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ABSTRACT This paper presents a discrete-time adaptive control approach for nonlinear systems with
input delay. The nonlinearity is assumed to be non-sector bounded, resulting in the key technical lemma
being inapplicable. The main aim of this paper is to present a general implementation inspired from
Kanellakopoulos and Fu, et al. for uncertain scalar and multivariable input delay systems with uncertain
parameters as well as uncertain input gain. While it has been shown by Kanellakopoulos and Fu, et al. that
it is possible to design adaptive control laws that compensate for the growth of the nonlinearity for single
parameter scalar systems, a rigorous analysis of multiple parameter systems is not shown. In this paper, it is
shown that an adaptive controller design that compensates for the growth of the nonlinearity is possible for
both multiple parameter scalar and multivariable systems with input delay. Rigorous stability proofs and
simulations are presented to verify the validity of the approach.

INDEX TERMS Adaptive control, discrete-time systems, nonlinear control, time-delay systems.

I. INTRODUCTION
Stabilization of systems with actuator delays has always been
a challenge in controller design. The celebrated Smith Predic-
tor [3], proved to be the first practical solution to dealing with
actuator delays although it was limited by the requirement of
exact model parameters as well as the time-delay. Later on,
adaptive control designs for uncertain linear time invariant
systems with known time-delays were presented by Ortega
and Lozano [4]. This was expanded further in [5]–[12], for
various cases including input delays, state delays, distributed
delays, time-varying delays, etc. In addition, various practical
implementations have been presented in [13]–[15]. The sur-
vey paper [19] provides a comprehensive list of papers pub-
lished prior to 2003 that discuss the stabilization of time delay
systems. Also, the book [20] presents predictive feedback in
delay systems with extensions to nonlinear systems, delay-
adaptive control and actuator dynamics modeled by PDEs.
More recently, compensation approaches for input delays
using truncated predictor feedback are shown in [16]–[25].

Successful studies on the adaptive control of linear,
discrete-time uncertain systems with time-delay can be found
in [21]–[25]. For nonlinear discrete-time adaptive control,
implementations have always been limited by the require-
ment that the system nonlinearities are sector bounded. This

is a strict requirement of the Key Technical Lemma [26]
(page 181) that guarantees asymptotic stability of the system.
In order to eliminate this limitation a new approach was pro-
posed in [1]. This approach allowed for the relaxation of the
bound conditions on the nonlinearity while still guaranteeing
asymptotic stability. The approach was developed for a scalar
system (with a single uncertain parameter) without an uncer-
tain input gain or input time-delay and it was highlighted that
extension to more general cases is difficult. In [2], the same
problem is addressed without assuming a growth condition
on the nonlinearity, in the presence of bounded disturbances.
The results are proven for a system similar to that in [1] and
the algorithm for multivariable systems is given without any
rigorous analysis or stability proofs.

In this paper, a more general implementation inspired by
[1] and [2] is presented for uncertain scalar input delay sys-
tems with multiple uncertain parameters as well as uncertain
input gain. The approach is further extended to multivariable
input delay systems. For the scalar case, the approach is based
on the prediction of future signals through successive substi-
tution of the system model as is shown in [27]. Following the
approach in [1], a coefficient is introduced into the adaptive
law that guarantees asymptotic convergence in the presence
of non sector bounded nonlinearities. The approach is further
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extended to multivariable systems and it is shown that this
extension is not trivial and needs to be investigated rigorously.
Stability proofs are given with simulation results for a scalar
and a multivariable system to verify the proposed approach.

The organization of this paper is as follows: In Section II,
the main result and a discussion of scalar systems are pre-
sented. In Section III, an extension to multivariable systems
is provided. In Section IV, simulation examples are presented
and concluding remarks are given in Section V.

Throughout this paper, ‖ · ‖ denotes the Euclidean norm
and O(·) denotes order of ‘·’. For notational convenience,
the mathematical expression ‘‘fk ’’ represents the value of the
signal f at the k’th sampling instant.

II. MAIN RESULT
In this section, the controller design is presented starting with
a simple scalar first-order system.

A. CONTROL OF A SCALAR INPUT-DELAY SYSTEM
IN DISCRETE-TIME
Consider the following discrete-time system with input delay

xk+1 = φφφ>ξξξ (xk)+ buk−p + δk (1)

where xk ∈ < is the system output, the parameters φφφ ∈ <q
∗

,
the function ξξξ (xk) ∈ <q

∗

is a known polynomial function of
xk , q∗ ∈ Z+ is the number of parameters, b ∈ < is assumed
to be known, p is the delay in number of steps and |δk | ∈
O(1) is an uncertain smooth time-varying disturbance. For the
system (1), the following assumptions are made:
Assumption 1: The delay p is known a priori.
Assumption 2: The function ξξξ (xk) is bounded for a

bounded xk . Furthermore, ‖ξξξ (xk) ‖ ≤ c0 + c1|xk |g for some
positive constant c0, c1 and g ∈ Z+ is the order of the
polynomial function ξξξ (xk).
Assumption 3: From the structure of the system (1), there

exist constants κ0 and κ1 such that the control input is
bounded as |uk−p| ≤ κ0 + κ1maxi∈[0,k+1] |xi|g.

The goal is to force the system (1) to track the reference
model

xm,k+1 = amxm,k−p + bmrk−p (2)

where am ∈ < is in the unit-disk. Extending the work in [3]
and [28] a controller is chosen as

uk = b−1
(
amxk − φφφ>ξξξ

(
xk+p

)
+ bmrk − δ̂k+p

)
(3)

where δ̂k is an estimate of the disturbance. Substitution of
the controller (3) into (1) leads to error dynamics of the
form

ek+1 = amek−p + δ̃k (4)

where ek = xm,k − xk and δ̃k is the disturbance estimation
error. Since |am| < 1 and if the term |δ̃k | is bounded such
|δ̃k | ≤ 1 for some constant 1, then (4) is stable. Note
that the controller (3) is a function of xk+p and δ̂k+p. There-
fore, xk+p and δ̂k+p are needed for the computation of the

control input uk . Rather than deriving seperate estimations
for xk+p and δ̂k+p, the system (1) will be rewritten into a
form that attenuates the influence of the disturbance δk and
that form will be used to derive delay free system dynamics.
From the delay free system dynamics, a causal control law is
derived.

Consider the system (1), according to the assumptions on
the disturbance δk and the results in [29], it follows that δk −
2δk−1+ δk−2 ∈ O(T 2) where T < 1 is the sampling interval.
Using this result, the system can be written in a disturbance
compensated form as

xk+1 − 2 xk + xk−1 = φφφ>
(
ξξξ k − 2ξξξ k−1 + ξξξ k−2

)
+ b

(
uk−p

− 2 uk−p−1 + uk−p−2
)
+ υk , (5)

xk+1 = φφφ>
(
ξξξ k − 2ξξξ k−1 + ξξξ k−2

)
+ 2 xk − xk−1 + b

(
uk−p

− 2 uk−p−1 + uk−p−2
)
+ υk (6)

where ξξξ k ≡ ξξξ (xk) and υk = δk − 2δk−1 + δk−2 ∈ O(T 2).
Using successive substitutions a delay-free system is obtained
as

xk+p+1 = θθθ>ζζζ (xk , uk−1, . . . , uk−p+1)+ buk + ρρρ>k−1ϕϕϕk−1
+ ῡk+p (7)

where θθθ is the augmented parameter vector, ζζζ (·) is the aug-
mented nonlinear function that is a function of the state xk
and control history uk−1, . . . , uk−p+1, and ρρρ>k−1ϕϕϕk−1, ῡk+p
are the augmented disturbance terms due to the successive
substitutions. Note that as a result of the successive sub-
stitutions ρρρk−1 will be a function of φ, b and υk and that
‖ρρρk−1‖ ∈ O(λT

2) for some constant λ.
Consider the term ρρρ>k−1ϕϕϕk−1, based on the structure of

ξξξ (xk), the augmented nonlinear function ζζζ (·) and ϕϕϕk will
contain cross terms of the states x1,k , x2,k , . . . , the control
inputs u1,k , u2,k , . . . and υk . However, ρρρ>k−1ϕϕϕk−1 can still
be written in parametric form. Using Assumption 3, it can
be shown that |ρρρ>k−1ϕϕϕk−1| ≤ κ2 + κ3maxi∈[0,k] |xi|(g

p+1
−g)

where κ2, κ3 ∈ O(λT 2) are some positive constants. Further-
more, it can be shown that since ῡk is a function of υk history
and the uncertain parameter vector φφφ, a bound can be found
such that |ῡk | ≤ 1̄ ∈ O(T 2).

Proceeding with the control law design, subtracting (7)
from a k + p steps ahead form of (2) results in an error
dynamics of the form

ek+p+1 = amek + amxk − θθθ>ζζζ (xk , uk−1, . . . , uk−p+1)− buk
+ bmrk − ρρρ>k−1ϕϕϕk−1 − ῡk+p. (8)

From (8) a control law is selected as

uk = b−1
(
amxk − θθθ>ζζζ (xk , uk−1, . . . , uk−p+1)+ bmrk

)
(9)

such that an error dynamics is achieved as

ek+1 = amek−p + ρρρ>k−p−1ϕϕϕk−p−1 + ῡk . (10)
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Assume that κ2 ≈ κ2 + 1̄, then (10) is further written in the
form

|ek+1| ≤
(
|am| + κ3|xk−p|(g

p+1
−g−1)

)
|ek−p| + κ2 + |ῡk |

+ κ3|xk−p|(g
p+1
−g−1)

|rk−p|

≤

(
|am| + κ3|xk−p|(g

p+1
−g−1)

)
|ek−p| + κ2

+ κ3|xk−p|(g
p+1
−g−1)

|rk−p| (11)

which is asymptotically stable if and only if the state
xk lies in a neighborhood that satisfies the condition(
|am| + κ3|xk−p|(g

p+1
−g−1)

)
< 1.

Remark 1: Upon careful inspection of the result (11),
it can be seen that the term

(
|am| + κ3|xk−p|(g

p+1
−g−1)

)
is

a function of the delay p. Therefore, the stability of (11) is
guaranteed if and only if

|xk | <
(
1− |am|
κ3

) 1
gp+1−g−1

. (12)

The condition (12) gives the neighborhood for the stability
of (11). It is possible to select the sampling-interval T such
that κ3 ∈ O(λT 2) is small enough resulting in a large enough
neighborhood for stability.

B. ADAPTIVE CONTROL OF AN INPUT-DELAY SYSTEM
Consider now that the parameters φφφ and b in system (1) are
uncertain constants. This will result in the parameter vector θθθ
being uncertain and the control law (9) is revised as

uk = b̂−1k
(
amxk − θ̂θθ

>

k ζζζ (xk , uk−1, . . . , uk−p+1)+ bmrk
)
(13)

where θ̂θθk and b̂k are the estimates of θθθ and b respectively. The
parameter estimates must be computed such that the system
(1) tracks the reference model (2). Now that the goal of the
adaptive law is defined, it is possible to proceed with the
derivation. In order to derive the adaptive law, substituting
the control law (13) in (7) it is obtained that

xk+p+1 = amxk + θ̃θθ
>

k ζζζ k + bmrk + b̃kuk + ρρρ
>

k−1ϕϕϕk−1 + ῡk

(14)

where ζζζ k ≡ ζζζ
(
xk , uk−1, . . . , uk−p+1

)
and θ̃θθk , b̃k are the

parameter estimation errors respectively. Substracting (2)
from a p steps delayed (14), it is obtained that

ek+1 = amek−p + θ̃θθ
>

k−pζζζ k−p + b̃k−puk−p + ρρρ
>

k−1ϕϕϕk−1 + ῡk

= amek−p + ψ̃ψψ
>

k−pζ̄ζζ k−p + ρρρ
>

k−1ϕϕϕk−1 + ῡk (15)

where ψ̃ψψ
>

k =

[
θ̃θθ
>

k --
-- b̃k
]
∈ <

q+1 is the lumped parameter

estimation error and ζ̄ζζ
>

k =

[
ζζζ>k --

-- uk
]
∈ <

q+1. Using (15),
it is possible to formulate the adaptive law as follows

ψ̂ψψk+1 =

{
ψ̂ψψk−p + αk+1βkγkPk+1ζ̄ζζ k−pēk+1 ∀k ∈ [k0,∞)
ψ̂ψψk0 ∀k ∈ [0, k0)

(16)

Pk+1 =


Pk−p − αk+1

×
βkγkPk−pζ̄ζζ k−pζ̄ζζ

>

k−pPk−p

1+ αk+1βkγk ζ̄ζζ
>

k−pPk−pζ̄ζζ k−p
∀k ∈ [k0,∞)

Pk0 > 0 ∀k ∈ [0, k0)
(17)

where ēk+1 = ek+1 − amek−p, βk > 0 is a scalar
coefficient used to prevent a singular b̂k , k0 is some ini-
tial time step and the coefficient αk is positive and will be
defined later. The matrix Pk ∈ <q+1×q+1 is the symmet-
ric positive-definite covariance matrix. The coefficient γk is
given as

γk =

1−
(1+αmaxd0) ω2

k

ē2k+1
, if |ēk+1| ≥ (1+αmaxd0)

1
2 ωk

0, if |ēk+1| < (1+αmaxd0)
1
2 ωk
(18)

where ωk =
(
κ2 + κ3|xk−p|(g

p+1
−g)
)
. The constants αmax

and d0 are positive and will be defined in Lemma 2 and
Lemma 3. Finally, with respect to the coefficient βk in (16)
and (17), consider the control law (9). The term b̂k is an
adaptive term and there is a risk of division by zero if b̂k is
singular. In order to guarantee that b̂k in (13) is not singular,
consider the adaptive law from (16), namely

ψ̂ψψk+1 = ψ̂ψψk−p + αk+1βkγkPk+1ζ̄ζζ k−pēk+1 (19)

and let s = [0 · · · 0 1]> such that b̂k = s>ψ̂ψψk . Then
premultiplying both sides of (19) with s> it is obtained that

b̂k+1 = s>ψ̂ψψk+1 = b̂k−p + αk+1βkγks>Pk+1ζ̄ζζ k−pēk+1

= b̂k−pβk

(
1
βk
+ b̂−1k−ps

>αk+1γkPk+1ζ̄ζζ k−pēk+1

)
(20)

and if the initial choice of b̂k−p is nonsingular and β−1k 6=

−b̂−1k−ps
>αk+1γkPk+1ζ̄ζζ k−pēk+1 then b̂k+1 will be nonsingu-

lar. The value of βk can be selected from a predefined set as
long as it satisfies β−1k 6= −b̂

−1
k−ps

>αk+1γkPk+1ζ̄ζζ k−pēk+1.
Before proceeding with the stability analysis it is necessary

to define the following Lemmas:
Lemma 1: For the system (15) and the adaptive laws (16)

and (17), the following conditions are true:

(a) limk→∞
αk+1βkγ

2
k

1+αk+1βkγk ζ̄ζζ
>

k−pPk−pζ̄ζζ k−p
ē2k+1 = 0

(b) ‖ζ̄ζζ k‖ ≤ c0‖ζζζ k‖, for some constants c0.

Proof: Consider the positive function

Vk =
p∑
i=0

ψ̃ψψ
>

k−iP
−1
k−iψ̃ψψk−i. (21)

The forward difference Vk+1 − Vk can be found as, [22],

1Vk = Vk+1 − Vk = ψ̃ψψ
>

k+1P
−1
k+1ψ̃ψψk+1 − ψ̃ψψ

>

k−pP
−1
k−pψ̃ψψk−p.

(22)
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Substitution of (16) in (22) and following the approach
in [27], it is obtained that

1Vk = ψ̃ψψ
>

k−p

(
P−1k+1−P

−1
k−p

)
ψ̃ψψk−p−2αk+1βkψ̃ψψ

>

k−pζ̄ζζ k−pēk+1

+ ζ̄ζζ
>

k−pPk+1ζ̄ζζ k−pα
2
k+1β

2
k γ

2
k ē

2
k+1. (23)

To proceed further, consider (17). According to [22],
the covariance matrix Pk satisfies P−1k+1 = P−1k−p +

αk+1βkγk ζ̄ζζ k−pζ̄ζζ
>

k−p. Using this condition and the fact that
αk+1, βk , γk are positive coefficients, then (23) can be sim-
plified further to obtain

1Vk ≤ −
αk+1βkγ

2
k

1+ αk+1βkγk ζ̄ζζ
>

k−pPk−pζ̄ζζ k−p
ē2k+1 (24)

which implies that ψ̃ψψ
>

k ≡

[
θ̃θθ
>

k --
-- b̃k

]
is bounded and, there-

fore, ψ̂ψψ
>

k ≡

[
θ̂θθ
>

k --
-- b̂k

]
is also bounded, [22]. Note that for

any k ∈ [k0,∞) the following is true

Vk+1 = Vk0 +
k−k0∑
i=0

1Vk0+i (25)

Substituting (24) in (25), it is obtained that

lim
k→∞

Vk+1<Vk0− lim
k→∞

k−k0∑
i=0

×
αk0+i+1βk0+iγ

2
k0+i

ē2k0+i+1

1+ αk0+i+1βk0+iγk0+iζ̄ζζ
>

k0+i−pPk0+i−pζ̄ζζ k0+i−p
.

(26)

Since by definition, Vk+1 is non-negative and Vk0 is finite,
then according to the convergence theorem of the sum of
series condition (a) of Lemma 1 is established as

lim
k→∞

αk+1βkγ
2
k

1+ αk+1βkγk ζ̄ζζ
>

k−pPk−pζ̄ζζ k−p
ē2k+1 = 0. (27)

Finally to verify part (b), consider the definition of ζ̄ζζ k and
the control law (13). It is obtained that

ζ̄ζζ
>

k =

[
ζζζ>k --

--uk
]

=

[
ζζζ>k --

--b̂−1k
(
amxk − θ̂θθ

>

k ζζζ k + bmrk
) ]
. (28)

Consider (28), then from condition (a) it follows that the
adaptive parameters b̂k and θ̂θθk are bounded. Furthermore,
the reference signal rk is bounded and ζζζ k is not sector
bounded w.r.t xk . Then it is obtained that

‖ζ̄ζζ k‖ ≤ c0‖ ζζζ k‖. (29)

Lemma 2: For the matrix Pk in (17), the term
ζ̄ζζ
>

k−pPk−pζ̄ζζ k−p is bounded as

ζ̄ζζ
>

k−pPk−pζ̄ζζ k−p ≤ d0 (30)

if αk is selected such that

αk ≥
fk − d1 gk
d1 hk − lk

(31)

where fk , gk , hk and lk are functions of the elements of ζ̄ζζ k and
αk history while d0, d1 are some positive constants.

Proof: The inverse of the covariance matrix satisfies the
condition P−1k+1 = P−1k−p + αk+1βkγk ζ̄ζζ k−pζ̄ζζ

>

k−p. Therefore,
the solution P−1k ∀k ∈ [k0 + p,∞) can be computed as

P−1k = P−1k0

+

b
k−k0−p

2 c∑
i=0

αk−ipβk−ip−1γk−ip−1ζ̄ζζ k−(i+1)p−1ζ̄ζζ
>

k−(i+1)p−1

(32)

where k0 is an initial time step and b·c is the floor function.
Rewriting (32) as

P−1k = P−10 + αkβk−1γk−1ζ̄ζζ k−p−1ζ̄ζζ
>

k−p−1 +

b
k−p
2 c∑
i=1

(
αk−ip

×βk−ip−1γk−ip−1ζ̄ζζ k−(i+1)p−1ζ̄ζζ
>

k−(i+1)−1

)
(33)

where k0 = 0 for the sake of simplicity and considering
that the initial value of P0 is selected such that P−10 =

diag(p1, p2, . . . , pq+1), then the matrix Pk can be evaluated
by computing the inverse of P−1k . Therefore, the expression
of Pk is obtained as

Pk =
1

αkhk + gk

(
αkM1,k +M2,k

)
(34)

where det
(
P−1k

)
= αkhk + gk and adj

(
P−1k

)
= αkM1,k +

M2,k . Premultiplying (34) with ζ̄ζζ
>

k and postmultiplying with
ζ̄ζζ k , it is obtained that

ζ̄ζζ
>

k Pk ζ̄ζζ k =
1

αkhk + gk

(
αk ζ̄ζζ
>

k M1,k ζ̄ζζ k + ζ̄ζζ
>

k M2,k ζ̄ζζ k

)
.

(35)
Furthermore, using matrix and vector norms on the right-
hand-side of (35), the upperbound on ζ̄ζζ

>

k Pk ζ̄ζζ k is obtained as

ζ̄ζζ
>

k Pk ζ̄ζζ k ≤
1

αkhk + gk

(
αk
∥∥M1,k

∥∥+ ∥∥M2,k
∥∥ ) ∥∥ζ̄ζζ k∥∥2

≤
c0

αkhk + gk

(
αk
∥∥M1,k

∥∥+ ∥∥M2,k
∥∥ ) ∥∥ζζζ k∥∥2 . (36)

Now consider (36). If ζ̄ζζ
>

k Pk ζ̄ζζ k ≤ d0 then
c0

αkhk + gk

(
αk
∥∥M1,k

∥∥+ ∥∥M2,k
∥∥ ) ∥∥ζζζ k∥∥2 ≤ d0 (37)

and solving for αk results in a condition on αk that is given as

αk ≥
fk − d1 gk
d1 hk − lk

(38)

where fk =
∥∥M2,k

∥∥ ∥∥ζζζ k∥∥2, lk = ∥∥M1,k
∥∥ ∥∥ζζζ k∥∥2 and d1 = d0

c0
.
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Remark 2: Note that the constant d1 can be adjusted to
avoid division by zero. Furthermore, a lower bound on αk can
be imposed to ensure that αk is always positive.
Remark 3: It is not possible to generalize the expression

for αk for multiple uncertain parameters, however, the pro-
cedure will be presented for a system with two uncertain
parameters in order to illustrate the implementation of the
adaptive law. The procedure is similar for any number of
uncertain parameters.
Example 1: Consider the system given by (15) and assume

that ψ̃ψψ
>

k = [ ψ̃1,k --
--

ψ̃2,k ] ∈ <
2 and ζ̄ζζ

>

k = [ ζ̄1,k --
--

ζ̄2,k ] ∈ <
2.

Also letP−10 = diag(p1, p2). Then thematricesM1,k andM2,k
are obtained as

M1,k= β̄k−1

[
ζ̄ 22,k−p−1 −ζ̄1,k−p−1ζ̄2,k−p−1

−ζ̄1,k−p−1ζ̄2,k−p−1 ζ̄ 21,k−p−1

]
(39)

and

M2,k =

b
k−p
2 c∑
i=1

αk−ipβ̄k−ip−1

[
ζ̄ 22,j(k,i) −ζ̄1,j(k,i)ζ̄2,j(k,i)

−ζ̄1,j(k,i)ζ̄2,j(k,i) ζ̄ 21,j(k,i)

]
+

[
p2 0
0 p1

]
(40)

where β̄k−1 = βk−1γk−1 and j(k, i) = k − (i + 1)p − 1.
Furthermore, the functions hk and gk are obtained as

hk = β̄k−1p2ζ 21,k−p−1 + β̄k−1p1ζ
2
2,k−p−1 + β̄k−1

×

b
k−p
2 c∑
i=1

αk−ipβ̄k−ip−1

×

(
ζ2,k−p−1ζ̄1,j(k,i) − ζ1,k−p−1ζ̄2,j(k,i)

)2
(41)

and

gk=p1 p2+
b
k−p
2 c∑
i=1

αk−ipβ̄k−ip−1

(
p2ζ̄ 21,j(k,i)+p1ζ̄

2
2,j(k,i)

)
. (42)

Finally, the results (39), (40), (41) and (42) can be susbstituted
in (38) for the computation of αk .
As can be seen fromExample 1, the procedure for calculating
αk is straightforward and it is possible to extend it to a higher
number of uncertain parameters.
Lemma 3: If αk is computed from the lower bound in (38)

such that
αk =

fk − d1 gk
d1 hk − lk

(43)

and that ζ̄ζζ k , ζζζ k are bounded, then there exists an upper-bound
αmax such that max0≤k<∞ αk ≤ αmax.

Proof: Consider the expression (43), using the results
(39), (40), (41) and (42) from Example 1, then it is obtained
that

αk =
fk − d1 gk
d1 hk − lk

=
νk

d1 hk − lk
+

µ1,k

d1 hk − lk
αk−p+

µ2,k

d1 hk − lk
αk−2p + · · ·

(44)

where νk , µ1,k , µ2,k , . . . are functions of p1, p2, d1, βk , γk ,
ζ̄ζζ k and ζζζ k . Furthermore, the system (44) is augmented to the
form

αk =
νk

d1 hk−lk
+

µ1,k

d1 hk−lk
αk−p +

µ2,k

d1 hk−lk
αk−2p+ · · ·

αk−p = αk−p

αk−2p = αk−2p

... =
... (45)

which can be written in a vector form as

ᾱααk =


µ1,k

d1hk − lk

µ2,k

d1hk − lk
· · · · · ·

1 0 0 · · ·

0 1 0 · · ·

...
...

. . . · · ·

 ᾱααk−p

+


νk

d1hk − lk
0
...


= Hkᾱααk−p + ϑϑϑk (46)

where ᾱαα>k =
[
αk --

--

αk−p --
--

· · ·

]
. Consider that all terms other

than ᾱααk are bounded. From (41), the function hk is a function
of ᾱααk−p and appears in the denominator of the first row
elements of Hk given in (46). If αk grows large enough with
all other terms bounded then the first row elements of Hk and
ϑϑϑk will shrink such that there exists αk = αmax which results
in the norm ‖Hk‖ < 1. Thus, it is obtained that

‖ᾱααk‖ ≤ ‖Hk‖
∥∥ᾱααk−p∥∥+ ‖ϑϑϑk‖ (47)

which is stable due to the fact that ‖Hk‖ < 1 and that ‖ϑϑϑk‖ is
bounded. Then it is obtained that max0≤k<∞ αk ≤ αmax.
Remark 4: Even though the results from Example 1 are

used, an expression similar to (44) can be obtained for a
system with any number of uncertain parameters.
Remark 5: From Lemma 3 it is seen that a constant αmax

exists that will satisfy (38). Thus, αk = αmax can be tuned
rather than using (43) to compute αk .

C. STABILITY ANALYSIS
Stability is given by the following Theorem:
Theorem 1: The closed-loop system, consisting of the sys-

tem (1) with uncertain parametersφφφ and b, the controller (13)
with adaptive laws (16) and (17), is stable if and only if(

|am| + κ3 (1+ αmaxd0)
1
2 |xk−p|(g

p+1
−g−1)

)
< 1.

Furthermore, the tracking error, ek = xk − xm,k , converges
asymptotically to a bound ε.

Proof: The first part ofTheorem 1 discusses the bound-
edness of the signals in the closed loop system while the sec-
ond part discusses the asymptotic convergence of the tracking
error. However, note that the boundedness of αk can only
be considered after the convergence of the tracking error is
established.
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It was shown in Lemma 1 and Lemma 2 that the adaptive
paramaters φ̂k and b̂k are bounded. Now consider the condi-
tion (a) of Lemma 1 given as

lim
k→∞

αk+1βkγ
2
k

1+ αk+1βkγk ζ̄ζζ
>

k−pPk−pζ̄ζζ k−p
ē2k+1 = 0 (48)

which is true for |ēk+1| ≥ (1+ αmaxd0)
1
2 ωk . To guarantee

that limk→0 |ēk+1| ≤ (1+ αmaxd0)
1
2 ωk it must be guaran-

teed that ‖ζ̄ζζ
>

k−pPk−pζ̄ζζ k−p‖ is bounded. From Lemma 2 it is
shown that this is indeed the case. Therefore, since, αk+1, βk
and γk are positive in addition to ‖ζ̄ζζ

>

k−pPk−pζ̄ζζ k−p‖ ≤ d0,
where d0 is some positive constant, then (48) implies that

lim
k→∞

αk+1βkγ
2
k

1+ αk+1βkγkd0
ē2k+1 = 0 (49)

and ultimately, limk→∞ |ēk+1| ≤ (1+ αmaxd0)
1
2 ωk . Con-

sider now the error dynamics given by

ek+1 = amek−p + ēk+1 (50)

and

|ek+1| ≤
(
|am| + κ3 (1+ αmaxd0)

1
2 |xk−p|(g

p+1
−g−1)

)
|ek−p|

+ κ3 (1+ αmaxd0)
1
2 |xk−p|(g

p+1
−g−1)

|rk−p| + κ2.

(51)

Consider that κ3 is small enough and xk lies in a neighborhood
such that

(
|am| + κ3 (1+ αmaxd0)

1
2 |xk−p|(g

p+1
−g−1)

)
<

ām < 1 and κ3 (1+ αmaxd0)
1
2 |xk−p|(g

p+1
−g−1)

|rk−p| + κ2 <
1max for some positive constants ām and1max, then (51) has
a solution that satisfies

|ek | ≤ ā
b
k−p
2 c

m |e0| +
b
k−p
2 c∑
i=1

āim1max. (52)

Also, since ām is in the unit disk, it follows that

limk→∞ ā
b
k−p
2 c

m |e0| = 0 and limk→∞
∑b k−p2 c

i=1 āim1max = ε

for some positive constant ε. Therefore,

lim
k→∞
|ek | ≤ ε (53)

which establishes the boundedness of |ek |.
Finally, consider the coefficient αk given by (38). Since it

has been established that |ek | is bounded, then ζ̄ζζ k and ζζζ k are
also bounded. Therefore, using Lemma 3 it is concluded that
αk is bounded.

III. EXTENSION TO MULTIVARIABLE SYSTEMS
In this section the proposed discrete-time adaptive controller
is extended to multivariable nonlinear systems with time-
delay.

Consider the nth order feedback linearizable nonlinear sys-
tem of the form

xk+1 = 8>ξξξ (xk )+ 0uk−p + 0δδδk
yk = C>xk (54)

where xk ∈ <n is the state vector, uk ∈ <m is the control input
vector, yk ∈ <m is the output vector,8 ∈ <q

∗
×n is a matrix of

uncertain parameters, 0 ∈ <n×m is the uncertain input gain,
C ∈ <m×n is the output matrix and δδδk ∈ <m is a smooth
time-varying disturbance vector such that ‖δδδk‖ ∈ O(1).
The function ξξξ (xk ) ∈ <q

∗

is a vector of known polynomial
functions xk . For the system (54), the following assumptions
are made:
Assumption 4: The delay p is known a priori.
Assumption 5: C>0 is non-singular.
Assumption 6: The norm of the function vector ‖ξξξ (xk) ‖

is bounded for a bounded ‖xk‖. Furthermore, ‖ξξξ (xk )‖ ≤ c0+
c1‖xk‖g for some positive contants c0, c1 and g ∈ Z+.
Assumption 7: There exists a 2x ∈ <

q×m and a positive
definite � ∈ <m×m such that 2 = 2x0

>
n and 0 = 0n�

where2 is an augmented parameter matrix and0n is a known
nominal input gain matrix.

Consider now the sampled-data reference model

xm,k+1 = 8mxm,k−p + 0mrk−p
ym,k = C>xm,k (55)

where xm,k ∈ <n is the reference model state vector, rk ∈ <m

is the reference vector, ym,k ∈ <m is the reference model
output vector, 8m ∈ <

n×n is a known Hurwitz matrix and
0m ∈ <

n×m is a known matrix. The control objective is to
force the system (54) to follow the reference model (55).

Before proceeding with the controller design, consder the
system (54). Using Assumption 5 and the fact that ‖δδδk −
2δδδk−1 + δδδk−2‖ ∈ O(T 2), it is obtained that

xk+1 = 8>ξξξ k + 0(C
>0)−1C>

(
2xk − xk−1 −8>(2ξξξ k−1

−ξξξ k−2)
)
+ 0

(
uk−p − 2uk−p−1 + uk−p−2

)
+ 0δ̃δδk

(56)

where ξξξ k ≡ ξξξ (xk ) and δ̃δδk = δδδk − 2δδδk−1+δδδk−2. Consider the
system (56), then using successive substitutions it is obtained
that

xk+p+1 = 2>ζζζ k + 0uk + ϒ
>

k−1ϕϕϕk−1 + 0υυυk+p (57)

where 2 is the augmented parameter vector, ζζζ k is the aug-
mented nonlinear function that is a function of the state xk
and control history u>k−1, · · · ,u

>

k−p+1. The terms ϒ>k ϕϕϕk and
υυυk are the augmented disturbances due to successive substi-
tution. The system (54) is now in a disturbance compensating
form, (57), and this will allow the design of a controller that
performs well in the presence of external disturbances.

Proceeding with the controller design, a p-steps ahead ref-
erence model (55) is subtracted from (57) and usingAssump-
tion 7 results in the error dynamics of the form

ek+p+1 = 8mek+0n2>x ζζζ k−0n2mxk−0n2rrk + 0n�uk
+ϒ>k−1ϕϕϕk−1 + υυυk+p (58)

where ek = xk − xm,k and 0m = 0n2r with 2r ∈ <
m×m a

known constant matrix. Define C>γ =
(
C>0n

)−1
C> and the
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state zk ∈ <m such that

zk+p+1 = C>γ (ek+p+1 −8mek ). (59)

Note that since it is assumed thatC>0 and� are non-singular
then C>0n is non-singular. Substitution of (58) in (59), gives

zk+p+1 = 2>x ζζζ k −2mxk −2rrk+�uk
+C>γ ϒ

>

k−1ϕϕϕk−1+ ῡυυk+p (60)

where 0υυυk = 0nῡυυk . Similar to the scalar case, it can be
shown that ‖ϒ>k−1ϕϕϕk−1‖ ≤ κ0 + κ1maxi∈[0,k] ‖xi‖(g

p+1
−g)

where κ0 and κ1 are positive constants. To achieve stability,
the controller is formulated as

uk = −�−1
(
2>x ζζζ k −2mxk −2rrk

)
. (61)

However, since the parameters 2 and � are assumed to be
uncertain the controller is modified to the form

uk = −�̂−1k
(
2̂>x,kζζζ k −2mxk −2rrk

)
. (62)

Substitution of (62) in (60) results in

zk+p+1 = 2̃>x,kζζζ k + �̃kuk + C>γ ϒ
>

k−1ϕϕϕk−1 + ῡυυk+p (63)

where 2̃x,k = 2x − 2̂x,k and �̃k = �− �̂k . Rewriting (63)
and delaying by p-time steps it is obtained that

zk+1 = 2̃>x,k−pζζζ k−p + �̃kuk−p + C>γ ϒ
>

k−p−1ϕϕϕk−p−1 + ῡυυk

= 9̃>k−pζ̄ζζ k−p + C
>
γ ϒ
>

k−1ϕϕϕk−1 + ῡυυk (64)

where 9̃>k =
[
2̃>x,k --

--

�̃k

]
∈ <

m×(q+m) is the augmented

parameter estimate error vector and ζ̄ζζ
>

k =

[
ζζζ>k --

--u>k

]
∈

<
q+m is the augmented vector of known functions. Using

(64), it is possible to formulate the adaptation law as follows

9̂k+1 =

{
9̂k−p + αk+1βkγkPk+1ζ̄ζζ k−pz>k+1 ∀k ∈ [k0,∞)
9̂k0 ∀k ∈ [0, k0)

(65)

Pk+1 =


Pk−p

−
αk+1βkγkPk−pζ̄ζζ k−pζ̄ζζ

>

k−pPk−p

1+ αk+1βkγk ζ̄ζζ
>

k−pPk−pζ̄ζζ k−p
∀k ∈ [k0,∞)

Pk0 > 0 ∀k ∈ [0, k0)
(66)

where Pk ∈ <(q+m)×(q+m) is a symmetric positive-definite
covariance matrix, αk is a positive coefficient and βk > 0
is a scalar coefficient used to prevent a singular �̂k . The
coefficient γk is defined similar to (18) and is given as

γk =

1−
(1+αmaxd0) ω2

k

‖zk+1‖2
, if ‖zk+1‖≥(1+αmaxd0)

1
2 ωk

0, if ‖zk+1‖<(1+αmaxd0)
1
2 ωk
(67)

where ωk = ‖C>γ ‖
(
κ0 + κ1‖xk−p‖(g

p+1
−g)
)
, d0 ≥ ζ̄ζζ

>

k Pk ζ̄ζζ k
and αmax ≥ αk .

Remark 6: Similar to the scalar case, if βk is selected
such that β−1k is not an eigenvalue of −αk+1γk�̂

−1
k−pSPk+1

ζ̄ζζ k−pz>k+1, where S = [0 · · · 0 C>γ ], then it is guaranteed that
�̂k+1 will never be singular.
Stability of (64) is summarized in the following theorem:
Theorem 2: The closed loop system (64) with adaptive

laws (65) and (66), is stable if and only if

‖8m‖ + κ1

(
1+ 2‖C>γ ‖‖0n‖

)
× (1+ αmaxd0)

1
2 ‖xk−p‖(g

p+1
−g−1) < 1.

Furthermore, the tracking error, ‖ek‖ = ‖xk − xm,k‖, con-
verges asymptotically to a bound ε.

Proof: Consider the positive function

Vk =
m∑
j=1

p∑
i=0

(
ψ̃
>

j,k−iP
−1
k−iψ̃ j,k−i

)
(68)

where 9̃>k =

[
ψ̃
>

1,k --
--

ψ̃
>

2,k --
--

· · · --
--

ψ̃
>

m,k

]
. The difference

between two time steps is

1Vk =
m∑
j=1

(
ψ̃
>

j,k+1P
−1
k+1ψ̃ j,k+1 − ψ̃

>

j,k−pP
−1
k−pψ̃ j,k−p

)
.

(69)
Substitution of (65) and (66) into (69) and following the same
procedures as in Lemma 1 it is obtained that

1Vk = −
αk+1βkγ

2
k

1+ αk+1βkγk ζ̄ζζ
>

k−pPk−pζ̄ζζ k−p
z>k+1zk+1 ≤ 0 (70)

which is true for ‖zk+1‖ ≥ (1+ αmaxd0)
1
2 ωk . To guarantee

that limk→0 ‖zk+1‖ ≤ (1+ αmaxd0)
1
2 ωk it must be guaran-

teed that ‖ζ̄ζζ
>

k−pPk−pζ̄ζζ k−p‖ is bounded. Using the results in
Lemma 2, Lemma 3 and Theorem 1 it can be concluded
that limk→∞ ‖zk+1‖ ≤ (1+ αmaxd0)

1
2 ωk .

Consider the system (58), then substitution of the control
law (62) gives

ek+p+1 = 8mek + 0n2>x ζζζ k − 0n2mxk − 0n2rrk + 0n�uk
+ϒ>k−1ϕϕϕk−1 + 0nῡυυk+p

= 8mek + 0nzk+p+1 +
(
I − 0nC>γ

)
ϒ>k−1ϕϕϕk−1

(71)

and a p time-steps delayed (71) satisfies

‖ek+1‖ ≤
(
‖8m‖ + κ1

(
1+ 2‖C>γ ‖‖0n‖

)
(1+ αmaxd0)

1
2

×‖xk−p‖(g
p+1
−g−1)

)
‖ek−p‖+κ1

(
1+2‖C>γ ‖‖0n‖

)
× (1+ αmaxd0)

1
2 ‖xk−p‖(g

p+1
−g−1)

‖rk−p‖

+ κ0

(
1+ 2‖C>γ ‖‖0n‖

)
. (72)

Consider that κ1 is small enough with xk lying in a
neighborhood such that ‖8m‖ + κ1

(
1+ 2‖C>γ ‖‖0n‖

)
×

(1+ αmaxd0)
1
2 ‖xk−p‖(g

p+1
−g−1) < ‖8̄m‖ < 1 and
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that κ1
(
1+ 2‖C>γ ‖‖0n‖

)
(1+ αmaxd0)

1
2 ‖xk−p‖(g

p+1
−g−1)

‖rk−p‖ + κ0
(
1+ 2‖C>γ ‖‖0n‖

)
< 1max for some hurwitz

‖8̄m‖ and a positive1max, then the expression (72) satisfies

‖ek‖ ≤ ‖8̄m‖
b
k−p
2 c‖e0‖ +

b
k−p
2 c∑
i=1

‖8̄m‖
i1max. (73)

Since 8̄m is Hurwitz then limk→∞ ‖8̄m‖
b
k−p
2 c‖e0‖ = 0

and limk→∞
∑b k−p2 c

i=1 ‖8̄m‖
i1max = ε for some positive

constant ε. Therefore,

lim
k→∞
‖ek‖ ≤ ε (74)

which establishes the boundedness of ‖ek‖.

IV. SIMULATION EXAMPLE
In this section, a scalar system and amultivariable systemwill
be used to demonstrate the performance of the controller. The
scalar system example will compare the proposed approach
to that in [2].

A. SCALAR SYSTEM WITHOUT TIME-DELAY
Consider the nonlinear discrete-time system presented in [2]

xk+1 = −3 x2k + uk + sin
(
k
50
π

)
(75)

with x0 = 0. To attenuate the influence of the disturbance the
system is written in the form

xk+1 = 2 xk − xk−1 − 3
(
x2k − 2 x2k−1 + x

2
k−2

)
+ uk − 2 uk−1 + uk−2 + υk . (76)

The design objective is to track the reference model

xm,k+1 = 0.9 xm,k + 0.25 rk (77)

where rk = 1. Using (76) and (77), the control law is derived
as

uk = 2 uk−1 − uk−2 + 0.9 xk + 0.25 rk − 2 xk + xk−1

− φ̂k

(
x2k − 2 x2k−1 + x

2
k−2

)
. (78)

As in [2], the parameter uncertainty is assumed to be 90% and
the initial value of the adaptive parameter is selected as φ̂0 =
−0.3. After a number of trials, the remaining parameters
are selected as P0 = 100, αk = 1 and d0αmax = 0.1.
The value P0 = 100 is the same as in [2]. The system is
simulated using both control approaches and the tracking
performance is shown in Fig.1. From the results, it can be seen
that both approaches result in stable performance, however,
the approach proposed in this work can attenuate the effects of
external disturbances leading to better tracking performance.
In Fig.2 the parameter convergence for both approaches is
shown. It can be seen that in both approaches the adaptive
parameter converges to the true value which is to be expected
for the case of a single uncertain parameter.

FIGURE 1. Tracking performance of the proposed controller and the
approach in [2].

FIGURE 2. Parameter convergence of the proposed controller and the
approach in [2].

B. SCALAR SYSTEM WITH TIME-DELAY
Consider the system (75) with a control input time-delay of
p = 1 given as

xk+1 = −3 x2k + uk−1 + sin
(
k
50
π

)
. (79)

Using successive substitutions, it is obtained that

xk+1 =−27 x4k−1−3 u
2
k−2+18 x

2
k−1uk−2+uk−1

+18δk−1x2k−1 − 6δk−1uk−2 − 3δ2k−1 + δk

= φφφ>ξξξ k−1 + uk−1 + ρρρ
>

k−1ϕϕϕk−1 + υk (80)

where φφφ> = [−27| − 3|18], ξξξ>k =
[
x4k |u

2
k−1|x

2
k uk−1

]
and

δk = sin
( k
50π

)
. The terms ρρρ>k−1ϕϕϕk−1 and υk are the aug-

mented disturbance terms as a result of successive substi-
tutions. The system (80) is now written in the disturbance
attenuating form as

xk+1 = 2 xk − xk−1 + φφφ>
(
ξξξ k−1 − 2ξξξ k−2 + ξξξ k−3

)
+ uk−1

− 2uk−2 + uk−3 + ρ̄ρρ>k−1ϕ̄ϕϕk−1 + ῡk . (81)
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FIGURE 3. Tracking performance of the proposed controller and the
approach in [2].

FIGURE 4. Parameter convergence of the proposed controller.

The goal is for the system (81) to track reference model given
as

xm,k+1 = 0.9 xm,k−1 + 0.25 rk−1 (82)

resulting in the control law of the form

uk = 2 uk−1 − uk−2 + 0.9 xk + 0.25 rk − 2 xk + xk−1

− φ̂φφ
>

k
(
ξξξ k − 2ξξξ k−1 + ξξξ k−2

)
. (83)

After a number of trials, the controller parameters are selected
as φ̂φφ

>

0 = [−21|0|12], P0 = 200 I , αk = 70 and d0αmax =

0.2. For the approach in [2], the parameters are similarly
selected as φ̂φφ

>

0 = [−21|0|12] and P0 = 200 I . The system
is simulated using both control approaches and the tracking
performance is shown in Fig.3. The results show that the
proposed approach can produce stable performance while
minimizing the effects of the external disturbance. On the
otherhand, the approach in [2] is unable to handle the effects
of the time-delay coupled with the external disturbance and
results in unstable performance. In Fig.4 the convergence of
the adaptive parameters is shown while Fig.5 shows the non-
linear growth of ξξξ k with respect to |xk |. As it can be seen from
the results, the proposed approach guarantees convergence

FIGURE 5. Growth of ‖ξξξk ‖ w.r.t |xk |.

even though the nonlinear function does not satisfy the sector
bound condition that is required for the classical discrete-time
adaptive control approach.

C. MULTIVARIABLE SYSTEMS
Consider a nonlinear discrete-time system with matched dis-
turbance of the form

xk+1 =

 1.5 0 0
0 1.5 0
0 0 1.2

 x22,kx3,k
x1,k

+
 1.2 0

0 1.3
0 0

uk−p

+

 0.1
0.1
0

 sin
(
k
50
π

)

yk+1 =
[
1 0 0
0 1 0

]
xk (84)

with delay p = 4. The reference model is selected as

xm,k+1 =

 0.9 0 0
0 0.9 0
1 0 0

 xm,k−p +

 1 0
0 1
0 0

 rk−p

ym,k+1 =
[
1 0 0
0 1 0

]
xm,k . (85)

The reference is selected as rk = [0.15| − 0.15]>. The
nominal gain matrix and controller parameters are set as

0n =

 1 0
0 1
0 0

, 2m =

 0.9 0
0 0.9
0 0

>, �̂0 =

[
0.5 0
0 0.5

]
d0αmax = 0.2, αk = 10 and P0 = 5× 104I16×16. The matrix
2̂x,0 ∈ <

14×2 is computed using a nominal 8 = I3×3. The
system is simulated and the results can be seen in Fig.6. It can
be seen that the system output converges to the desired trajec-
tory. To demonstrate the ability to handle unknown control
directions, the matrix �̂0 is set as �̂0 = −0.5I2×2 while
some of the controller parameters are retuned as αk = 20
and P0 = 1 × 102I16×16. It can be seen from Fig.7 that the
system output converges to the desired trajectory. In Fig.8 the
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FIGURE 6. Tracking performance of the controller for a multivariable
system.

FIGURE 7. Tracking performance of the controller for a multivariable
system.

FIGURE 8. Elements of the matrix �̂k .

convergence of the elements of �̂k is shown. It can be seen in
the results that the adaptive law is capable of correcting �̂k
to match the actual system control direction.

Finally, the system is simulated with different values of the
input delay p using the controller parameters that led to the
results in Fig.7. The average of the norm of the tracking error

FIGURE 9. avg‖ek ‖ for different values of the input delay p.

avg‖ek‖ is computed over an interval of 1000 steps and plot-
ted in Fig.9. The results show that the tracking performance
may degrade with the increase in input delay p. This is due to
the fact that the delay p influences the transient performance
of the system (see Remark 1).

V. CONCLUSION
In this paper, a discrete-time adaptive controller for nonlinear
systems with non-sector bounded nonlinearities is proposed.
Although numerous approaches have been proposed in other
works that can handle non-sector bounded nonlinearities,
stability proofs are shown only for single parameter adaptive
laws. This paper presents stability proofs for systems with
multiple parameters while at the same time demonstrating
the difficulty of addressing systems with non-sector bounded
nonlinearities. Simulation results are given to demonstrate the
effectiveness of the controller for a nonlinear system.
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