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ABSTRACT This paper presents a discrete-time adaptive control approach for nonlinear systems with
input delay. The nonlinearity is assumed to be non-sector bounded, resulting in the key technical lemma
being inapplicable. The main aim of this paper is to present a general implementation inspired from
Kanellakopoulos and Fu, et al. for uncertain scalar and multivariable input delay systems with uncertain
parameters as well as uncertain input gain. While it has been shown by Kanellakopoulos and Fu, et al. that
it is possible to design adaptive control laws that compensate for the growth of the nonlinearity for single
parameter scalar systems, a rigorous analysis of multiple parameter systems is not shown. In this paper, it is
shown that an adaptive controller design that compensates for the growth of the nonlinearity is possible for
both multiple parameter scalar and multivariable systems with input delay. Rigorous stability proofs and

simulations are presented to verify the validity of the approach.

INDEX TERMS Adaptive control, discrete-time systems, nonlinear control, time-delay systems.

I. INTRODUCTION
Stabilization of systems with actuator delays has always been
achallenge in controller design. The celebrated Smith Predic-
tor [3], proved to be the first practical solution to dealing with
actuator delays although it was limited by the requirement of
exact model parameters as well as the time-delay. Later on,
adaptive control designs for uncertain linear time invariant
systems with known time-delays were presented by Ortega
and Lozano [4]. This was expanded further in [5]-[12], for
various cases including input delays, state delays, distributed
delays, time-varying delays, etc. In addition, various practical
implementations have been presented in [13]-[15]. The sur-
vey paper [19] provides a comprehensive list of papers pub-
lished prior to 2003 that discuss the stabilization of time delay
systems. Also, the book [20] presents predictive feedback in
delay systems with extensions to nonlinear systems, delay-
adaptive control and actuator dynamics modeled by PDEs.
More recently, compensation approaches for input delays
using truncated predictor feedback are shown in [16]—-[25].
Successful studies on the adaptive control of linear,
discrete-time uncertain systems with time-delay can be found
in [21]-[25]. For nonlinear discrete-time adaptive control,
implementations have always been limited by the require-
ment that the system nonlinearities are sector bounded. This

is a strict requirement of the Key Technical Lemma [26]
(page 181) that guarantees asymptotic stability of the system.
In order to eliminate this limitation a new approach was pro-
posed in [1]. This approach allowed for the relaxation of the
bound conditions on the nonlinearity while still guaranteeing
asymptotic stability. The approach was developed for a scalar
system (with a single uncertain parameter) without an uncer-
tain input gain or input time-delay and it was highlighted that
extension to more general cases is difficult. In [2], the same
problem is addressed without assuming a growth condition
on the nonlinearity, in the presence of bounded disturbances.
The results are proven for a system similar to that in [1] and
the algorithm for multivariable systems is given without any
rigorous analysis or stability proofs.

In this paper, a more general implementation inspired by
[1] and [2] is presented for uncertain scalar input delay sys-
tems with multiple uncertain parameters as well as uncertain
input gain. The approach is further extended to multivariable
input delay systems. For the scalar case, the approach is based
on the prediction of future signals through successive substi-
tution of the system model as is shown in [27]. Following the
approach in [1], a coefficient is introduced into the adaptive
law that guarantees asymptotic convergence in the presence
of non sector bounded nonlinearities. The approach is further
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extended to multivariable systems and it is shown that this
extension is not trivial and needs to be investigated rigorously.
Stability proofs are given with simulation results for a scalar
and a multivariable system to verify the proposed approach.

The organization of this paper is as follows: In Section II,
the main result and a discussion of scalar systems are pre-
sented. In Section III, an extension to multivariable systems
is provided. In Section IV, simulation examples are presented
and concluding remarks are given in Section V.

Throughout this paper, || - | denotes the Euclidean norm
and O(-) denotes order of ‘.’. For notational convenience,
the mathematical expression “‘f;” represents the value of the
signal f at the k’th sampling instant.

IIl. MAIN RESULT
In this section, the controller design is presented starting with
a simple scalar first-order system.

A. CONTROL OF A SCALAR INPUT-DELAY SYSTEM
IN DISCRETE-TIME
Consider the following discrete-time system with input delay

Xir1 =@ E (i) + bug—p + 8 4))

where x; € 0 is the system output, the parameters ¢ € R7",
the function & (x;) € MY is a known polynomial function of
Xk, ¢* € Z* is the number of parameters, b € 9 is assumed
to be known, p is the delay in number of steps and |§x| €
O(1) is an uncertain smooth time-varying disturbance. For the
system (1), the following assumptions are made:

Assumption 1: The delay p is known a priori.

Assumption 2: The function & (x;) is bounded for a
bounded x;. Furthermore, [|€ (x;) || < co + c1]xx|® for some
positive constant cg, c; and g € Z7 is the order of the
polynomial function & (xy).

Assumption 3: From the structure of the system (1), there
exist constants ko and x; such that the control input is
bounded as |ux_p| < ko + k1 Max;eo k-1 %%

The goal is to force the system (1) to track the reference
model

Xmk+1 = GmXm,k—p T bmrk—p 2)

where ay, € N is in the unit-disk. Extending the work in [3]
and [28] a controller is chosen as

ue = b7 (amxe = @€ (tp) + btk = Berp) 3

where Sk is an estimate of the disturbance. Substitution of
the controller (3) into (1) leads to error dynamics of the
form

ek+1 = amek—p + 5 4

where e = xm i — xx and Sk is the disturbance estimation
error. Since |am| < 1 and if the term || is bounded such
|5~k| < A for some constant A, then (4) is stable. Note
that the controller (3) is a function of x 1, and §k+p. There-
fore, xx4p and Skﬂ, are needed for the computation of the
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control input u;. Rather than deriving seperate estimations
for x4, and §k+p, the system (1) will be rewritten into a
form that attenuates the influence of the disturbance 8; and
that form will be used to derive delay free system dynamics.
From the delay free system dynamics, a causal control law is
derived.

Consider the system (1), according to the assumptions on
the disturbance §; and the results in [29], it follows that §; —
20k —1+6k—2 € 0(T2) where T < 1 is the sampling interval.
Using this result, the system can be written in a disturbance
compensated form as

Xl —2X 4+ x_1 =@ (Ex — 2841 +&12) + b (m—p
— 2up—pot + Wh—p2) g, (5)

Xep1 =@ (Er— 26,1+ & 2) +2x — 1 + b (k—p
- 2upp-1+ ukfpfz) + g (6)

where &£, = £ (x;) and vx = 8 — 28k + k2 € O(T?).
Using successive substitutions a delay-free system is obtained
as

Xetprl = 01Oy Uk—1, -+ o, Uk—p1) + DU + P19
+ Ukp (7

where 6 is the augmented parameter vector, £(-) is the aug-
mented nonlinear function that is a function of the state xi
and control history ug 1, ..., ux—p+1, and p;—_lfpk,l, Uk4p
are the augmented disturbance terms due to the successive
substitutions. Note that as a result of the successive sub-
stitutions p,_; will be a function of ¢, b and v and that
lor—1ll € O(LT?) for some constant A.

Consider the term ka_lgok,l, based on the structure of
& (xx), the augmented nonlinear function £(-) and ¢, will
contain cross terms of the states x x, X2, ..., the control
inputs uj k, uzk, ... and vy. However, p,j—_lgok_l can still
be written in parametric form. Using Assumption 3, it can
be shown that |p,11<pk_1| < K2 + K3 Max;e[o,k] |x,~|(gp+l’g)
where k7, k3 € O(LT?) are some positive constants. Further-
more, it can be shown that since vy is a function of vy history
and the uncertain parameter vector ¢, a bound can be found
such that |Tx| < A € O(T?).

Proceeding with the control law design, subtracting (7)
from a k + p steps ahead form of (2) results in an error
dynamics of the form

.

Cktp+l = amek + amXx — 0 & (g, ug—1, - .., Ug—p+1) — buy
T -

+bmrk — Pr_1Pr—1 — Uk4p- (8)

From (8) a control law is selected as

up = b (aka — 0T (W, k=1, Uk—py1) + bmrk>

C))
such that an error dynamics is achieved as

Chyl = ame—p+ P, 1@k—p_1 + 0k (10)
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Assume that k» & ky 4+ A, then (10) is further written in the
form

pHl_o 1 -
lex1] = (Jaml + Kabie—pl " 770) ey | + w2 + [
P+ _o
sl € T V|
P o
< (Iaml + kabiepl 775D Y el + 12

+1_
+ i3l pl @ T D ) (11)

which is asymptotically stable if and only if the state
x; lies in a neighborhood that satisfies the condition
Jam| + K3 x| €D < 1,

Remark 1: Upon careful inspection of the result (11),
it can be seen that the term (|am| + K3|xkp|(gp+l_g_1? is
a function of the delay p. Therefore, the stability of (11) is
guaranteed if and only if

1
1-— = —
x| < (%)y = (12)

The condition (12) gives the neighborhood for the stability
of (11). It is possible to select the sampling-interval T such
that k3 € O(AT?) is small enough resulting in a large enough
neighborhood for stability.

B. ADAPTIVE CONTROL OF AN INPUT-DELAY SYSTEM
Consider now that the parameters ¢ and b in system (1) are
uncertain constants. This will result in the parameter vector 6
being uncertain and the control law (9) is revised as

up = l;]:] (amxk — 0;§(xk, Uk—1, .o Uk—pt1) + bmr;?

. 13)
where 6 and by, are the estimates of @ and b respectively. The
parameter estimates must be computed such that the system
(1) tracks the reference model (2). Now that the goal of the
adaptive law is defined, it is possible to proceed with the
derivation. In order to derive the adaptive law, substituting
the control law (13) in (7) it is obtained that

T - _
Xtp+1 = AmXk + 0y &g + b7k + brug + Pr_ 1Pkt + Uk
(14)

where ¢ = ¢ (x, ux—1, ... uk—p+1) and Ok, by are the
parameter estimation errors respectively. Substracting (2)
from a p steps delayed (14), it is obtained that

~T ~ T _
k1 = amek—p + 60, Lxp + brplk—p + P 1Px—1 + Uk
~T - _
= amek—p + Vit k—p + PL_ 1941 + Tk (15)
~T - [ .
where ¢, = [92 ' bk] € M9t is the lumped parameter

€ Me+!. Using (15),

o =T !
estimation error and §;, = [;]‘(r L ]
it is possible to formulate the adaptive law as follows

Voot = 'i’k—p + a1 B Pryi8i_pery1 Yk € [ko, 00)
T Vk € [0, ko)
(16)
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Pr_p — apq
e Vi P - Py
P = { x PP ”g" L Vk € [ko, 00)
1+ak+1ﬁk3/k§k oPeptip
Py, >0 Vk € [0, ko)
(17)
where ex41 = ex41 — amek—p, B > 0 is a scalar

coefficient used to prevent a singular b, ko is some ini-
tial time step and the coefficient oy is positive and will be
defined later. The matrix P, € RIT1*4+! is the symmet-
ric positive-definite covariance matrix. The coefficient yj is
given as

(I+amado) 0f . 1
-k if |ek+1| > (1+05maxd0)5 Wi

Yk = el%+1 ’ |
0, if |exn | < (1+omaxdo)? ok
(18)
where w;, = (K2 + K3|xk_p|(gp+l’g>>. The constants omax

and dp are positive and will be defined in Lemma 2 and
Lemma 3. Finally, with respect to the coefficient Sy in (16)
and (17), consider the control law (9). The term by is an
adaptive term and there is a risk of division by zero if by is
singular. In order to guarantee that by in (13) is not singular,
consider the adaptive law from (16), namely

Vs

and let s = [0---0 1]7 such that by = s"4,. Then
premultiplying both sides of (19) with s it is obtained that

= Kl}kfp + 1 BV Prs 18 g pehri 19)

13k+1 = ST'/Afk+l = 13ka + Olk+1,3k)/ksTPk+IEk—pEk+1
~ 1 ~A_ = _
= br—pPr <E + bk_lpSTotkHJ/kPk+1§k_p€k+1)
(20

and 1f the initial choice of by —pis nonsmgular and ﬂk #=
—bk S ak+1ykPk+1§'k_pek+1 then bk+1 will be nonsingu-
lar. The value of B can be selected from a predefined set as
long as it satisfies ,Bk # b »S T 1 Prs1y —pCk+1-

Before proceeding with the stablhty analysis it is necessary
to define the following Lemmas:

Lemma 1: For the system (15) and the adaptive laws (16)
and (17), the following conditions are true:

2
(@) Timy o —HB 32 | =0

—r -
_ 14041 B Vi ie—pPr—pS—p
(®) gkl < collgkll, for some constants cg.

Proof: Consider the positive function

p
= VPl 1)
i=0

The forward difference Vi1 — Vi can be found as, [22],

N J’/;rfppl;lp'/}k—p‘
(22)

~T _ ~
AVi =V — Vi = 1/fk+1Pk_|lrl'/’k+1
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Substitution of (16) in (22) and following the approach
in [27], it is obtained that

~T 1 1 ~ ~T = _
AVi=1Y, (P;H —P;j,,) Vip — 2001 BV k€ kph+1

=T = _
P18 rop@ 1 BiVEe - (23)

To proceed further, consider (17). According to [22],
the covariance matrix P satisfies P,;lrl = P,;lp +

- T . . .
k+1Pk Vk§ k—p8 —p- Using this condition and the fact that
ak+1, Bk, Yk are positive coefficients, then (23) can be sim-
plified further to obtain
2
1Bk vy -

AL/ T
1+ k1 Bk pPr—p8i—p

AVp < —

which implies that 1/;,—: = [é: E by ] is bounded and, there-

AT ~ [N .
fore, ¥, = [02— ' bk‘l is also bounded, [22]. Note that for

any k € [ko, 00) the fo owing is true

k—ko
Vigr = Vig+ Y AVigpi (25)
i=0
Substituting (24) in (25), it is obtained that

k—ko
limVy 41 <V, — lim E
k—00 k— 004 0

=

)
Okoti+1 Bro+iVig+i€ho-+it1

X .
- T -
1+ otk tist1 Bro+iVio+i8 kyti—pPko+i—pS ko+i—p
(26)

Since by definition, Vi is non-negative and Vj, is finite,
then according to the convergence theorem of the sum of
series condition (a) of Lemma 1 is established as

2
) +1Bk Yy
lim

-

e =0. 27
— —— €4

k=01 + a1 Bl i p Prpi—p

Finally to verify part (b), consider the definition of £, and
the control law (13). It is obtained that

& = ef ]

= [é’/—{r il;;l (amxk —ékT;k +bmrk) ] .28

Consider (28), then from condition (a) it follows that the
adaptive parameters Bk and 6 are bounded. Furthermore,
the reference signal r; is bounded and &, is not sector
bounded w.r.t x;. Then it is obtained that

1€kl < coll &ill- (29)

|
the matrix Py in (17), the term

E,ipPk,pEk_p is bounded as

Lemma 2: For

_T -
Si—pPr—pCi—p < do (30)
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if ay is selected such that
—d
S fe—digk
dy by — I
where fi, gk, hr and [; are functions of the elements of f « and
oy history while dy, d; are some positive constants.
Proof: The inverse of the covariance matrix satisfies the
.- —1 —1 = =T
condition PkJrl = Pk_p + Olk+1,3k7/k§k_p§'k_p~ Therefore,

ok

€1y

the solution P,:l‘v’k € [ko + p, 00) can be computed as
-1 -1
Pk = Pk0
Lk*kzo—pJ .
+ Z Ak—ipBk—ip—1Vik—ip—18 k—(i+ 1yp—18 k—(i+-1)p—1

i=0
(32)

where kg is an initial time step and |-] is the floor function.
Rewriting (32) as

1552

B _ . -T
Pl =py! + ok Br—1Ve—18k—p-18k—p—1 + Z (O‘k—ip

i=1
- =T
X Br—ip—1Vk—ip=18k—i+1p—18k—i+1)—1 ) (33)

where kg = O for the sake of simplicity and considering
that the initial value of Pg is selected such that Py I =
diag(p1,p2, ..., Pg+1), then the matrix Py can be evaluated
by computing the inverse of P,:l. Therefore, the expression
of Py is obtained as

1
Py = —<05kM1,k +M2,k> (34)
arhy + g

where det (Pk_l) = axhy + gr and adj (Pk_l) = axM1 i +

M k. Premultiplying (34) with E,j and postmultiplying with
¢y, it is obtained that

ST, =T = =T =

ELPiEk = ———— (oudy Miady + £ Moty )-
akhi + 8k

(35)

Furthermore, using matrix and vector norms on the right-
hand-side of (35), the upperbound on E;Pkf « 1s obtained as

£y Piky (o [0 ] + 0224 ] ) 1]

aphi + g
co

2
= m(“k ”MlkaJFHMz,k”kaH - (36)

Now consider (36). If £, Pi&; < do then

(&) 5
a1 g I Mo ) dy (7
arhy + gk (ak ” Lk H + H 2”6” HCkH <do (37)

and solving for o results in a condition on « that is given as
oy > = AL 8k a8)

—dy hy — I
L= Mg g and ay =

co’

where fi = | Mo | [¢x
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Remark 2: Note that the constant d; can be adjusted to
avoid division by zero. Furthermore, a lower bound on ¢ can
be imposed to ensure that oy is always positive.

Remark 3: 1t is not possible to generalize the expression
for o for multiple uncertain parameters, however, the pro-
cedure will be presented for a system with two uncertain
parameters in order to illustrate the implementation of the
adaptive law. The procedure is similar for any number of
uncertain parameters.

Example 1: Con51der the system glven by (15) and assume

that ¥, —[wlk WZk]esﬁ and & =17, ! o] € 2.

AlsoletP,” = dzag(m , P2). Then the matrices M1 kand M
are obtained as

= Gy —C1k—p—182k—p—1
Myj=p—| - “Fed 5T (39)
—81Lk—p—-182.k—p-1 Grp
and
e o3 C1jte,n §2.jk,
2 i(k,i - l/( i)62,j(k,i)
My = h—ipB—ip—1| 5 IED
; L S RN T SR T
p2 0
n 40
[0 pl] (40)
where Bi_1 = Br_1vk—1 and j(k, i) = k — (i + )p — 1.

Furthermore, the functions /; and gj are obtained as

hy = Bk—lpzé“]z,k,l,,] + Ek—lplé“zz,k,p,l + Br—1
1552
X Z A —ipBk—ip—1
i=1
_ _ 2
X (iz,k—p—ls“l,j(k,i) - gl,k—p—lQ,j(k,i)) 41)
and
1552)
gk=p1p2+ Z ak—ipﬁk—ip—l(”ZC]%j(kyi) +P1§22,j(k,i))- (42)
i=1
Finally, the results (39), (40), (41) and (42) can be susbstituted
in (38) for the computation of .
As can be seen from Example 1, the procedure for calculating
oy is straightforward and it is possible to extend it to a higher
number of uncertain parameters.
Lemma 3: If ay is computed from the lower bound in (38)
such that
ak:fk—dl 8k 43)
dy hy — I
and that £, ¢ are bounded, then there exists an upper-bound
O'max such that maxo<k<co 0k < max-
Proof: Consider the expression (43), using the results
(39), (40), (41) and (42) from Example 1, then it is obtained
that

fe—di gk
g = ———
dy hy — Ik

Vi M1k

Qk—op + -+
(44)

= + 2.k
dihe — I dy e — 1 2P dh )
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where vg, i1k, U2k - - . are functions of py, p2, di, B, Vi,
¢ and ¢ . Furthermore, the system (44) is augmented to the

form
Vk M1,k U2,k
ok = 4 he—1x + r hk_lkak—p + 4 hk_lkotk—zp—l-
Qk—p = Xk—p

Qg—2p = Qk—2p

C= 45)
which can be written in a vector form as
M1k U2,k
dihy — I dihg =1
& — 1 0 0 | g
k= 0 1 0 k=p
_ Vi
dihg — I
+ 0
= Hk&k—p + ¥ (46)
where &k = -Olk :Olk—p : .. ] Consider that all terms other

than ¢y, are bounded. From (41), the function 4y is a function
of @y, and appears in the denominator of the first row
elements of Hy given in (46). If oy grows large enough with
all other terms bounded then the first row elements of H; and
1 will shrink such that there exists o = amax Which results
in the norm ||Hg|| < 1. Thus, it is obtained that

leex Il < IHll |@x—p | + 19l (47)

which is stable due to the fact that ||H || < 1 and that ||| is
bounded. Then it is obtained that maxXo<t<co ¥k < 0¢max. M

Remark 4: Even though the results from Example 1 are
used, an expression similar to (44) can be obtained for a
system with any number of uncertain parameters.

Remark 5: From Lemma 3 it is seen that a constant o/yax
exists that will satisfy (38). Thus, oy = omax can be tuned
rather than using (43) to compute og.

C. STABILITY ANALYSIS
Stability is given by the following Theorem:

Theorem 1: The closed-loop system, consisting of the sys-
tem (1) with uncertain parameters ¢ and b, the controller (13)
with adaptive laws (16) and (17), is stable if and only if

1
(|am| + K3 (l + amaxdo)f |xk_p|(gl’+lfg*1)> < 1.

Furthermore, the tracking error, ex = Xt — Xm i, converges
asymptotically to a bound €.

Proof: The first part of Theorem 1 discusses the bound-
edness of the signals in the closed loop system while the sec-
ond part discusses the asymptotic convergence of the tracking
error. However, note that the boundedness of «; can only
be considered after the convergence of the tracking error is
established.

4331



IEEE Access

K. Abidi, I. Postlethwaite: Non-Sector Bounded Nonlinear Systems

It was shown in Lemma 1 and Lemma 2 that the adaptive
paramaters ¢, and by are bounded. Now consider the condi-
tion (a) of Lemma 1 given as

otk +1PBk sz
lim

k—ooq 4 ak+1,3k3/k§k pPk_PEk_P

&y =0 (48

which is true for |ex41| > (1 + ozmaxdo)i wg. To guarantee
that limg_o |exs1] < (1 + cmaxdo)? @y it must be guaran-
teed that (£, _,Px—p¢ i_pl is bounded. From Lemma 2 it is
shown that thls is indeed the case. Therefore since, ok +1, Bk
and y; are positive in addition to ||§k_pPk ,,{k_p” < dy,
where dy is some positive constant, then (48) implies that

a1 BrvE

_ PR 2 =0 (49)
k=00 1+ ag11Brvido Gt

and ultimately, limg_ oo 11| < (1 4+ dmaxdo)? wg. Con-
sider now the error dynamics given by
€k+1 = amek—p + ext1 (50

and
3 (&t —g=1)
lek+11 < (lam| + 3 (1 + @maxdo) 2 |xk—p| |€k—p|

1 +1_ g,
+ 3 (1 + amaxdo)? |xe—p| " 78 Virey| + 12
(51
Consider that k3 is small enough and x; lies in a neighborhood
1
such that (Iam| + a3 (1 + mando)? [x_p|@" —g—U) <
am < 1and &3 (1 + omaxdo) 2 Pi—pl @ =8 D] + 12 <
Amax for some positive constants apy, and Ay, then (51) has
a solution that satisfies
k—p
u L5521
lexl <an” leol + Y @ Amax. (52)
i=1

Also, since ap is in the unit disk, it follows that

1552 L5 i
limg 00 @m * “leo] = 0 and limg_ 00 ). ~ @ Amax = €
for some positive constant €. Therefore,

lim |ex| <€ (53)
k— 00

which establishes the boundedness of |eg|.

Finally, consider the coefficient o given by (38). Since it
has been established that |e;| is bounded, then £; and ¢, are
also bounded. Therefore, using Lemma 3 it is concluded that
oy 1s bounded. [ |

IIl. EXTENSION TO MULTIVARIABLE SYSTEMS
In this section the proposed discrete-time adaptive controller
is extended to multivariable nonlinear systems with time-
delay.

Consider the n' order feedback linearizable nonlinear sys-
tem of the form

Xit1 = ®TEXE) + Mw_y + T
vk = CTx¢ (54)
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where x; € 9" is the state vector, uy € N is the control input
vector, yx € 0" is the output vector, ® € RY <" is a matrix of
uncertain parameters, I’ € N"*™ is the uncertain input gain,
C € W™ is the output matrix and §; € N™ is a smooth
time-varying disturbance vector such that ||8x]| € O(1).
The function £(x¢) € 9" is a vector of known polynomial
functions x. For the system (54), the following assumptions
are made:

Assumption 4: The delay p is known a priori.

Assumption 5: CTT is non-singular.

Assumption 6: The norm of the function vector ||& (x¢) ||
is bounded for a bounded ||x ||. Furthermore, ||& (X)|| < co+
c1||xx ||¢ for some positive contants cg, ¢c; and g € Z ™.

Assumption 7: There exists a @x € RN and a positive
definite 2 € R"™*™ such that ® = ®XFJ and ' = I')Q
where © is an augmented parameter matrix and I'y, is a known
nominal input gain matrix.

Consider now the sampled-data reference model

Xm,k+1 = cI)mxm,k—p + 1—‘mrk—p
Ymk = C ' Xm (55)

where xp, ¢ € N is the reference model state vector, ry € RN
is the reference vector, ym x € N is the reference model
output vector, &y, € R is a known Hurwitz matrix and
I'm € R is a known matrix. The control objective is to
force the system (54) to follow the reference model (55).

Before proceeding with the controller design, consder the
system (54). Using Assumption 5 and the fact that ||§; —
2841 +8x_2|l € O(T?), it is obtained that

Xer1 = @& + F(CTF)_1CT<2Xk —Xe—1 — DT (2%,

—§k—2)) + T (wg—p — 2Uk—p—1 + We—p—2) + T8
(56)

where §; = &£(x¢) and 8 = 8; —28_1 +8;_». Consider the
system (56), then using successive substitutions it is obtained
that

Xiipt1 = O ¢, +Twe + 095 + Ty, (57)

where © is the augmented parameter vector, ¢ is the aug-
mented nonlinear function that is a function of the state x;
and control history u,j_l, cee, ukT_p i The terms TkT ¢, and
vy are the augmented disturbances due to successive substi-
tution. The system (54) is now in a disturbance compensating
form, (57), and this will allow the design of a controller that
performs well in the presence of external disturbances.

Proceeding with the controller design, a p-steps ahead ref-
erence model (55) is subtracted from (57) and using Assump-
tion 7 results in the error dynamics of the form

Crip+1 = q)mek‘l‘rn@;l(—fk_Fn@)mxk_rn@rrk + I'h Quy
Y 19kt + Vi (58)
where e; = X; — Xk and I'yy, = 'O, with ©, € RN a

known constant matrix. Define C T (C T ) ! CT and the
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state z; € R such that
Ziipr1 = C) (€ ipi1 — Pmey). (59)

Note that since it is assumed that C ' I" and €2 are non-singular
then C Ty is non-singular. Substitution of (58) in (59), gives

Ziptl = @I{k — OpXy — O+ Quy

+C) T 10k 1+ Vkgp (60)

where I'vy = I'yvug. Similar to the scalar case, it can be
+1_

shown that [|[Y,_ @i < ko + x1 maxieo i [Ix;| € %)

where k¢ and k| are positive constants. To achieve stability,
the controller is formulated as

wo=—0! (@j;k — OpXp — @rrk) . 6D

However, since the parameters ® and €2 are assumed to be
uncertain the controller is modified to the form

w = 8! (@[k;k — OmXg — @rrk) 62
Substitution of (62) in (60) results in
Zipr1 = O 8k + Qw + C) 1191 +Diyyp  (63)

where éx,k = QO — C:)x,k and Qk =Q— Qk. Rewriting (63)
and delaying by p-time steps it is obtained that

Zp1 =00 Ly + Quwmep +C) N, 0,1 + Dk

=W Ly + C) N0y + Dk (64)
where ¥, = [(:)Ik ! Qk] e M™x@tm is the augmented
parameter estimate error vector and E,{T = [;; E“l—cr] €

R4 is the augmented vector of known functions. Using
(64), it is possible to formulate the adaptation law as follows

Py = Wiy + a1 vk Prrilipzl VK € [ko, 00)
’ WY Yk € [0, ko)
(65)
Pi_p
- =T
k1 Bk ViPr—p& i —p& i, Pi—
Pyt = | —— p_ipkp_ P Vk e [ko, 00)
14 a1 Bevi§ ik pPr—pEi—p
Pry >0 Vk € [0, ko)
(66)

where Py € R@TMx@+m s 4 symmetric positive-definite
covariance matrix, oy is a positive coefficient and g > 0
is a scalar coefficient used to prevent a singular Q. The
coefficient yy is defined similar to (18) and is given as

_ (1+omaxdo) w;%
Yk = lzx 11112 1
0, if lzg 41l < (1 +amaxdo) 2
(67)
1_ T =
where or = C] 1| (k0 + 1 Ixep I €' 9), do = &, Py
and amax > k.

. 1
, if ”Zk+l ” = (1 +05maxd0)2 Wi
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Remark 6: Similar to the scalar case, if B is selected
such that 8 !is not an eigenvalue of —ak+1ykf2k_lpSPk+]
Ek,pz,L_l, where S =[0---0 C;,'—], then it is guaranteed that
Qk+1 will never be singular.

Stability of (64) is summarized in the following theorem:

Theorem 2: The closed loop system (64) with adaptive
laws (65) and (66), is stable if and only if

@l + 1 (1+21C] 1ITA)
1 1
x (1 + amaxdo)? Ixe—p |7 7670 < 1.

Furthermore, the tracking error, ||ex|| = ||Xx — Xm k||, con-
verges asymptotically to a bound €.
Proof: Consider the positive function

mop

Ve=20 0" (ViniPi W) (68)
j=1 i=0

LT

where U] = ) 'ﬁm,k]‘ The difference

s

between two time steps is

m
~T 1 x ~T 1 x
AV = Z (wj,k+lpk+1¢j,k+1 - wj,k—ppk—pwj,k—p)'
j=1
(69)
Substitution of (65) and (66) into (69) and following the same
procedures as in Lemma 1 it is obtained that

ak41BevE

_T -
L+ k1Bl pPr—pSi—p

AVi = — Z 1z <0 (70)

which is true for ||zx4+1] > (1 + Olmade)% wg. To guarantee
1
that limg ¢ ||Zg+1]] < (1 + @maxdo) 2 wi it must be guaran-
teed that ||£ k_pPk—pE k—pll is bounded. Using the results in
Lemma 2, Lemma 3 and Theoremll it can be concluded
that limy o0 |2k 41| < (1 + otmaxdo) 2 w.
Consider the system (58), then substitution of the control
law (62) gives
kipil = Pmex + MO & — TyOpxy — DO,y + TpQuy
+T 101 + Tabiap
= One + MnZgqpr1 + (1 - FnCJ) T 101
(71)

and a p time-steps delayed (71) satisfies

lews il = (1@ml 4w (14 20CT 1Tl (0 + emado)?
XIxe—pll 5D eyl (14216 T )
X (1 + aimaxd0)? [xe—p " D ey |

0 (1421C] 1) (72)

Consider that «; is small enough with x; lying in a
neighborhood such that | ®ml| + 1 (1 +2||C},T||||Fn||) x

. '
(14 amaxdo)? [ —p| @780 < &y < 1 and
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1
that sy (1420 1Tl ) (1 + mando)? 1wy € =D
Ik _pll + Ko (1 +20C] ) ||rn||) < Amay for some hurwitz
| ®m || and a positive Amax, then the expression (72) satisfies
1422

— k;p - .
lexl < I1Pmll 2 Mleol + D 1PmlliAmax.  (73)

i=1

. = . . . = k—p
Since & is Hurwitz then limy— o 1Pmll 2 el = 0
kp _

and limg— oo Z}:f ! |®Pml'Amax = € for some positive

constant €. Therefore,
lim (el <€ (74)
k—o00

which establishes the boundedness of |e]||. |

IV. SIMULATION EXAMPLE

In this section, a scalar system and a multivariable system will
be used to demonstrate the performance of the controller. The
scalar system example will compare the proposed approach
to that in [2].

A. SCALAR SYSTEM WITHOUT TIME-DELAY
Consider the nonlinear discrete-time system presented in [2]

k
Xkp1 = —3 x,? + uy + sin <5n> (75)
with xg = 0. To attenuate the influence of the disturbance the
system is written in the form

X+l = 2 X — Xg—1 — 3 (x,? — 2x,%71 —l—x,iz)
+up — 2 ug—1 + up—2 + vg. (76)
The design objective is to track the reference model
Xmk+1 = 0.9 xm x + 0.25 rg a7

where ry = 1. Using (76) and (77), the control law is derived
as

up = 2up—1 —upg—2+09x, +025r, — 2 xp + X1
i (=200 ). (78)

As in [2], the parameter uncertainty is assumed to be 90% and
the initial value of the adaptive parameter is selected as 430 =
—0.3. After a number of trials, the remaining parameters
are selected as Pp = 100, oy = 1 and dpormax = O.1.
The value Pp = 100 is the same as in [2]. The system is
simulated using both control approaches and the tracking
performance is shown in Fig. 1. From the results, it can be seen
that both approaches result in stable performance, however,
the approach proposed in this work can attenuate the effects of
external disturbances leading to better tracking performance.
In Fig.2 the parameter convergence for both approaches is
shown. It can be seen that in both approaches the adaptive
parameter converges to the true value which is to be expected
for the case of a single uncertain parameter.
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FIGURE 1. Tracking performance of the proposed controller and the
approach in [2].

B

o

0 20 40 60 80 100
k

FIGURE 2. Parameter convergence of the proposed controller and the
approach in [2].

B. SCALAR SYSTEM WITH TIME-DELAY
Consider the system (75) with a control input time-delay of
p =1 given as

X1 = —3 x,f + up_1 + sin (;—On> . (79)
Using successive substitutions, it is obtained that
Xep1 =27 x} =3l 18 x7 jup—o+ug_i
188, _1x7 | — 68k _1ux—o — 387 + 8k
=@ E |t w1+ Pl 19r 1+ Uk (80)

where ¢ = [-27| — 3|18, & = [x{|ul_,|x?ux—1] and

8¢ = sin (%n). The terms p, ¢, and vy are the aug-

mented disturbance terms as a result of successive substi-

tutions. The system (80) is now written in the disturbance

attenuating form as

Xkl =2x — X1+ (Ery — 264 +E43)
— Qug—2 + uk—3 + Pg_1@r_1 + Uk (81)
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FIGURE 3. Tracking performance of the proposed controller and the
approach in [2].
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FIGURE 4. Parameter convergence of the proposed controller.

The goal is for the system (81) to track reference model given
as
Xm,k+1 = 0.9 Xm,k—1 + 0.25 re—q (82)

resulting in the control law of the form
up =2 up—1 — w2 +09 x; +0.25 ry — 2 x5 + X1
~T
— &, (Ex— 28,1 +& ). (83)

After anumber of trials, the controller parameters are selected
as &g = [-21]0[12], Po = 200 I, ox = 70 and dootmax =
0.2. For the approach in [2], the parameters are similarly
selected as qASO = [-21]0|12] and Py = 200 I. The system
is simulated using both control approaches and the tracking
performance is shown in Fig.3. The results show that the
proposed approach can produce stable performance while
minimizing the effects of the external disturbance. On the
otherhand, the approach in [2] is unable to handle the effects
of the time-delay coupled with the external disturbance and
results in unstable performance. In Fig.4 the convergence of
the adaptive parameters is shown while Fig.5 shows the non-
linear growth of £ with respect to |xx|. As it can be seen from
the results, the proposed approach guarantees convergence

VOLUME 7, 2019
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FIGURE 5. Growth of ||& || w.r.t |xg|.

even though the nonlinear function does not satisfy the sector
bound condition that is required for the classical discrete-time
adaptive control approach.

C. MULTIVARIABLE SYSTEMS
Consider a nonlinear discrete-time system with matched dis-
turbance of the form

15 0 0[5, 12 0
Xp4+1 = 0 1.5 0 X3k =+ 0 1.3 W—p
0 0 1.2 X1k 0 0
0.1 ok
+ | 0.1 |sin %n
0
1 0 O
with delay p = 4. The reference model is selected as
09 0 O 1 0
Xmk+1 = 0 09 0 Xm, k—p + 0 1 Tk—p
1 0 0 0 0
1 0 O
Ym,k+1 = |:O 1 Oi| Xm,k~ (85)

The reference is selected as ry = [0.15] — 0.15]7. The
nominal gain matrix and controller parameters are set as

10 09 07" A 05 0
r,=01], ®,=| 0 09] . 520:[(')05}
00 0 0 :

dotmax = 0.2, o = 10 and Py = 5 x 10*I16x 6. The matrix
@x,o € R1**2 is computed using a nominal ® = I3,3. The
system is simulated and the results can be seen in Fig.6. It can
be seen that the system output converges to the desired trajec-
tory. To demonstrate the ability to handle unknown control
directions, the matrix fzo is set as Qo = —0.5I,x«» while
some of the controller parameters are retuned as o = 20
and Pg = 1 x 10%I16x16. It can be seen from Fig.7 that the
system output converges to the desired trajectory. In Fig.§ the
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FIGURE 6. Tracking performance of the controller for a multivariable
system.

— = ~Ym,1,k |
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FIGURE 7. Tracking performance of the controller for a multivariable
system.

== Qg
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52,
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FIGURE 8. Elements of the matrix .

convergence of the elements of € is shown. It can be seen in
the results that the adaptive law is capable of correcting o
to match the actual system control direction.

Finally, the system is simulated with different values of the
input delay p using the controller parameters that led to the
results in Fig.7. The average of the norm of the tracking error
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FIGURE 9. avg|ley || for different values of the input delay p.

avg|lex || is computed over an interval of 1000 steps and plot-
ted in Fig.9. The results show that the tracking performance
may degrade with the increase in input delay p. This is due to
the fact that the delay p influences the transient performance
of the system (see Remark 1).

V. CONCLUSION

In this paper, a discrete-time adaptive controller for nonlinear
systems with non-sector bounded nonlinearities is proposed.
Although numerous approaches have been proposed in other
works that can handle non-sector bounded nonlinearities,
stability proofs are shown only for single parameter adaptive
laws. This paper presents stability proofs for systems with
multiple parameters while at the same time demonstrating
the difficulty of addressing systems with non-sector bounded
nonlinearities. Simulation results are given to demonstrate the
effectiveness of the controller for a nonlinear system.
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