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ABSTRACT We propose an improved content-aware image resizing method that uses deep learning. The
proposed method is extended from seam carving, which is another image resizing method. Seam carving
uses the energy map from an image. It also removes a seam where the energy is the minimum. We propose
a method for creating a deep energy map using an encoder—decoder convolution neural network. A deep
energy map preserves important parts or boundaries in an image, without distortion. Furthermore, it has the
characteristic that uniform intensity of edges is displayed for all images. Four well-known resizing methods
and our proposed method were evaluated in terms of aspect ratio similarity. In such an objective evaluation,
the proposed method demonstrated better results than the other four algorithms. Our proposed method can
reduce the size of an image without damaging the overall structure or losing important information in the

image.

INDEX TERMS Image retargeting, seam carving, CNN, image resize.

I. INTRODUCTION

With the proliferation of multimedia devices with various
screen sizes, image resolutions have become increasingly
diverse. The process of resizing has become essential in every
device, to display images correctly. In the conventional resiz-
ing methods, the overall image size is reduced. When the size
of the entire image is reduced, the resolution also decreases.
The common resizing techniques include bilinear and bicubic
techniques in which changes are made linearly. However,
most of the widely used linear methods have high probability
of distorting the content or losing important information.
To overcome such a drawback, the interested area/part in an
image can be cropped. The cropping method is the func-
tion of cutting an area of appropriate ratio or desired size,
in an image, by using a quadrangular box, thereby remov-
ing the unimportant parts. However, it has the disadvantage
that information is lost or distorted when there are multiple
important parts in an image.

Recently, studies have been carried out on retargeting
methods that decrease the resolution of an image while
preserving the content. These methods obtain and output
an image suitable for a particular display, without distort-
ing major objects while resizing the image. Several studies

have been conducted on the method of seam carving, which
is a method of adjusting an image size based on energy
biases or features. It defines a continuous one-dimensional
seam in the direction that minimizes damage to objects, in an
image constructed with an isotropic seam. By removing the
seam sequentially, the image size can be adjusted stably.
Content-aware image resizing, proposed by Avidan et al. [1],
was the first paper on seam carving. Thereafter, this technique
was discussed in many studies and several modifications
were made. For example, using a Sobel mask, segmenta-
tion, HoG, entropy, etc., features of images were detected
and a feature map was created. Then, an energy pattern
was obtained from the feature map created and the original
image. Finally, dynamic programming method was used for
reducing or stretching an area based on the path along which
the energy was minimized. In this case, since the image’s
features and direction were considered, the image size could
be reduced without damaging important information in the
image.

The effectiveness of seam carving lies in the robust calcula-
tion of energy bias. When detecting the bias, a threshold value
is set and, depending on this threshold value, the intensity
of the energy map varies. However, by fixing the threshold
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FIGURE 1. Results of the scale and seam carving methods and our proposed algorithm.

value, a problem arises in that it cannot respond to diverse
images. The conventional method calculates an energy map
using a 3 x 3 differentiation filter. However, during the
calculation process, the energy intensity of the energy map
varies depending on the image. Therefore, using an encoder—
decoder convolution neural network (E-D CNN), we propose
a method for creating an energy map according to a learning
model. Our proposed deep energy map creation network can
create energy maps stably for simple/complex images by
learning various images. Moreover, a much better result can
be obtained for seam carving.

In this paper, a deep convolution neural network (DCNN) is
implemented using the structures of an encoder and a decoder.
An image retargeting system is constructed, which considers
the content and objects of images when decreasing or increas-
ing the image size. Our final goals can be summarized in three
main points. First, using the neural network, a deep energy
map creation model is proposed. Second, the energy map
is applied to the retargeting system that can adjust the size
of an image. Third, a reliable evaluation method is used for
evaluating the improved retargeting system.

The remainder of this paper is organized as follows.
In Section 2, image retargeting is introduced and its charac-
teristics are described. The related studies on image resizing
are explained and studies using seam carving are introduced.
In Section 3, the encoder—decoder structure used in our pro-
posed DCNN is explained, and the framework that combines
seam carving with the deep energy map created from the
DCNN is described in detail. In Section 4, the test environ-
ment, dataset, evaluation indexes, and evaluation results are
described. The conclusions and future work are provided in
the last section.

Il. RELATED WORK

In this section, the previous studies on image processing and
image retargeting using the CNN are reviewed. A method that
uses the DCNN and a method that improves image retargeting
are introduced.

A. DEEP CONVOLUTION NEURAL NETWORK

Recently, with the advances in artificial intelligence, sig-
nal processing methods using DCNN have been introduced.
Typical examples include super resolution [2], image arti-
fact removal [3], deblurring [4], colorization [5], image
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in-painting [6], and image matting [7]. All the aforemen-
tioned method process or restore images using the learning
model of CNN.

The DCNN technology that is to be merged in our proposed
study is of the edge detection field and can detect the fore-
ground, background, or an object’s outlines from an image.
An edge has the characteristic that it shows the boundary
of an area in an image, and it indicates a discontinuity in
pixel brightness. Furthermore, it corresponds to the contour of
an object and contains much significant information. In gen-
eral, it is detected as the approximate value of a differential
operation by using the difference between adjacent pixels.
A large gradient in the differentiation value is due to a large
change in the brightness. Therefore, it can be inferred that a
boundary of the object exists at that point. Operators such as
the Sobel, Prewitt, and Robert operators are the most widely
used for the first-order derivative detection and operators
such as the Laplacian, Laplacian of Gaussian, and Canny
are widely used for the second-order derivative detection.
These edge detection algorithms use classical image pro-
cessing [8]-[10]. Recently, using machine learning, several
studies were conducted on the accuracy and speed of edge
detection. Xiaofeng et al. [10] combined the proven con-
cept of oriented gradients with powerful representations that
were automatically learned through sparse coding. Sparse
code gradients (SCG) performed significantly better than
the hand-designed features that were in use for a decade.
Dollar et al. [11] proposed a generalized structured learn-
ing method for learning structured random decision forests
that robustly used structured labels to select splits in the
trees. As for the edge detection rate, the result was better,
by a narrow margin, than that of the method using SCG.
By detecting edges through learning, edges of uniform inten-
sity can be obtained. Several studies have actively tried to
find edges using deep learning. Xie et al. [12] developed an
end-to-end edge detection system, holistically-nested edge
detection (HED), which automatically learnt the type of rich
hierarchical features that were crucial if we were to approach
the human ability to resolve ambiguity in natural image
edges and for object boundary detection. The most noticeable
study is the Richer Convolutional Features for Edge Detec-
tion proposed by Liu et al. [13] Using deep learning, edges
were detected in a manner most similar to the detection by
human eyes. The evaluation was conducted with a BSDS
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FIGURE 2. Image retargeting system using the proposed deep convolutional neural network (DCNN) and

seam optimization.

500 dataset [30]. The evaluation results were measured with
an accuracy of 0.806 for the ODS F-measure. While there
have been many studies conducted, there are few research
results on image size control using deep running. As men-
tioned above, we hope that our image retargeting method
using DCNN will contribute to the development of the image
processing field.

B. IMAGE RETARGETING

Ever since retargeting was proposed by Avidan et al. [1]
in 2007, studies pertaining to its performance improvement
have been conducted. Many existing algorithms determine
the importance of pixels in an image and decrease or increase
the image size through arithmetic operations. Typically, retar-
geting methods are divided into two categories: discrete
methods that remove or move pixels in an image and contin-
uous methods that use a quadrangular mesh. When the result
of an arithmetic operation can be expressed as an integer, it is
called discrete.

The Discrete algorithms proposed previously include
seam carving algorithm [1], [14]-[16], [18]-[21], shift
map [17], [18], video retargeting [22]-[24], and multiple
seams [15]. All these algorithms repeatedly remove or add
one-dimensional seams that are not important in an image.
Avidan et al. [1] introduced the concept of seam carving
and adjusted the aspect ratios through dynamic program-
ming. Goferman et al. [18] reduced the size of an image
by creating a shift map from an image. The shift map
was computed by optimal graph labeling, wherein a node
in the graph corresponded to a pixel in the output image.
Rubinstein et al. [16] proposed seam carving for videos,
which worked by enforcing temporal coherence of content-
aware video warping by solving a global optimization prob-
lem over the entire video cube. Han et al. [15] proposed a
novel method to find multiple seams simultaneously with
global optimality for image resizing, incorporating both
region smoothness and seam shape prior to using a three-
dimensional graphical-theoretic approach.

The Continuous methods [25]-[28] isolate a certain section
and perform an arithmetic operation stochastically on the
pixels included in that section, because they cannot count.
The methods presented recently include scale-and-stretch,
feature-aware texturing, mesh parametrization, and
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triangular mesh. Wang et al. [25] presented a “‘scale-and-
stretch” resizing method that simultaneously warped the
input image in both directions. The scale-and-stretch method
introduced edge bending energy, which could effectively
prevent local bending of features, but could not prevent the
distortion to the global structure. Gal et al. [26] described
a feature-aware texturing method that warped an original
image into an arbitrary shape while preserving the shapes
of user-specified features by constraining the warping to
be a similarity transformation. Guo et al. [27] suggested a
mesh representation based on image structures to preserve
the shape of an input image. Jin et al. [28] presented a
novel approach for content-aware image resizing by using
a triangular mesh. They proposed a triangular mesh over an
original image that was consistent with the existing image
features, which included sharp edges, feature curves, and
image boundaries. Then, a global nonhomogeneous scale
optimization was performed to warp the triangular mesh. The
warped triangular mesh and the horizontal and vertical scales
of all triangles were obtained simultaneously by a quadratic
optimization, which could be performed by solving a sparse
linear system.

Ill. NETWORK ARCHITECTURE

In this section, we introduce the content-guided seam-carving
technique that uses the encoder—decoder CNN (E-D CNN).
Figure 2 shows the framework proposed by us. The frame-
work consists of three main stages: the first stage is the
E-D CNN stage, which is followed by the seam identification
stage, and the last stage is the seam removal stage.

A. ENERGY MAP GENERATOR USING E-D CNN

Using the E-D CNN, we propose the energy map creation.
Figure 3 shows the framework for energy map creation
and seam carving. Its architecture is similar to the network
architecture of the AutoEncoder. The difference from the
AutoEncoder is that a convolution product layer is used in
the encoder stage whereas a deconvolution product layer,
which follows the reverse process, is used in the decoder
stage. Furthermore, all output values of the layers constituting
the encoder stage are used in the decoder stage. Therefore,
it is an appropriate model for conversion to a certain shape
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FIGURE 3. Encoder-decoder convolutional neural network (E-D CNN) Architecture: (a) The green box is the encoder and (b) the yellow

box is the decoder.

such as energy map creation. The E-D CNN follows an end-
to-end methodology. As shown in Figure 3, the architecture
consists of downscaling and upscaling stages, and in the
encoder stage, max pooling and convolution product are used.
Max pooling divides an input image into 2 x 2 images, and
outputs the largest value from each image. For a 2 x 2 max
pool operation including stride 2, the image size is decreased
to %

The decoder stage performs the reverse function of the
encoder stage. If a feature map is created in the % scale in
the encoder, the feature map are increased twice by 2 x 2
up-convolution in the decoder. The decoder feature map and
encoder feature map output during the encoder process are
combined and the deconvolution product is calculated. The
combined feature map is changed to a large image as two
convolution product processes and Relu are performed. Fur-
thermore, we want the predictions to reflect the probability of
a pixel being a seam or a minimum path; therefore, we use a
sigmoid activation function in the last layer.

Table 1 describes the E-D CNN in detail. A three-channel
(RGB) image of resolution 256 (width) x 256 (height) is
received as the input image. The input image goes through
the network consisting of seven unit levels. At the output,
an energy map of 256 x 256 pixels and one-channel resolution
is obtained. The core of E-D CNN is a network structure that
creates strong energy at the important parts in an image and
weak energy at the unimportant parts. The proposed network
creates stochastically robust deep energy maps. We made a
training model by using the learning dataset of BSDS500.
It had an end-to-end structure and a color image of resolu-
tion 256 x 256 was received as the input. When creating
the training model, Nvidia Geforce 1080 was used in the
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TABLE 1. Structures of Layer, Filter, and Stride are shown in the
Encoder-Decoder CNN, and the output size changes are shown
according to the filter size.

Unitlovel  Convlayer __ Filter Stide  Output size
Toput 256 X 256 X 3
o1 Cowl 3% 3/32 T 356 x 256 X 32
Cov 1 3 % 3/32 1 256 x 256 x 32
Encoding  Leval2 | CoM2 3% 3/64 7 128 % 128 X 64
Conv2 3 % 3/64 1 128 X 128 x 64
Toms  Con3 3% 3/128 7 61 % 64 X 128
: Conv 3 3 % 3/128 1 64 x 64 x 128
s Cowd 3% 3/256 7 33 % 32 X 256
Conv 4 3 x 3/256 1 32 X 32 x 256
- Conv 5 3 x 3/512 3 16 x 16 x 512
Bridge Level S conv's 3 x 3?512 1 16 x 16 x 512
Lole Decom6 3 x 3/256 T 32 % 32 X 256
DeCow6 3 x 3/256 2 32 X 32 x 256
Decodine Lot Decom7 B3 x 3/128 T 61 % 64 x 128
2 De-conv? 3 x 3/128 2 64 x 64 x 128
Tovis  Decow8 3 x3/64 T 128 X 128 X 64
Deconv8 3 x 3/64 2 128 x 128 x 64
oy Decow9 B x3/32 T 356 X 256 X 32
De-conv 9 3 X 3/32 2 256 X 256 X 32
Gutput Deconv 10 1 x 1 T 356 X 256 x 1

hardware. The batch size used for training was 1. For the
optimization algorithm, an Adam optimizer was chosen, and
the learning rate was set to 0.0001. Using the GeForce 1080,
it took 240 minutes to complete 200 epochs.

B. CONTENT-GUIDED SEAM CARVING

1) GENERATION OF ENERGY MAP USING SEAM CARVING
Seam carving extracts a seam that has the lowest energy
change. By adding or removing one-dimensional input
information on the coordinates of the corresponding seam,
the image can be resized. The seam is connected horizon-
tally or vertically in the image, and it is a line where the
row or column is connected by only one pixel. The traditional
seam carving algorithm creates a gradient-based energy map
and then determines important areas of the image. Equa-
tion 1 is the equation for a gradient-based energy map. In the
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calculation of the gradient energy graphs, if I is assumed to
be a given image, and the size is given by width A- height,
the gradient energy function of the image is defined as:

d
—I
dy

The essence of Equation 1 is that the sum of gradients for
the x-direction and y-direction is the energy value of the pixel.
If the pixel energy map is large, it indicates important infor-
mation that must be maintained. Conversely, when the energy
is less, there is a high probability that it is not important.
Therefore, the energy map shows the importance of the pixel
in an image.

Energy(I) = |—1I| + (D

2) GENERATION OF ENERGY MAP USING E-D CNN MODEL
Although the deep energy map using the E-D CNN pro-
posed in this paper has the same functions and goals as
the conventional energy map, it was proposed to produce a
higher performance. What is important here is cross entropy.
Cross entropy is defined to show the difference between two
probability distributions. More specifically, cross-correlation
(CQO) is used when showing a correlation between two func-
tions whereas cross entropy (CE) shows the distance between
two probability distributions. Therefore, in the E-D CNN,
the final cross entropy loss function outputs an energy map
by combining the final feature map and Sigmoid function.
The cost function is expressed as shown in Equation 2.

C=—- Z[ylnf(S1)+(1 —»In(d—=fnl @)
X

where —[yInf(s;) + (1 —y)In(1 —f(s1))] is the binary
entropy, n is the number of training data, and y is the out-
put value required for the training data. f() is the sigmoid
function. so the gradient respect to the each score s; in s will
only depend on the loss given by its binary problem. The
cross-entropy function has two properties: non-negativity and
cross-entropy = 0. Regarding the non-negativity, all terms
inside the sigma are always negative numbers, and the terms
outside sigma have a value of 0 or greater, because of the
negative sign. In addition, to elaborate on the number of two
cases, when y = 0, if 51 is close to 0O, the cross-entropy
term will be close to O because In(1) is close to 0. When
y = 1, if 51 is close to 1, the cross-entropy term will be close
to 0 because In(1) is close to 0. We substitute s; = o(z) in
Equation 2. Then, if w is differentiated using the chain rule,
since the differential value of In(x)is )lc, it can be shown as

in Equation 3.
(I-y) \do
1 —o0(z)/) ow;

E___Z(

8Wj_ (T(Z)
N s

__Z<o(z) - 0()) o' (2)x; 3)

If Equation 3, which is a sigmoid function, is substituted
in Equation 4,

o'(@)= 01 -0 (2) “
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FIGURE 4. Loss of training network.

it can be summarized as in Equation (5).

aC 1
S =2 K@ =) )

ow;

In Equation 5, the changing rate of weight is determined by
o(z) —y. As the difference of the two becomes larger, the gra-
dient of change becomes larger. Finally, in all training images,
if 0(z) = y is substituted in the cross-entropy function, then
C of Equation 2 will be minimized. We have designed it to be
output by the inputs and biases coming into the corresponding
neuron, and we called it the deep energy map.

In Figure 2, the seam identification stage is the function
that is processed after the creation of the energy map [1]. The
method of finding the smallest or largest energy pattern by
comparing the difference between energy pixels in the deep
energy map is called seam identification. Equation 6 finds
the difference of values between all neighbor pixels exist-
ing in the one-dimensional vertical seam direction, thereby,
finding the pattern in the direction where the difference is the
smallest.

= {S{ho) = (@, DY,

where Vi, |x(l) —x@@i—1D| =<1 (6)

Similarly, a horizontal seam is defined as:

§ =SV, = {00 MLy,
where  Vj, |y() =y(j— DI <1 (7)

The vertical seam indicates a one-dimensional path coming
down from the top to the bottom and the energy sum of the
one-dimensional path is given by S. Similarly, a horizon-
tal seam indicates a one-dimensional path flowing from the
left to the right, and Equation 7 expresses the sum of one-
dimensional energies in the horizontal direction. The seam
where the cumulative sum of seams is a minimum becomes
the optimum seam. Since we process the vertical seam and
horizontal seam in the same manner, the explanation is pro-
vided focusing on the vertical seam. In order to find this seam,
we first define the cumulative minimum energy map M for

VOLUME 7, 2019



E. Song et al.: CarvingNet: Content-Guided Seam Carving Using Deep Convolution Neural Network

IEEE Access

ARS SCORE

0.5

0.4

—————— o SC et SCL

WARP 4ns OUR

123456 7 8 910111213141516171819202122232425262728293031323334353637

FIGURE 5. Graph of aspect ratio similarity metric results for the test set of 37 images (seam carving (SC), scaling (SCL), shift
map (SM), non-homogeneous warping (WARP), proposed method).

the second row to the last row as follows:

MG, j) = e(i,j) + min(M(@i—1,j— 1),
M@G@—1.j), MG—1+)) ®)

As shown by in Equation 8, the pixel that is a the minimum
in the a row and column is selected as the initial position.
Then, from among three rows that are adjacent to the pixel
right mentioned above, a minimum value is obtained.

Finally, the seam removal, which is the last stage
in Figure 2, removes the seam where the energy is a mini-
mum. By repeating the above process, the image size can be
reduced effectively.

C. LOSS FUNCTION
We used the Dice coefficient itself for the loss function.
Specifically, Dice coefficient is defined as follows:
e 2-|EM N P|
DiceSimilarity(EM, P) = —— O]
[EM| + [P
where EM(Edge Mask) is the predicted set of pixels and P
is the ground truth. A higher dice coefficient is better. The
EM and P is the output of a sigmoid function (0-1). Since
the denominator is constant, the only way to maximize this
metric is to increase overlap between EM and P.
Figure 4 Graph showing the dice coefficient. The dice
coefficient in figure 4 is higher than 0.07. It can be seen that
the Dice for training is still in a decreasing trend.

IV. EXPERIMENTS

A. SETUP

The hardware configuration used in the experiments is
a desktop computer (Intel® Core(TM) i7-7700 CPU
@ 3.6 GHz, 240 GB RAM), and the seam carving
algorithm is implemented with Python version 3.6. The
CNN is directly downloaded from Tensorflow and Keras
(https://www.tensorflow.org, https://keras.io)
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B. ASPECT RATIO SIMILARITY METRIC(ARS)

The aspect ratio similarity proposed by Zhang et al. [29]
is a framework that creates resampling grids and integrates
forward resampling. ARS is an effective method that can esti-
mate the geometric transition for the relationship of images.
More specifically, the visual quality inside a local block is
evaluated by an importance pooling strategy. We perform an
objective evaluation using ARS. First, the ARS measures the
similarity as shown in Equation 10. w,,; is the maximum
width in the block and h;,; is the maximum height in the
block. The height and width change ratios can be denoted
as r, = % and rp, = % and r, = C‘V—” and the mean
ratio u, = @ denotes the absolute block size change. The
similarity score of the block pair is formulated as follows:

2.1y C
S = 27w++ . [e—a(ur—l)z] (10)
rg+r,+C

Here, C is a variable for increasing the stability to make
provision for the case of dividing by 0. e™* is a penalty
adjusting parameter to deal with information loss caused by
image distortion. Finally, using an index from O to 1, S shows
the level of image loss or visual distortion in a block. When
the index is close to 1, the image quality in the block is high,
and if S is close to 0, the information loss in the block is large.
Next, ARS can be shown as in Equation 11

ARS =" "Spn Vo [ DD Ve (1D)

m n
Here, m and n are block indices of the original image, and
Smn is the similarity score of the respective indices. Vmn
is the index variable of the visual importance map. Finally,
the ARS is evaluated with an index between 0 and 1.

C. EXPERIMENTAL RESULTS

Seam carving has a characteristic that a one-dimensional
seam is removed by focusing on the seam when reducing an
image. We evaluate the loss level of an image by changing
to various resolutions, but when reduced to 20% or less,
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Family (a-2) (b-2)
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(c-2) (d-2) (e-2)
SM WARP Our method

FIGURE 6. Resulting images of five algorithms for the images of retarget me dataset. Result
images of (a) SCL, (b) seam carving, (c) shift map, (d) WARP, and (e) proposed method. Here,
the number 1 denotes the result of reducing to 25% size and 2 denotes the result of reducing

to 50%.

TABLE 2. Evaluation result of aspect ratio similarity for 37 test images
(average and dispersion).

SC[1] SCL SM WARP[24]  Our Method
ARS Average 0909 0902 0.880 0.908 0.913
Std 0.053 0.074 0.101 0.064 0.047

it is difficult to find anything special about the algorithm.
Therefore, focusing on the vertical seam, we evaluate the
level of loss by reducing the retarget me dataset [31] images
to 25% (23 frames) and 50% (14 frames).

In Figure5 we define the seam carving (SC), scaling (SCL),
shift map (SM), non-homogeneous warping (WARP), and the
proposed method. In Table 2, five algorithms are evaluated in
terms of the ARS. The average score of our proposed method
is 0.033 higher than that of SM, and the standard deviation
is 0.054 lower. Compared to the SC, the average score is
0.004 higher. This signifies that, with respect to the distor-
tion or loss level of images, the proposed method is excellent,
and its deviation is not severe for the images (lines/edges,
face/people, foreground objects, texture, geometric struc-
tures, and symmetry). In general, seam carving carves the
sides where the energy of seams is small in an image whereas
the method proposed by us provides a result wherein the
distortion is less and information loss is decreased because
the energy is maintained at important places in the image
and the places where the energy is relatively small are
carved.
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V. CONCLUSION

The content-guided seam carving by DCNN proposed in this
paper could change the size of an image to a required size
while preserving the feature properties well. Conventional
seam carving created an energy map by using differential
arithmetic operations to find a seam where the energy was the
minimum. However, in such an energy map, the intensities of
the edges were not uniform. Because of this, the result was not
good owing to the cutoff phenomenon and background dis-
tortion. To overcome these drawbacks, we created an energy
map in which the complexity of color and texture were robust
and the energy density was uniform, by training the features
of images and boundary data. Furthermore, using the ARS
evaluation method, an objective evaluation was performed.
Compared to the differential energy map, the proposed deep
energy map method showed higher performance. Particu-
larly, the line segments and boundaries of image features
were well maintained. Furthermore, the energy map conver-
sion was robust to various images, whereby, relatively stable
energy maps were created. Therefore, by using deep energy
maps, the user’s desired resizing results could be obtained.
Thus, the limitations of conventional technology in which
the results calculated automatically by a computer could not
always satisfy the user, could be overcome. In the future, our
system will be able to overcome the limitations associated
with the resolutions by improving the method using DCNN
and will be able to improve the speed by increasing the
efficiency of the arithmetic operations.
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FIGURE 7. Graph of aspect ratio similarity metric results for the test set of 37 images (seam carving (SC), scaling (SCL), shift map (SM),

non-homogeneous warping (WARP), proposed method).

APPENDIX FOR “CONTENT-GUIDED SEAM CARVING
USING DEEP CONVOLUTION NEURAL NETWORK"
See Figure 7.
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