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ABSTRACT In order to solve parameters selection problem when applying recursive least square (RLS),
least mean square (LMS) or normalized LMS (NLMS) algorithms to estimate kernels of second-order
Volterra filter (SOVF), a novel adaptive gbest-guide artificial bee colony (AGABC) optimization algorithm
is used to derive kernels of Volterra, that is a type of the AGABC-SOVF prediction model with an explicit
configuration for speech signal is proposed. The AGABC algorithm modifies the solution search equation
of ABC algorithm and combines the best solution with neighborhood information at present iteration, which
not only ensures the exploration of the global optimization algorithm but also improves the exploitation.
The AGABC-SOVF model is performed to predict speech signal series of the given English phonemes,
sentences, and chaotic time series. Simulation results based on benchmark function show that AGABC
algorithm performs faster convergence in achieving higher quality solutions than original ABC and other
improvedABC algorithms. Prediction results of applying theAGABC-SOVFmodel tomulti-step predictions
for Lorenz time series reveal its stability and convergence properties. For the measured multi-frame speech
signals, prediction accuracy and length of multi-step prediction using the AGABC-SOVF model are better
than that of the ABC-SOVF model. The AGABC-SOVF model can better predict chaotic time series and the
real measured speech signal series.

INDEX TERMS Speech signal, kernel estimation, Volterra model, ABC algorithm, multi-step prediction.

I. INTRODUCTION
In real-world engineering, people often encounter a large
number of nonlinear problems. Over the last few decades,
a variety of nonlinear adaptive filters have been established.
Among them, the Volterra filter is one of the most com-
monly used models in system recognition, chaos predic-
tion, image processing, spread-spectrum communications
and other fields [1]–[10]. Jian et al. [11] proposed a method
of combining recursive least square (RLS) and least mean
square (LMS) to compensate the nonlinear and memorial
distortion of orthogonal frequency division multiplexing
(OFDM) power amplifier. Many strategies based on RLS and

LMS algorithms had been designed for system identification
of Volterra model [12]–[15]. Batista and Rui [16] combined
LMS and normalized LMS (NLMS) algorithms to update
the coefficients of the sparse-interpolated Volterra structure.
In summary, LMS, NLMS and RLS algorithms have been
widely applied in Volterra model. However, neither the con-
vergence of LMS algorithm nor that of RLS algorithm is
efficient enough, whilst the improvement of convergence rate
by NLMS algorithm is at the expense of computational com-
plexity. Besides, in the perspective of application, there are
parameters selection issues on these three algorithms, which
may cause instability problem.
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Artificial bee colony (ABC) algorithm enlightened
by the behavior of honey bees, is introduced by
Karaboga and Basturk [17], which is a stochastic optimiza-
tion algorithm. The algorithm has the advantages of good
stability, less control parameters and simple implementation.
However, ABC algorithm also existed many problems, such
as weak local search ability and easy to fall into evolutionary
stagnation. To deal with the problems of ABC algorithm,
many scholars have done various experiments and researched
on modification strategies. One of discoveries was that the
position updating equation of ABC algorithm, which can
lead to good capability on exploration at the expense of
relatively poor competence on exploitation [18]. Thus, many
modified ABC algorithms have been proposed. For example,
Gao et al. [19] introduced the differential evolution to get a
ABC/best/1 algorithm. An improved ABC algorithm named
gbest-guide ABC (GABC) inspired by Zhu and Kwong [20].
These improved ABC algorithms improve performance and
the candidate solutions generated in algorithms are very close
to the current global optimal solution, but exploitation and
exploration of ABC algorithm are still unbalanced.

Based on above analysis, an adaptive global-best ABC
(AGABC) optimization algorithm is proposed in this paper,
which represents a novel approach to Volterra filter by mod-
ifying the solution search equation. To avoid solutions trap-
ping in local optimum initially, a variable weight coefficient
and the neighbor information are introduced based on the
original search equation. Then, the candidate solutions based
on the current best solution are generated to find the global
optimal. Besides, the aim to enhance global convergence,
we add the chaotic model to initialize the population. The
AGABC algorithm was proposed by Liu et al. [21], which
demonstrated good performance. Based on this previous
work, the AGABC optimization algorithm is introduced to
second-order Volterra filter (SOVF) for solving the kernel
coefficients. We propose a novel AGABC-SOVF predic-
tion model with an explicit configuration for speech signal.
In experiments, we apply the AGABC-SOVFmodel to multi-
step prediction of speech signals. For Lorenz chaotic time
series and real measured speech signal series, simulations of
multi-step prediction employing the AGABC-SOVF model
are performed. Also, results of multi-step prediction using the
AGABC-SOVF model are compared with the ABC-SOVF
model. Then, under certain errors, prediction length compar-
isons of multi-step prediction between ABC-SOVF model
and AGABC-SOVF model are performed by using Lorenz
chaotic time series and phonetic symbol [g].

This paper is organized as follows. Section II introduces
Volterra filter model. Section III describes the original ABC
algorithm. Section IV presents the AGABC-SOVF model.
Section V shows and discusses numerical simulation results,
and finally, Section VI offers conclusions.

II. VOLTERRA FILTER MODEL
Modeling and identification tools for nonlinear systems are
often used for signal processing. One such widely utilized

modeling tool is Volterra filter. The salient features of the
second-order truncated Volterra filter are briefly described
in this section. A second-order truncated Volterra fil-
ter [22], used in modeling and analysis of nonlinear systems,
is defined as follows:

ŷ(n) = h0 +
m−1∑
i=0

h1(i; n− 1)x(n− i)

+

m−1∑
i=0

m−1∑
j=0

h2(i, j; n− 1)x(n− i)x(n− j) (1)

where x(n) and ŷ(n) are input signal and prediction output
signal at time instant n, respectively. h0 is a constant (for
simplicity, let h0 equals to 0),m is memory length of the filter.
h1(i; n− 1) and h2(i, j, n− 1) are filter kernel coefficients to
be updated at time instant n, which are linear and quadratic
coefficients, respectively. Let

H (n− 1) = [h1(0; n− 1), h1(1; n− 1),

· · · , h1(m− 1; n− 1), h2(0, 0; n− 1), h2
(0, 1; n− 1), · · · , h2(m− 1,m− 1; n− 1)]T

X (n) = [x(n), x(n− 1), · · · , x(n− (m− 1)),

x2(n), x(n)x(n− 1), · · · , x2(n− (m− 1))]T

where [·]T denotes vector transpose. So, Equation (1) can be
denoted by the following vector form

ŷ(n) = HT(n− 1)X (n). (2)

Let e(n) be a priori error signal, is desired output at time
instant. So square error at time instant can be expressed

e2(n) = (y(n)− (̂n))2. (3)

For the second-order Volterra model formulated by Equa-
tion (2), iterative equation for using standard LMS algorithm
can be expressed

H (n) = H (n− 1)+ 2µe(n)X (n), (4)

where µ is a convergence factor that controls convergence
speed and stability of LMS algorithm. To ensure convergence
of the algorithm, 0 < µ < 1/λmax, where λmax is the largest
eigenvalue of autocorrelation matrix of input signal vector
X (n) [23], [24]. So, when the largest eigenvalue is relatively
large, has to take a relatively small value, which results in
slower convergence speed.

III. CONVENTIONAL ABC ALGORITHM
ABC algorithm, which is stimulated by the foraging behavior
of bees, is a kind of swarm intelligence algorithm. In ABC
algorithm, the function extrema value required optimization
is simulated as food sources and evaluated by fitness function.
The solutions generated during the function optimization pro-
cess are modeled as bees to search within the solution space
of the function. There are three types of bees: employed bees,
onlooker bees and scout bees according to different divisions
of labor. Employed bees randomly select food sources at the
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initial stage and search neighbors based on greedy selection to
optimize their selections. Onlooker bees choose the employed
bees to follow according to the feedback information on
food sources qualities and transform into employed bees for
neighbor search. Once the selection of food source has not
been updated for certain times, employed bees will transform
into scout bees and new scout bees will continue to seek new
food sources. In forms of transformation among three types,
bees cooperated with one another to find the best food source
which represents the optimal extremum value of the function.
The detailed algorithm is as follows [25].

First, in the search space, initial food sources are generated
randomly and spread uniformly. This process can be defined
as follow:

xij = x lj + rand(0, 1) · (x
u
j − x

l
j ) (5)

where i ∈ {1, 2, · · · , SN }, SN is the total number of colony,
j ∈ {1, 2, · · · , n}, x lj and x

u
j are lower bound and upper bound

for the jth dimension, respectively.

A. EMPLOYED BEES PHASE
Each employed bee searches the neighbors of initial food
sources. A new selection of food source vij is generated
during this process and is updated in accordance with the
information provided by neighbors of its present position xij.
vij can be calculated as follow:

vij = xij + ϕij · (xij − xneighbor ) (6)

where neighbor ∈ {1, 2, · · · , SN } and j ∈ {1, 2, · · · , n} are
random numbers, and neighbor 6= i, ϕij is a random number
in the range of [−1,1] that is evenly distributed to control
the searching range. vij and xij are selected by employed bees
based on the principle of greedy selection. Compared to the
original food sources, if the new one is better, which means
fit(vij) ≥ fit(xij), xij will be replaced by vij, otherwise xij will
be retained.

B. ONLOOKER BEES PHASE
The food source shared by employed bees is selected by each
onlooker bee and the selection depends on the probability
of its fitness value, which can be expressed as following
equation:

pi =
fit(xi)∑SN
i=1 fit(xi)

(7)

where fit(xi) is the fitness value at the ith food source. For
food sources with high fitness value, there will be more
onlooker bees searching around and in this way convergence
speed of the algorithm can be improved.

C. SCOUT BEES PHASE
If a food source has not been updated after visiting a certain
times, this source will be ignored and the corresponding
employed bee will transformed into a scout bee. The scout
bees randomly select a new food source in the global scope

FIGURE 1. The relationship between cycle and ρ.

to continue the neighbor search. The generation of new food
source selection can be described as Equation (5).

IV. THE AGABC-SOVF MODEL
A. PROPOSED MODEL
ABC algorithm, popular for its simplicity, has strong robust-
ness and good operability. We can use this algorithm to solve
the Volterra kernel problem. However, the search formula
of ABC algorithm is adept at exploration but less effective
in exploitation, which means that ABC algorithm has an
excellent capability in finding the optimal extremum value of
the function in the global scope but relatively weak in seeking
the extremum of the function with higher precision in the
local scope. For this reason, we modify the solution of search
equation in the onlooker bees’ phase of ABC algorithm to
better derive the Volterra kernel.

The nonlinear single-input and single-output system can be
described as Equation (2). In the linear combination relation-
ship, the kernel coefficients of SOVF model is represented as
a vector H , which is substituted into the AGABC algorithm
by its role as a food source. In calculation process, the evalu-
ation function for each food source is defined as

F(Hi) =
1
L

L∑
t=1

(y(t)− HT
i · X (t))

2 (8)

where i = 1, 2, 3, · · · , SN , and L is the length of signal
data. The optimal predictive effect of training is to iteratively
compute the minimum value of the objective function. The
algorithm process is as follows

1) INITIAL COLONY PHASE
The SN employed bees in the whole search space are evenly
and randomly distributed to ensure diversity of solutions, and
the position of the search space equals to the food source,
corresponding to the kernel vector H of SOVF model.

2) EMPLOYED BEES PHASE
A neighbor node is randomly generated at the current food
source, then the fitness values of these two positions are
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TABLE 1. Numerical benchmark function.

TABLE 2. Performance comparisons of AGABC with other algorithms when the maximum number of iterations is 1000.

TABLE 3. Performance comparisons of AGABC with other algorithms when the maximum number of iterations is 1500.

compared. IfF(Hi) < F(Hi−1)H(), the current position is
replaced by the neighbor node, otherwise an accumulative
count NP is performed. The original search equation is writ-
ten as

Hij = Hij + ϕij · (Hij − Hneighbor ) (9)

3) ONLOOKER BEES PHASE
In this stage, a new search equation is proposed to avoid
biasing the optimal solution during initialization, which can

obtain information from the global optimum and the neigh-
bors. This new equation is inspired by a literature which has
proposed the converge-onlookers ABC (COABC) algorithm,
in which the new solution is generated based on the current
global optimal food source [26]. From simulation results of
the algorithm, it can be seen that the idea of sharing global
information is beneficial for improving exploitation perfor-
mance. The current positions of the food source are sorted
according to their fitness values. The best position is denoted
as Hbest , and a neighbor food source is randomly selected.
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FIGURE 2. Iteration convergence for ABC, GbestABC, ABC/best/1 and AGABC ALGORITHMS.

FIGURE 3. Prediction of Lorenz series using ABC-SOVF model.

The search equation can be written as

Hij = ω · Hbest + c1 · φ · (Hbest − Hij)

+ c2 · ϕ · (Hneighbor − Hij) (10)

where ω is the inertia weight that controls the impact of the
global best solution at current iteration; c1 and c2 are positive
constant parameters; φ and ϕ are uniform random numbers in
the range [−1,1], j ∈ (1, 2, · · · , n). In our proposed method,

the parameter ω is updated adaptively, which is computed by:

ω = ωmin + ρ · (ωmax − ωmin) (11)

ρ = ((− cos
cycle

max cycle
· π + 1) ·

1
2
)a (12)

where ωmin and ωmax represents the lower bound and upper
bound of the ω respectively; max cycle is the maximum num-
ber of iteration; cycle is the number of iteration. ρ changes
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FIGURE 4. Prediction of Lorenz series using AGABC-SOVF model.

FIGURE 5. Comparison of prediction errors of the two methods.

dynamically with increase of iteration, as shown in Figure 1.
The purpose of ρ is to enable space to be entirely searched,
and it can release the search method at initial step. Then,
the information from best solution and neighbor is obtained
by the above formula, which avoids stagnation around local
minima.

4) SCOUT BEES PHASE
Whether or not the value of the accumulative count NP
reaches the preset value of limit will be judged. If it exceeds,
the current food position is randomly assigned, otherwise,
the next iteration calculation is continued. The search equa-
tion can be written as

Hij = H l
j + rand(0, 1) · (H

u
j − H

l
j ) (13)

5) JUDGEMENT
In multiple iterations of the AGABC algorithm, each iteration
needs to determine whether the current number of steps is less
than or equal to a preset maximum number of iterations or a
minimum error requirement. If it meets requirements, the out-
put vector H is terminated; otherwise, the next calculation is
continued. The optimal solution of the kernel coefficient of
the Volterra model is shown in the following formula:

Hbest = argmin1<i<SN [F(Hij)] (14)

B. CHAOS INITIALIZATION
Population initialization is an indispensable and vital part of
the bionic evolutionary algorithm. It not only has a signifi-
cant impact on convergence speed of the algorithm, but also
imposes certain constraints on the quality of the final solution
to the problem. In traditional ABC algorithm, initialization
of the honeybee population is mainly achieved through the
use of uniformly distributed random sequence generated by
the random function. Because the generated random sequence
presents periodic cyclic repetition which causes a risk of
degradation in individual diversity of the population, this
method of random initialization reveals great limitations.
It has been proven in the literature that chaotic time series
with its unique characteristics have significant improvements
over random series [27]. Therefore, chaotic series can be
used to promote diversification of individual populations
to further enhance convergence rate of the algorithm. The
chaotic map chi is generated by the following calculation
equation:

chi+1 = 4 · chi · (1− chi), 1 ≤ K (15)

where K is the length of chaotic series, ch0 ∈ (0, 1) is
a random number. Then chi will replace the rand(0,1) in
Equation (13).

V. PERFORMANCE EVALUATION OF THE
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FIGURE 6. Predictive length comparison of multi-step prediction for phonetic symbol [g] when using AGABC-SOVF and
ABC-SOVF models.

FIGURE 7. Predictive length comparison of multi-step prediction for Lorenz series when using AGABC-SOVF and ABC-SOVF
models.

PROPOSED METHOD
A. PERFORMANCE COMPARISONS OF ORIGINAL ABC,
ABC/BEST/1, GABC AND AGABC ALGORITHMS
Some classical benchmark functions presented in Table 1
were used to evaluate performance of the proposed algorithm.
Results of AGABC algorithm have been compared with the
results of the original ABC, ABC/best/1 and GABC algo-
rithms. Each of experiments was repeated 30 times with dif-
ferent random seeds, and experiment stops when the number
of iterations reaches max cycle.
The common control parameters of the algorithms are

given as follows. The population size is 25, and the limit is
100. AGABC algorithm has a few parameters: ωmin = 0.3,
ωmax = 1.0, c1 = 0.02, c2 = 0.02 [21]. The best value
(Best), the mean value (Mean) and the standard deviation
(SD) for different dimensions and iterations are recorded.
The maximum number of iterations are 1000 and 1500 for
dimension 20 and 30, respectively. In Table 2 and Table 3,
as can be seen Mean values of AGABC algorithm are smaller
than those of the original ABC algorithm in all test func-
tions. Moreover, the performance of AGABC algorithm is
more outstanding than other algorithms in both Mean values
and convergence iteration when it minimize the multi-modal

functions. In short, this proves that the AGABC algorithm has
better optimization performance.

Figure 2 shows iteration convergence of the four algo-
rithms, and clearly can be seen that comparisons between
the algorithms. The curves in the figure represent changes of
the function values of the algorithms in the iteration. When
the curve becomes a flat line, number of iterations reaches the
global optimization. In the optimization of a unipolar value
function, the effect is slightly worse than best/1/ABC, but
better than the other two. However, the AGABC algorithm
has obvious performance advantages over other three multi-
modal functions, and is far superior to other three algorithms
in convergence speed and solution accuracy.

B. ANALYSIS OF MULTI-STEP PREDICTION OF LORENZ
CHAOTIC SERIES
In experiments, chaotic map is directly iterated according
to initial values. Integration step size and initial condition
for Lorenz series are taken as 0.01 and [−1 0 1] respec-
tively. Simulation series with 1300 data points is computed
by using fourth-order Runge-Kutta integration method. The
first 300 data are for training and the remaining 1000 data are
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FIGURE 8. Predictive comparison of two models for phonetic symbols [b],[d],[g] and [o].

for test. The Lorenz series equation is defined as follows
q̇ = a (r − q)
ṙ = −qs+ cs− r
ṡ = qr − bs

(16)

where a = 16, b = 4, c = 45.92, q (0) = −1, r (0) =
0, s (0) = 1.

Multi-step prediction errors for x component of Lorenz
series by applying the ABC-SOVF model and the AGABC-
SOVFmodel are shown in Figure 3 and Figure 4, respectively.
It is noted that Lorenz series is first normalized before simu-
lation by the following formula:

y (i) =
2 (x (i)−min x (i))
maxx (i)−min x (i)

, i = 1, 2, · · · , n,
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FIGURE 9. Predictive comparison of two models for the sentence [long time no see].

where x (i) is original time series, max x(i) and min x(i)
denote its maximum and minimum values, respectively. Nor-
malized time series is represented as y(i).
Figure 3 and Figure 4 show that performance of

AGABC-SOVF is more prominent, especially for prediction
of the first 100 points, that are almost identical to the original
series. The predicted values of the two models can reflect
the original signal values more intuitively, but the predicted
values of the AGABC-SOVF model are closer to the original
values than the ABC-SOVF model in the large fluctuation
part. When a spike in the original series, both the predicted
results of the two models show errors, but the error distance
of AGABC-SOVF model is far less than that of ABC-SOVF
model. From Figure 5 we can see that absolute error of
the AGABC algorithm is much lower than that of the ABC
algorithm, especially when sample number is bigger. Based
on the above analysis, it can be concluded that the AGABC-
SOVF model performs well in prediction, and has an obvious
pre-improvement advantage.

C. COMPARISONS OF PREDICTION LENGTH OF
MULTI-STEP PREDICTION
This experiment is mainly used to test prediction length of
multi-step prediction by applying the AGABC-SOVF model.
The first 200 points of speech signal of certain length are
used as training to configure the model, which is used for
prediction after 200 points, then prediction is terminated
when the error is greater than 0.05.

Figure 6 and Figure 7 show that AGABC-SOVF model
and ABC-SOVF model are used in predictions of phonetic
symbol [g] and Lorenz series, respectively. We note that the

TABLE 4. MSE comparison of different methods for phonetic symbols [b],
[d], [g], and [o].

prediction results of AGABC-SOVF model and ABC-SOVF
model for about 600 steps are basically consistent with the
original series. In contrast, AGABC-SOVF model is able to
continue prediction for the next 300 points and the error is
very small. So, the AGABC-SOVF model is obviously better
than that of the ABC-SOVF model in length prediction.

D. PREDICTIONS OF REAL MEASURED SPEECH SIGNAL
SERIES USING AGABC-SOVF AND ABC-SOVF MODEL
In this experiment, validity of the proposed nonlinear pre-
diction model is verified by the results of the multi-frame
speech signal. Experimental data contains four phonetic sym-
bols [b], [d], [g], [o] and the sentence (long time no see).
In order to verify the validity and generalization ability of
our method, the AGABC-SOVF model is applied to the pre-
diction of sentence sample to verify the effectiveness of the
model. The pre-processing of the signal is as same as above,
and ABC-SOVFmodel and AGABC-SOVFmodel were used
to predict and compare the waveform, absolute error and
MSE. Experimental results of four phonetic symbols and
the sentence are shown in Table 4, Figure 8 and Figure 9,
respectively.
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From Figure 8 and Figure 9, it can be seen that predic-
tion values of two types of model can be more intuitive
response to the original signal. But in the intermediate part
of larger fluctuations, prediction values obtained from the
AGABC-SOVF model are more close to the original signals.
And for each frame data, from Table 4, it can be seen that
the AGABC-SOVF model has a much smaller MSE values
than that of the ABC-SOVF model, which shows that the
AGABC-SOVF prediction model proposed in this paper has
better prediction results for multi-frame speech signals.

VI. CONCLUSION
In this paper, the AGABC algorithm based on the search
equation of onlooker stage is proposed. In the algorithm,
we study a new search equation which is based on the search
equation of the original ABC algorithm, that combines a vari-
able weight coefficient with the neighbor information. Exper-
imental results show that the AGABC algorithm guarantee a
good balance between exploitation and exploration in global
optimization. After that, the AGABC algorithm is applied to
SOVF model to estimate kernel coefficients. Performance of
the AGABC algorithm was compared with the original ABC
and other two improved algorithms ABC/best/1 and GABC.
Results show that AGABC algorithm achieves improved per-
formance in multi-modal functions. For Lorenz series and
real measured speech signal series, when MSE is used as
an evaluation, multi-step prediction accuracy of the proposed
AGABC-SOVF model is better than that of the ABC-SOVF
model. Within a certain error permissible range, the AGABC-
SOVF model predicts longer than the ABC-SOVF model.
Meanwhile, the AGABC-SOVF model can better reflect
trends and regularities of the speech signal series and fully
meet requirements for speech signal prediction. The proposed
model can present a nonlinear analysis and more valuable
model structure for speech signal series, and opens up a new
way to speech signal reconstruction and compression coding.
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