y1) = 1 and tV (Y2) = 1 − fV (Y2) = 1. That
is, X1 ⊆ POSR1 (V ) ⊆ POS(α,β)

R1
(V ), Y1 ⊆ POSR1 (V ) ⊆

POS(α,β)
R1

(V ) and Y2 ⊆ POSR1 (V ) ⊆ POS(α,β)
R1

(V ). We eas-

ily have H
(
R(α,β)R1

(V )
)
= H

(
R(α,β)R2

(V )
)
.

Case 2: If tV (X1) = 1 − fV (X1) = 0, that is, X1 ⊆
NEGR1 (V ). All of the finer sub-granules are in NEGR2 (V ).
It does not have effect on H

(
R(α,β)R1

(V )
)
.

Case 3: If α > tV (X1) > 0, that is, X1 ⊆ BND(α,β)
R1

(V ) or

X1 ⊆ NEG(α,β)
R1

(V ). Suppose
∣∣∣R(α,β)R1

(V )
∣∣∣ = c, tV (Y2) ≥ α

and
∣∣∣R(α,β)R2

(V )
∣∣∣ = c+ |Y2|. Then

H
(
R(α,β)R1

(V )
)
=

1∣∣∣POS(α,β)R1
(V )

∣∣∣
∑

x∈POS(α,β)R1
(V )

H (x)

=
1
c

∑
x∈POS(α,β)R1

(V )

H (x) (13)

and

H
(
R(α,β)R2

(V )
)

=
1∣∣∣POS(α,β)R2

(V )
∣∣∣ [

∑
x∈POS(α,β)R2

(V )−Y2

H (x)+
∑
x∈Y2

H (x)]

=
1

c+ b
[

∑
x∈POS(α,β)R1

(V )−Y2

H (x)+
4b

1− fV (Y2)− tV (Y2)

×

∫ 1−fV (Y2)

tV (Y2)
µV (x) (1− µV (x)) dµV (x)]. (14)

Because POS(α,β)R2
(V ) = POS(α,β)R1

(V )+ Y2,

c (c+ b)
[
H
(
R(α,β)R1

(V )
)
− H

(
R(α,β)R2

(V )
)]

= b
∑

x∈POS(α,β)R1
(V )

H (x)− bc [2tV (Y2)+ 2 (1− fV (Y2))

−
4
3
t2
V
(Y2)−

4
3
(1− fV (Y2))2−

4
3
tV (Y2) (1−fV (Y2))

]
.

(15)

Then,

(c+ b)
b

[
H
(
R(α,β)R1

(V )
)
− H

(
R(α,β)R2

(V )
)]

=

∑
x∈POS(α,β)R1

(V )

H (x)

c
− 2tV (Y2)− 2 (1− fV (Y2))+

4
3

× t2
V
(Y2)+

4
3
(1− fV (Y2))2 +

4
3
tV (Y2) (1− fV (Y2)).

(16)

Suppose G (y) = 3
4y

2
− 2y, it is easy to know that when

y ≥ 3
4 , G (y) would increase with the increase of y. Thus,

when 1− fV (Y2) ≥ tV (Y2) ≥ α ≥ 3
4 ,

(c+ b)
b

[
H
(
R(α,β)R1

(V )
)
− H

(
R(α,β)R2

(V )
)]

≥

∑
x∈POS(α,β)R1

(V )

H (x)

c
− 2α − 2α +

4
3
α2 +

4
3
α2

+
4
3
tV (Y2) (1− fV (Y2))

≥ α − 2α − 2α +
4
3
α2 +

4
3
α2 +

4
3
α2

= 4α2 − 3α. (17)

When α ≥ 3
4 , 4α

2
− 3α ≥ 0. Thus, when α ≥ 3

4 , then

H
(
R(α,β)R1

(V )
)
≥ H

(
R(α,β)R2

(V )
)
.

Case 4: If 1 > tV (X1) ≥ α, that is, X1 ⊆ POS(α,β)
R1

(V ).

Suppose
∣∣∣R(α,β)R1

(V )
∣∣∣ = c + |X1|, tV (Y2) ≥ α and∣∣∣R(α,β)R2

(V )
∣∣∣ = c+ |Y2|. Then

H
(
R(α,β)R1

(V )
)

=
1∣∣∣POS(α,β)R1

(V )
∣∣∣ [

∑
x∈POS(α,β)R1

(V )−X1

H (x)+
∑
x∈X1

H (x)]

=
1

c+ a+ b
×

∑
x∈POS(α,β)R1

(V )−X1

H (x)

+
1

c+ a+ b
[

4 (a+ b)
1− fV (X1)− tV (X1)

×

∫ 1−fV (X1)

tV (X1)
µV (x) (1− µV (x)) dµV (x)]. (18)

H
(
R(α,β)R2

(V )
)

=
1∣∣∣POS(α,β)R2

(V )
∣∣∣ [

∑
x∈POS(α,β)R2

(V )−Y2

H (x)+
∑
x∈Y2

H (x)]

=
1

c+ b
[

∑
x∈POS(α,β)R1

(V )−Y2

H (x)+
4b

1− fV (Y2)− tV (Y2)

×

∫ 1−fV (Y2)

tV (Y2)
µV (x) (1− µV (x)) dµV (x)]. (19)
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Because X1 = Y1 ∪ Y2,

(c+ a+ b) (c+ b)
[
H
(
R(α,β)R1

(V )
)
− H

(
R(α,β)R2

(V )
)]

= ac[2tV (Y2)+ 2 (1− fV (Y2))−
4
3
t2
V
(Y2)

−
4
3
(1− fV (Y2))2 −

4
3
tV (Y2) (1− fV (Y2))

−

∑
x∈POS(α,β)R1

(V )−Y2

H (x)

c
]− (c+ b) (a+ b)

4
3

×

[
t2
V
(Y1) + (1− fV (Y1))2 + 2tV (Y1) tV (Y2)

+ 2 (1− fV (Y1)) (1− fV (Y2))+ tV (Y1) (1− fV (Y1))

+ tV (Y1) (1− fV (Y2))+ tV (Y2) (1− fV (Y1))]. (20)

Suppose G (y) = − 3
4y

2
+ 2y, it is easy to know that when

y ≥ 3
4 , G (y) would decrease with the increase of y. Suppose

(c+ a+ b) (c+ b)
[
H
(
R(α,β)R1

(V )
)
− H

(
R(α,β)R2

(V )
)]

= ac[G (tV (Y2))+ G (1− fV (Y2))−
4
3
tV (Y2)

× (1− fV (Y2))−

∑
x∈POS(α,β)R1

(V )−Y2

H (x)

c
]− A. (21)

Thus, when

∑
x∈POS(α,β)R1

(V )−Y2

H(x)

c ≥ α, and 1 − fV (Y2) ≥
tV (Y2) ≥ α ≥ 3

4 ,

(c+ a+ b) (c+ b)
[
H
(
R(α,β)R1

(V )
)
− H

(
R(α,β)R2

(V )
)]

≤ ac[G (tV (Y2))+ G (tV (Y2))−
4
3
tV (Y2) (1− fV (Y2))

−

∑
x∈POS(α,β)R1

(V )−Y2

H (x)

c
]− A

≤ ac[G (α)+ G (α)−
4
3
α2 − α]− A

= ac
(
−4α2 + 3α

)
− A

≤ ac
(
−4α2 + 3α

)
. (22)

When α ≥
3
4 , −4α

2
+ 3α ≤ 0 holds. Therefore,

H
(
R(α,β)R1

(V )
)
≤ H

(
R(α,β)R2

(V )
)
.

As a result, according to the analysis and demonstration of
Case 3 andCase 4,Theorem 2 andTheorem 3 are obviously
obtained:
Theorem 2: Let V be a vague set in a universe of discourse

U , R1 and R2 be two equivalence relations on U . Suppose
R1 ⊆ R2. If R

(α,β)
R1

(V ) ⊆ R(α,β)R2
(V ) and α ≥ 3

4 , then

H
(
R(α,β)R1

(V )
)
≥ H

(
R(α,β)R2

(V )
)
.

Theorem 3: Let V be a vague set in a universe of discourse
U , R1 and R2 be two equivalence relations on U . Suppose
R1 ⊆ R2. If R

(α,β)
R2

(V ) ⊆ R(α,β)R1
(V ) and α ≥ 3

4 , then

H
(
R(α,β)R1

(V )
)
≤ H

(
R(α,β)R2

(V )
)
.

In order to verify Theorem 2 and Theorem 3, Example 3
is shown as follows:
Example 3: LetU = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10},

V be a vague set in a universe of discourse U and R1, R2 and
R3 be two equivalence relations on U .

V =
[0.1, 0.2]

x1
+

[0.2, 0.4]
x2

+
[0.2, 0.6]

x3
+

[0.3, 0.5]
x4

+
[0.3, 0.6]

x5
+

[0.5, 0.7]
x6

+
[0.6, 0.75]

x7
+
[0.75, 0.9]

x8
+
[0.8, 0.9]

x9
+
[0.9, 1]
x10

.

U/R1 = {{x1, x2} , {x3, x4, x5} , {x6, x9} , {x7, x8, x10}} ,

U
/
R2 = {{x1, x2} , {x3, x4, x5} , {x6, x9} , {x7} , {x8, x10}} ,

U/R3 = {{x1, x2} , {x3, x4, x5} , {x6} , {x9} , {x7, x8, x10}}.

It is obvious that R1 ⊆ R2 and R1 ⊆ R3. Thus, suppose α =
0.75, we can obtain:

R(α,β)R1
(V ) =

[0.75, 0.8833]
x7

+
[0.75, 0.8833]

x8

+
[0.75, 0.8833]

x10
,

R(α,β)R2
(V ) =

[0.75, 0.875]
x8

+
[0.75, 0.875]

x10
,

R(α,β)R3
(V ) =

[0.8, 0.9]
x9

+
[0.75, 0.8833]

x7
+

[0.75, 0.8833]
x8

+
[0.75, 0.8833]

x10
.

Thus,

H
(
R(α,β)R1

(V )
)
= 0.5930,

H
(
R(α,β)R2

(V )
)
= 0.6042,

H
(
R(α,β)R3

(V )
)
= 0.5714.

When R1 ⊆ R3 and R(α,β)R1
(V ) ⊆ R(α,β)R3

(V ),

H
(
R(α,β)R1

(V )
)
> H

(
R(α,β)R3

(V )
)
. When R1 ⊆ R2 and

R(α,β)R2
(V ) ⊆ R(α,β)R1

(V ), H
(
R(α,β)R1

(V )
)
> H

(
R(α,β)R2

(V )
)
.

Therefore, the example validatesTheorem 2 andTheorem 3.
According to Theorem 2 and Theorem 3, two practical

facts could be summarized:
1) In the process of adding attributes, when the positive

region(lower approximation sets)R(α,β) (V ) increases,
its uncertainty would decrease. By contrast, when the
positive region(lower approximation sets)R(α,β) (V )
decreases, its uncertainty would increase. This conclu-
sion is consistent with real life. For example, when
people choose items, they usually choose items that
have reached the standard first. For items that cannot
be judged, they usually do not make decisions until
you know more about these attributes or they would
be refined. In the next round of decision-making, only
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the items that reach the standard will be added to the
measured items. Items that have been selected would
not be re-measured again. In other words, the ‘‘positive
region’’ will only increase instead of decreasing in
decision making. In the process of decision-making
step by step, the information system will gradually
reach to stability. Its uncertainty would be smaller and
smaller.

2) Only if α ≥ 3
4 and R(α,β)R1

(V ) ⊆ R(α,β)R2
(V ), then

H
(
R(α,β)R1

(V )
)
≥ H

(
R(α,β)R2

(V )). As an extension
model of the Pawlak rough set model, the probabilis-
tic rough set model introduces a pair of thresholds
(α, β) in order to increase tolerance for error. How-
ever, infinitely increased misclassification probability
would only make the cost of the decision become larger
and larger. And only if control the appropriate degree
of error tolerance, the uncertainty of decision results
would become smaller and smaller.

V. CONCLUSIONS
Vague sets are the further generalization of fuzzy sets, and
there are many interesting features for handling vague data.
In many application fields, how to measure the uncertainty
of vague sets is a really important issue. The uncertainty of
vague sets roots in two aspects, one is the fuzziness and the
other is hesitation degree. Zhang et al. [71] proposed a new
method for measuring fuzziness of vague sets, named average
fuzziness of vague sets.What’more, multi-granularity knowl-
edge discovery has attracted a great deal of researchers atten-
tion in this field. Putting vague sets in rough approximation
spaces, Zhang et al. [70] proposed average-step-vague sets
and discussed its hidden properties. Based on these afore-
mentioned studies, in this paper, we focus on the uncertainty
rules of vague sets in rough approximation spaces. Firstly,
change rules of average fuzziness of the vague value with
changing its truth membership degree and false membership
degree are discussed and proved. Secondly, The uncertainty
of vague sets in rough approximation spaces is established
and discussed. And then, with changing knowledge granular-
ity the change rules of uncertainty of vague sets are dicussed
and proved. Next, change rules of uncertainty for the approx-
imation set of vague sets are revealed and proved. Finally,
Some examples are presented to verify these rules. These con-
clusions may provide a theoretical basis for decision-making
in multi-granularity spaces. Furthermore, we hope this study
would contribute to the development of research on vague
sets, uncertaintymeasure andGrC.Our futureworkwill focus
on how to further excavate uncertainty of vague sets and how
to acquire more fuzzy knowledge from vague sets in rough
approximation spaces.
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