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ABSTRACT This paper analyzes and optimizes the outage performance of multi-hop cognitive wireless
powered networks (CWPNs) in underlay paradigms. To be specific, there are multiple power beacons (PBs)
performingwireless power transfer (WPT) for multiple battery-free secondary users (SUs). Correspondingly,
the SUs first harvest energy from the RF signals of PBs and then execute multi-hop cognitive data
transmission in the licensed channel concurrently with the primary users (PUs). Therefore, the transmit
power of SUs are subject to the energy causality constraint imposed by WPT and the interference power
constraint from multiple PUs. We derive and obtain the closed-form exact and asymptotic end-to-end outage
probabilities for multi-hop CWPNs over Rayleigh block fading. Furthermore, we optimize the outage
performance by studying the outage minimization problem with respect to the WPT power and the WPT
time. Due to the complexity of outage probability, we propose a self-adaptive particle swarm optimization
(SA-PSO)-based resource allocation algorithm to jointly optimize the power and time for WPT. Extensive
simulations validate the correctness of theoretical analysis and the effectiveness of the proposed optimization
algorithm.

INDEX TERMS Multi-hop, cognitive wireless powered networks, energy harvesting, outage probability,
particle swarm optimization.

I. INTRODUCTION
Spectrum scarcity and energy constraint are the two most sig-
nificant problems that always challenge wireless networks.
To enhance spectrum utilization and energy efficiency, cog-
nitive radio and energy harvesting technologies have been
respectively investigated during the past several years. How-
ever, in cognitive radio networks (CRNs), to sufficiently
protect the primary users (PUs), the secondary users (SUs)
need to continually sense the channel condition and dynami-
cally adjust their communication parameters for opportunis-
tic spectrum access. This will surely consume a great deal
of energy and aggravate the energy constraint problem. As
a consequence, CRNs with energy harvesting are further
investigated to simultaneously enhance spectrum utilization
and energy efficiency [1].

Currently, CRNs with energy harvesting can be roughly
classified into two kinds as green CRNs and cognitive wire-
less powered network (CWPNs). GreenCRNsmainly employ

renewable energy sources (e.g., solar, wind and vibration) for
energy harvesting and carbon emissions reduction. However,
renewable energy sources are mostly random and unstable
since they are not specially designed for SUs and the energy
arrivals in nature are uncertain. Therefore, renewable energy
sources may not power SUs sufficiently and are usually not
regarded as main energy sources, especially as SUs need
to consume much energy for cognitive radio functions. In
contrast, without considering renewable energy sources in
nature, CWPNs employ dedicated energy sources to get
on-demand energy supply. In particular, RF-based wireless
power transfer (WPT) is flexible, controllable and sustainable
to sufficiently power SUs. For such case, power beacons
(PBs) [2] are deployed to wirelessly charge SUs, wherein the
WPT parameters can be configured according to performance
requirements. The recent research demonstrates that PBswith
tens ofWatts can power sensors, smartphones, and tablets at a
distance of around 10 m [3]. It is worthy pointing out that the
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RF signals of PUs are also predictable, as a result of which
they are also regarded as sustainable energy sources for SUs,
especially when there are excellent cooperation between PUs
and SUs.

Fully considering the advantages of WPT, we investigate
a multi-hop CWPN with multiple PBs underlying multiple
PUs in this paper. Specifically, multiple PBs perform WPT
for battery-free SUs, while SUs harvest energy from the
RF signals of PBs. With the harvested energy, SUs perform
multi-hop transmission in the licensed channel concurrently
with multiple PUs. As such, the transmit power of SUs
are constrained by the harvested energy from PBs and the
peak interference power at PUs. With the formulated system
model, we derive the exact end-to-end outage probability
of the multi-hop CWPN over Rayleigh fading channel, and
obtain the closed-form expression. Furthermore, we derive
the asymptotic end-to-end outage probability to take an
insight into the phenomenons when the interference power
constraint is slack or strict. Based on the outage probabil-
ity derivations, we further optimize the outage performance
by studying an outage minimization problem in terms of
the WPT power and the WPT time. Due to the complex-
ity of outage probability and the unprovability of convex-
ity, we propose a self-adaptive particle swarm optimization
(SA-PSO)-based resource allocation algorithm to solve this
problem. Simulation results validate the correctness of the
theoretical analysis and the effectiveness of the proposed
algorithm.

The reminder of this paper is organized as follows.
Section II provides an overview on related works about
CWPNs. Section III presents the system model of the under-
lay multi-hop CWPN with multiple PBs and multiple PUs.
Section IV derives the exact and asymptotic end-to-end
outage probabilities. Section V optimizes the outage per-
formance by proposing the SA-PSO-based resource alloca-
tion algorithm to solve the outage minimization problem.
Extensive simulation results are presented and analyzed in
Section VI, and conclusions are drawn in Section VII.

II. RELATED WORK
According to the spectrum sharing paradigms of CRNs, there
are interweave, overlay and underlay paradigms [4], which
are also supported by CWPNs.

In interweave paradigms, SUs first harvest energy from the
RF signals of dedicated PBs or active PUs, and then dynam-
ically access the licensed channel when PUs are detected as
inactive. [5] derives the throughput and the outage probabil-
ity when SUs opportunistically harvest energy from nearby
PUs. Similarly, [6] derives the spectrum access probability as
well as the outage probability for cognitive device-to-device
(D2D) communication, where the D2D transmitter harvests
energy from both uplink and downlink channels. [7] proposes
a spectrum access scheme for the throughput maximization
of CWPNs, wherein SUs harvest energy from active PUs.
More recently, [8] optimizes the spectrum sensing policy
for CWPNs, wherein SUs harvest and transmit by utilizing

FIGURE 1. System model.

the spectrum opportunities of orthogonal frequency division
multiple access (OFDMA)-based PUs.

In overlay paradigms, SUs harvest energy fromPBs or PUs,
cooperatively transmit data for PUs and finally accomplish
own data transmission missions. [9] analyzes and optimizes
the outage performance of CWPNs, wherein one SU harvests
energy from PU, serves as a relay for PU, and communicates
with another SU. By considering multiple SUs, [10] further
derives the ergodic capacity and investigates relay selection
for CWPNs, wherein SUs harvest energy from PUs. [11]
and [12] optimize resource allocation for sum-throughput
maximization in CWPNs, wherein an access point (AP) first
performs WPT for SUs as well as data transmission for PUs,
and then collects data from SUs.With a similar systemmodel,
[13] further studies the energy efficiency maximization of
CWPNs. More recently, [14] optimizes resource allocation
for CWPNs, wherein SUs harvest energy from PUs by the
power splitting scheme and transmit data for both PUs and
SUs.

In underlay paradigms, SUs first harvest energy from
PBs or PUs, and then transmit data under the interference
power constraint from PUs, making sure that the peak inter-
ference power at PUs does not exceed a tolerable thresh-
old. [11] studies sum-throughput maximization for CWPNs,
wherein both WPT and data transmission are performed con-
currently with PUs. [15] and [16] optimize resource alloca-
tion for throughput maximization in CWPNs, wherein mul-
tiple SUs harvest both energy and spectrum from one PU.
[17] derives exact and asymptotic outage probabilities for the
case that SUs perform simultaneous wireless information and
power transfer. Our previous work [18] derives and optimizes
the outage performance of multi-hop CWPNs. However, this
is a special case that only one PB and one PU are considered.
Thus, in this paper, we study a general case for multi-hop
CWPNs with multiple PBs and multiple PUs.

III. SYSTEM MODEL
As depicted in Fig. 1, we study a multi-hop CWPN with
K + 1 battery-free SUs and M PBs underlaying N PUs. The
primary base station serving PUs are assumed to be far away
from SUs and do not interfere with SUs [17], [18], while PUs
must be sufficiently protected such that the peak interference
power at each PU is no larger than an unified threshold Ip.
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FIGURE 2. Frame structure.

There are multiple PBs located close to each other to coop-
eratively perform wireless power transfer (WPT) for SUs in
the common channel. Meanwhile, the half-duplex SUs first
harvest energy from the RF signals of PBs, and then perform
cognitive data transmission (CDT) in the licensed channel
within an underlay paradigm. Note that, to sufficiently power
SUs and protect PUs, WPT and CDT are separated in differ-
ent channels as the WPT power should be large enough in the
channel with sufficient bandwidth [2]. By the time switching
scheme [19], the whole communication process within one
block time T is divided into two phases (i.e., WPT and CDT)
as shown in Fig. 2.

In the WPT phase with duration τ (0 < τ < T ),
multiple PBs perform wireless power transfer while all SUs
execute energy harvesting in the common channel. In this
way, the harvested energy by SUk (k = 1, ...,K + 1) in
this phase is given by

∑M
m=1 ξkτPmgm,k , where Pm is the

transmit power of PBm (m = 1, ...,M ), gm,k is the channel
power gain between PBm and SUk , 0 ≤ ξk ≤ 1 is the energy
harvesting efficiency. Without loss of generality, we assume
that the transmit power of PBs are all equal to Pt and the
energy harvesting efficiencies are all equal to ξ . Note that the
noise energy is neglected since the noise power is too small
to be harvested by SUs.

In the CDT phase with the remaining duration T − τ , SUs
execute cognitive data transmission in the licensed channel
concurrently with PUs. To lower the transmit power of SUs
and protect PUs, SUs perform multi-hop transmission by the
time division multiple access (TDMA) mechanism. Specifi-
cally, the source SU1 transmits data to the destination SUK+1
viaK−1 immediate relaying SUs, during which decode-and-
forward (DF) is utilized in each hop. ForK -hop transmission,
T −τ is equally divided into K timeslots, as a result of which
the time for each hop transmission is T−τ

K .
With the allocated transmission time, the maximum trans-

mit power of SUk constrained by its harvested energy is
calculated as

PE,k =

KξτPt
M∑
m=1

gm,k

T − τ
, k = 1, ...,K , (1)

wherein the remaining energy before the current block is
ignored since SUs are battery-free without long-time energy
storage [15]. Moreover, we ignore the circuit energy con-
sumption and assume the hardware can support the maximum
transmit power achieved by WPT.

Meanwhile, to sufficiently protect PUs, the transmit power
of SUs must be strictly controlled such that the peak

interference power at all PUs do not exceed the prescribed
interference power threshold Ip. In this way, the available
transmit power of SUk constrained by N PUs is give by

PI ,k =
Ip

max
n=1,...,N

gn,k
, k = 1, ...,K , (2)

where gn,k is the channel power gain between PUn (n =
1, ...,N ) and SUk , and channel reciprocity is assumed.

By fully considering the energy causality constraint
imposed by WPT and the interference power constraint from
multiple PUs, we can set the maximum available transmit
power of SUk as

Pk = min(PE,k ,PI ,k ), k = 1, ...,K . (3)

In this way, the received signal at SUk+1 in the licensed
channel can be expressed as

sk+1 =
√
Pkgk,k+1sk + nk+1, k = 1, ...,K , (4)

where gk,k+1 is the channel power gain between SUk and
SUk+1. sk and sk+1 are the transmitted and the received
signals of SUk and SUk+1, respectively. nk+1 ∼ CN (0, σ 2

k+1)
is the circularly symmetric complex Gaussian (CSCG) noise
with power σ 2

k+1 at SUk+1. For simplicity, we assume
σ 2
1 = ... = σ

2
K+1 = σ

2.
As a consequence, the signal-to-noise ratio (SNR) for the

k-th hop transmission from SUk to SUk+1 is calculated as
γk =

Pkgk,k+1
σ 2

. More specifically, by substituting (1) and (2)
into (3), we have

γk =

min
(
KξηPt

M∑
m=1

gm,k ,
Ip

max
n=1,...,N

gn,k

)
gk,k+1

σ 2 , (5)

where η = τ
T−τ is defined for simplicity.

In this paper, all the communication channels suffer from
quasi-static block fading, namely the channel state remains
constant in each block, but change independently from one
to another. Meanwhile, one block fading coincides with one
frame.We consider Rayleigh fading channel, where the chan-
nel power gain coefficients follow exponential distribution
with rate parameter λX ,Y (X = m, n, k;Y = k + 1). As PBs
locate close to each other, the channels from PBs to each SU
follow independent identically distributed (i.i.d.). Similarly,
the channels from each SU to PUs and those among SUs
are also assumed to be i.i.d., respectively [20], [21]. Note
that the channels among PBs, SUs and PUs are indepen-
dent but not necessarily identically distributed (i.n.i.d.). As
such, we denote λm,k = λE,k , λn,k = λI ,k , and λk,k+1 =
λD,k for notation convenience. Furthermore, we also assume
that, at the beginning of each block, SUs and PBs can per-
fectly evaluate the channel state information (CSI) by chan-
nel training and estimation, pilot sensing, direct feedbacks
from PUs and SUs, or even indirect feedbacks from a band
manager [18].
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Pout,k = 1−
2

0(M )
(
√
11,k )MKM

(
2
√
11,k

)
+

2
0(M )

N∑
n=1

(
N
n

)
(−1)n

(
(
√
n12,k )MKM

(
2
√
n12,k

)
− (
√
11,k + n12,k )MKM

(
2
√
11,k + n12,k

))
− 2

N∑
n=1

(
N
n

)
(−1)n

M−1∑
m=0

n12,k

0(m+ 1)

(
(
√
n12,k )m−1K1−m

(
2
√
n12,k

)
− (
√
11,k + n12,k )m−1K1−m

(
2
√
11,k + n12,k

))
. (7)

IV. OUTAGE ANALYSIS
A. EXACT OUTAGE PROBABILITY
The outage probability is defined as the probability that the
instantaneous mutual information falls below a predefined
threshold. For K -hop CWPN, the end-to-end outage proba-
bility Pout should be the probability that the throughput of the
bottleneck hop is no larger than a threshold Rth [18]. In this
way, the end-to-end outage probability can bemathematically
expressed as

Pout = Pr
(
T − τ
KT

log2(1+ min
k=1,...,K

γk ) ≤ Rth

)
= 1−

K∏
k=1

(1− Pr(γk ≤ γth)) , (6)

where γth , 2KRth(1+η) − 1 is defined as the SNR threshold.
Note that T−τKT is set due to the fact that the ratio for CDT is
equally divided by K for each hop transmission.
To calculate Pout, we must first derive the outage prob-

ability of each hop, namely Pout,k , Pr(γk ≤ γth). The
following proposition gives out the closed-form expression
for the outage probability of single hop.
Proposition 1: The outage probability for each hop trans-

mission is calculated as (7), shown at the top of this page,
where 11,k =

λE,kλD,kγthσ
2

KηξPt
, 12,k =

λE,kλI ,k Ip
KηξPt

, 0(t) is the
complete Gamma function,Kv(t) is themodified Bessel func-
tion of the second kind with order v.

Proof: Please refer to Appendix A for details. �
Proposition 1 gives us the closed-form outage probability

for single hop transmission. By substituting (7) into (6),
we can calculate the exact end-to-end outage probability with
closed-form expression. As such, for given system parame-
ters, we can perform exact outage analysis for the multi-hop
CWPN. However, the exact end-to-end outage probability is
too complicated to render a clear insight into the impact of
different system parameters on the outage performance. Thus,
we further perform asymptotic outage analysis as follows.

B. ASYMPTOTIC OUTAGE PROBABILITY
As we can see from (5), for given channel condition and time
allocation τ , the SNR significantly depends on the transmit
power of PBs Pt and the peak interference power at PUs Ip.

Therefore, by comparing Pt and Ip, we consider two cases to
derive the asymptotic outage probabilities.

The first case is Pt � Ip which corresponds to
the scenario when the WPT power is extremely small
and/or the peak interference power is extremely large.
That is to say, the interference power constraint is always
slack. For this case, the transmit power of SUk is deter-
mined by its harvested energy. Hence, it is most likely
to have Pk = min(KξηPt

∑M
m=1 gm,k ,

Ip
maxn=1,...,N gn,k

) ≈

KξηPt
∑M

m=1 gm,k . In this way, the asymptotic end-to-
end outage probability with slack interference power
constraint (i.e., Pslackout ) is calculated as the following
proposition.
Proposition 2: Given τ , the asymptotic end-to-end outage

probability for K -hop CWPN with slack interference power
constraint (i.e., Pt � Ip) is calculated as

Pslackout
Pt�Ip
= 1−

K∏
k=1

(
2

0(M )
(
√
11,k )MKM

(
2
√
11,k

))
.

(8)

Proof: Please refer to Appendix B for details. �
Proposition 2 gives us the asymptotic end-to-end outage

probability with slack interference power constraint. In fact,
as the outage performance for this case is always determined
by the harvested energy of SUs, the outage probability given
by Proposition 2 is approximately equal to that of common
wireless powered networks without any interference power
constraint.

The second case is Pt � Ip which corresponds to the
scenario when the WPT power is extremely large and/or
the peak interference power is extremely small. That is to
say, the interference power constraint is always strict. For
this case, Ip becomes the dominating factor for the transmit
power of SUk . Therefore, it is most likely to have Pk =
min(KξηPt

∑M
m=1 gm,k ,

Ip
maxn=1,...,N gn,k

) ≈ Ip
maxn=1,...,N gn,k

. In
this way, the asymptotic end-to-end outage probability with
strict interference power constraint (i.e.,Pstrictout ) is given by the
following proposition.
Proposition 3: Given τ , the asymptotic end-to-end outage

probability for K -hop CWPN with strict interference power
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constraint (i.e., Pt � Ip) is calculated as

Pstrictout
Pt�Ip
= 1+

K∏
k=1

(
N∑
n=1

(
N
n

)
(−1)n

n12,k

11,k + n12,k

)
.

(9)

Proof: Please refer to Appendix C for details. �
Proposition 3 gives us the asymptotic end-to-end outage

probability with strict interference power constraint, which
can be regarded as an outage floor. For this case, the outage
probability would not further decrease when the WPT power
attains some value. That is to say, outage saturation happens.
The reason must be that SUs cannot enhance their transmit
power when the interference to PUs reaches the peak interfer-
ence power threshold, even the harvested energy by SUs are
sufficient. In this way, the remaining energy in the battery-
free SUs after transmission will be leaked. Thus, for given
interference power constraint, overmuch WPT cannot signif-
icantly improve the outage performance but waste energy.

By studying the above two cases, we have a deep under-
standing on how the WPT parameters influence the outage
performance. In the following, we further study how to set
the WPT parameters properly and optimize the outage per-
formance of multi-hop CWPNs .

V. OUTAGE OPTIMIZATION
With the closed-form end-to-end outage probability, we can
observe that the outage performance of the multi-hop CWPN
is determined by the channel condition and the resource
allocation. As the channel condition cannot be configured,
we investigate the resource allocation to optimize the outage
performance. With the aim of minimizing outage probability,
the resource allocation problem with respect to the WPT
power and the WPT time is formulated as

min
Pt ,τ

Pout(Pt , τ ) = 1−
K∏
k=1

(
1− Pout,k (Pt , τ )

)
, (10)

s.t. 0 ≤ Pt ≤ Pmax, (11)

0 < τ < T , (12)

where Pmax is the maximum transmit power of all PBs.
In this problem, the objective is to minimize the end-to-end

outage probability given by (10) with (7), the constraint (11)
is the WPT power constraint of PBs, and the constraint (12)
is the WPT time constraint of PBs. To the best knowledge
of authors, the convexity of the problem cannot be estimated
due to the complex expression of the objective function. As
a consequence, the outage minimization problem cannot be
solved by common methods, e.g., convex optimization.

To solve the outage minimization problem, we propose a
meta-heuristic algorithm based on PSO. PSO is a kind of
swarm intelligent algorithm that is shown to be an effective
method to achieve optimal or near-optimal solutions [23]. In
comparison with other meta-heuristic algorithms, PSO, with
a simple search process, is easy to implement and has a good
convergence speed. The computation cost is not high when

the number of optimization variables is small. Hence, it is a
suitable method for our outage minimization problem.

We first model the outage minimization problem with
PSO parameters. The objective function and the optimization
variables correspond to the fitness and the particle position,
respectively. For particle s, the outage fitness is calculated as
fs by substituting xs,q into (10), where xs,q denotes the particle
position. For our problem, q = 1 indicates Pt and q = 2
indicates τ , respectively. Obviously, xs,1 and xs,2 must satisfy
the constraints (11) and (12), respectively. Let vs,q denote the
particle velocity, we can update it as

v′s,q = ωvs,q + c1α(ys,q − xs,q)+ c2β(yg,q − xs,q), (13)

where ω is the inertia weight, c1 > 0 and c2 > 0 are the
learning factors, ys,q and yg,q are the local particle position
and the global best particle position, respectively.

To enhance the global searching capability and avoid stop-
ping at some local optimal positions, we further employ the
self-adaptive weight alternation method to update the weight.
The weight is updated as

ω =

ωmin −
(ωmax − ωmin)(fs − fmin)

favg − fmin
, fs ≤ favg,

ωmax, fs > favg,
(14)

where ωmin and ωmax are the minimum weight and the max-
imum weight, respectively. fs is the current outage fitness of
particle s, favg and fmin are the average and the minimum
outage fitness of all particles, respectively.

With the self-adaptive weight alternation, we can achieve
self-adaptive PSO (SA-PSO). In this way, we further propose
the SA-PSO-based resource allocation algorithm to solve
the outage minimization problem and optimize the resource
allocation. The detail is given in Algorithm 1, where S is the
number of particles, G is the maximum number of evolution
iterations. In addition, κ , α, β and µ are all uniform distri-
bution variables in [0, 1]. With the self-adaptive evolution
of Algorithm 1, the solution will quickly coverage to the
optimal or near-optimal solution, namely the best outage
fitness. In this way, we can optimize the resource allocation
to achieve good outage performance by Algorithm 1.

The computational complexity of Algorithm 1 can be ana-
lyzed as follows. In each evolution, the fitness of S particles is
calculated. As the computational complexity for updating the
particles and the velocity is much lower than that for comput-
ing the fitness, the computational complexity of Algorithm 1
mainly depends on the number of fitness computations. Let
C denote the computational complexity for computing the
fitness of one particle. Obviously, C is determined by the
end-to-end outage probability given by (10) with (7). If
the solution converges at G∗ evolution, the computational
complexity of Algorithm 1 can be calculated as O(CSG∗).
As the computational complexity is a linear function of C ,
the computational complexity of Algorithm 1 is not high.
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Algorithm 1 SA-PSO-Based Resource Allocation
Algorithm

Input: N , M , K , T , Ip, Pmax, ξ , σ 2, gm,k , gn,k , gk,k+1;
Output: (P∗t , τ

∗);
1 Initialize s = 1, and t = 1;
2 repeat
3 Randomly generate initial particle position xs,q(t);
4 Randomly set initial particle velocity vs,q(t), where

vs,1(t) ∈ [−κPmax, κPmax] and vs,2(t) ∈ [−κT , κT ];
5 Calculate the outage fitness fs(t) for particle s by

substituting xs,q(t) into (10) with (7);
6 s = s+ 1;
7 until s > S;
8 Record the local outage fitness ls(t) = fs(t), where the
corresponding particle position is denoted as
ys,q(t) = xs,q(t) ;

9 Calculate the global best outage fitness g(t) = min(ls(t)),
where the best particle position is denoted as yg,q(t);

10 repeat
11 repeat
12 Update the weight ω by (14);
13 Update the particle velocity as

vs,q(t) = ωvs,q(t)+ c1α(ys,q(t)− xs,q(t))+
c2β(yg,q(t)− xs,q(t));

14 vs,1(t) = min(max(−κPmax, vs,1(t)), κPmax);
15 vs,2(t) = min(max(−κT , vs,2(t)), κT ) ;
16 Update the particle position as

xs,q(t) = xs,q(t)+ µvs,q(t);
17 xs,1(t) = min(max(0, xi,1(t)),Pmax);
18 xs,2(t) = min(max(0, xi,2(t)),T );
19 Calculate the outage fitness fs(t) for particle s by

substituting xs,q(t) into (10) with (7);
20 if fs(t) ≤ ls(t) then
21 ls(t) = fs(t) and ys,q(t) = xs,q(t);

22 if ls(t) ≤ g(t) then
23 g(t) = ls(t) and yg,q(t) = ys,q(t);

24 s = s+ 1;
25 until s > S;
26 t = t + 1;
27 until t > G;
28 P∗t = yg,1 and τ ∗ = yg,2;

VI. SIMULATION RESULTS
In this section, we validate the theoretical correctness of the
outage probability derivations and evaluate the effectiveness
of the proposed resource allocation algorithm byMonte Carlo
simulations. As we consider the scenario that PBs are closely
located with each other, the distances from PBs to each SU
are set the same as dE,k . One practical scenario for such
simulation setups is that each PB is one antenna of an AP
with multi-antenna. Similar simulation setups are also made
for those from PUs to each SU as well as those among SUs,
namely dI ,k and dD,k [20], [21]. Then, with full consideration
of the large-scale path loss, the rate parameter is calculated as

TABLE 1. Simulation parameters and values.

FIGURE 3. Outage probability versus WPT time for different numbers of
hops: M = 3, N = 3, Ip = 10 dB, Pt = 40 dB.

λX ,Y = ( dX ,Yd0 )ε, where d0 is the reference distance and ε is
the path loss parameter. Without loss of generality, PBm and
PUn are placed at [0, 2] and [0, -2] on y-axis, while the source
SU1 and the destination SUK+1 are placed at [-2, 0] and [2,
0] on x-axis, wherein the relaying SUs are equally scattered.
Unless otherwise stated, the key simulation parameters are
listed in Table 1.

Fig. 3 depicts the relationship between the outage probabil-
ity and the WPT time. First of all, we can observe that there
is a good agreement between the theoretical analysis (ANLS)
and the simulation results, which validates the correctness
of theoretical derivations. Then, for each given number of
hopsK , the outage probability first decreases to the minimum
value and then increases to 1 along with the increase of the
WPT time. The reason should be that there is a tradeoff for
the time allocation between WPT and CDT. In other words,
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FIGURE 4. Outage probability versus WPT power for different energy
harvesting efficiencies: M = 3, N = 3, K = 3, τ = 20 ms.

if more time is allocated for WPT, less time is remained for
CDT, and vice versa. Meanwhile, for given WPT time τ ,
it is observed that there are intersections between the curves
for different numbers of hops, indicating that the outage
probability is not monotonic in K . Due to the complexity of
the outage probability, we cannot obtain the exact expression
for the optimal or near-optimal K and τ . For this case, some
meta-heuristic algorithms or exhaustive searching are feasi-
ble options.

Fig. 4 studies how the WPT power impact the outage
probability of a three-hop CWPN. When the WPT power
is very small, the outage probability approaches 1, indicat-
ing that SUs are not effectively charged by WPT. For this
case, the transmit power of SUs are mainly subject to their
harvested energy. In this way, the exact outage probability
approximates the asymptotic outage probability with slack
constraint, which validates the correctness of Proposition 2.
Then, with the increase of Pt or ξ , the outage probability
monotonically decreases since SUs can harvest more energy
fromWPT, which surely enhances the transmit power of SUs
under the interference power constraint from PUs. When the
WPT power is large enough, the outage probability with the
same interference power constraint converges to the same
value, namely outage floor. That is to say, outage saturation
happens when the WPT power is sufficient large. For this
case, the transmit power of SUs are mainly subject to the
interference power constraint from PUs. As such, the exact
outage probability coincides with the asymptotic outage
probability with strict constraint, which verifies the correct-
ness of Proposition 3. The outage saturation phenomenon
indicates that excessively large WPT power will not further
enhance outage performance but waste energy.

In addition, for the same energy harvesting efficiency (e.g.,
ξ = 0.8), it is obvious that the outage probability with
strict interference constraint is always higher than that with
slack interference constraint. Meanwhile, the outage floor
decreases when the interference power constraint becomes
slack, namely Ip increases. By studying Fig. 4, we can
observe that, for given system setup and channel condition,

FIGURE 5. Outage probability versus peak interference power at PUs for
different numbers of PUs and PBs: K = 3, Pt = 40 dB, τ = 20 ms.

we can find the effective WPT power region according to
outage requirements. However, to find the exact optimal or
near-optimal Pt , we can only employ some meta-heuristic
algorithms as the expression of outage probability is too
complicated.

Fig. 5 further demonstrates how PUs impact the outage
performance of a three-hop CWPN with different numbers
of PBs. First of all, we can obverse that no matter how
many PBs or PUs influence the multi-hop CWPN, the outage
probability always decreases with the increase of the peak
interference power. This is because SUs can enhance their
transmit power with the interference power constraint releas-
ing. However, when the peak interference power attains some
value, the outage probability does not further decrease. This is
because the transmit power of SUs constrained by the limited
harvested energy cannot be further enhanced. Furthermore,
for given number of PBs, the outage probability decreases
with the number of PUs decreasing since the interference
power constraint releases with N decreasing. In contrast, for
given number of PUs, the outage probability increases with
the number of PBs decreasing since the harvested energy by
SUs decrease with M decreasing.
Fig. 6 shows the optimized outage probability by the

proposed SA-PSO-based resource allocation algorithm.
Although the changing trend in Fig. 6 is similar to that
in Fig. 5, the outage probability is significantly decreased by
the proposed algorithm. For example, whenM = N = K = 3
and Ip = 10 dB, Pout = 0.734 in Fig. 5 is much larger than
that Pout = 0.579 in Fig. 6. This is because the resource
allocation in Fig. 5 is fixed while that in Fig. 6 is optimized
according to the system setup and the channel condition. This
verifies the effectiveness of the proposed algorithm. In this
way, for given system setup and channel condition, we can
properly configure the WPT parameters and optimize the
outage performance.

Furthermore, we also compare the SA-PSO-based
algorithm with the exhaustive-searching-based algorithm.
It is obvious that the outage probability by the proposed
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FIGURE 6. Optimized outage probability versus peak interference power
at PUs for different numbers of hops: M = 3, N = 3.

FIGURE 7. Outage fitness versus evolution iterations for SA-PSO-based
resource allocation algorithm: M = 3, N = 3, K = 3, Ip = 10 dB.

algorithm can well approximate the optimal value by
the exhaustive-searching-based algorithm. However, the
computational complexity of the exhaustive-searching-based
algorithm is much higher than that of the SA-PSO-based
algorithm since exhaustive searching has to explore solutions
in the two-dimensional continuous space given by constraints
(11) and (12). In particular, for Ip = 10 dB, we present
the WPT parameters setup optimized by the two algorithms.
Obviously, both algorithms optimize the WPT power and the
WPT time according to the system setup and the channel
condition. However, for K = 2 and K = 3, the exhaustive-
searching-based algorithm always employs the maximum
WPT power to achieve the optimal outage performance,
while the SA-PSO-based algorithm achieves similar outage
performance with lower WPT power. For this case, we avoid
unnecessary energy waste as the outage performance cannot
be significantly enhanced with overmuch WPT.

Fig. 7 depicts how the SA-PSO-based resource allocation
algorithm evolve with the number of evolution iterations
increasing. Obviously, the best outage fitness always remains
constant, indicating that the proposed algorithm obtains

unique solution. In contrast, the average outage fitness first
quickly decreases and then oscillates in a very limited region
until the evolution iterations reach some value. Typically,
after 50 evolution iterations, the outage fitness converges with
little fluctuation. This indicates that the proposed SA-PSO-
based resource allocation algorithm can quickly converge and
has good stability.

VII. CONCLUSION
In this paper, we studiedmulti-hopCWPNswithmultiple PBs
underlying multiple PUs, wherein SUs harvest energy from
the RF signals of multiple PBs and transmit concurrently
with PUs under the interference power constraint. We derived
both exact and asymptotic end-to-end outage probabilities,
and obtained their closed-form expressions. Based on the out-
age analysis, we further formulated the outage minimization
problem with respect to the WPT power and the WPT time.
Due the complex expression of outage probability, we pro-
posed the SA-PSO-based resource allocation algorithm to
optimize the WPT parameters. By extensive simulations,
we verified the correctness of the theoretical analysis and the
effectiveness of the proposed algorithms. It is shown that the
proposed SA-PSO-based resource allocation algorithm, with
lower computational complexity, can efficiently optimize the
WPT parameters according to the system setup and the chan-
nel condition.

APPENDIX A
PROOF OF PROPOSITION 1
Before the derivation, we first present some preliminary
results on the cumulative distribution function (CDF) and
the probability density function (PDF) of channel power
gains. For notation convenience, we denote X =

∑M
m=1 gm,k ,

Y = max
n=1,...,N

gk,n, and Z = gk,k+1.

In Rayleigh fading channel, the power gain coefficient Z
follows exponential distribution with rate parameter λD,k .
Thus, the CDF and the PDF of exponential random variable
Z are given by

FZ (z) = 1− exp(−λD,kz), (15)

fZ (z) = λD,k exp(−λD,kz). (16)

As Y is the maximum of N independent exponential ran-
dom variables, the CDF of Y isFY (y) =

(
1− exp(−λI ,ky)

)N .
By the binomial theorem, the CDF is rewritten as

FY (y) = 1+
N∑
n=1

(
N
n

)
(−1)n exp

(
−λI ,kny

)
. (17)

Then, the PDF of Y is given by

fY (y) = −
N∑
n=1

(
N
n

)
(−1)nnλI ,k exp

(
−λI ,kny

)
. (18)

As X is the summation of M independent exponen-
tial random variables, X follows Gamma distribution.
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Hence, the CDF and the PDF of X are given by

FX (x) = 1−
M−1∑
m=0

(λE,kx)m

0(m+ 1)
exp(−λE,kx), (19)

fX (x) =
λME,k

0(M )
xM−1 exp(−λE,kx). (20)

With CDFs and PDFs of X , Y and Z , we can derive Pout,k
as follows:

Pout,k = Pr

min
(
KηξPtX ,

Ip
Y

)
Z

σ 2 ≤ γth


= Pr

(
KηξPtXZ

σ 2 ≤ γth,KηξPtX ≤
Ip
Y

)
︸ ︷︷ ︸

P1(γk )

+ Pr
(
IpZ
σ 2 Y

≤ γth,KηξPtX >
Ip
Y

)
︸ ︷︷ ︸

P2(γk )

. (21)

In the first summand P1(γk ), as the two terms both include
X which is statistically independent of Z and Y , we can first
calculate P1(γk ) conditioned on X . By employing (15) and
(17), we have

P1(γk |X ) = FZ

(
γthσ

2

KηξPtX

)
FY

(
Ip

KηξPtX

)
. (22)

Then, with (20), by averaging P1(γk |X ) over the distribution
of X and employing the equation (3.471.9) in [22] for the
integral, we have

P1(γk ) =
∫
∞

0
FZ

(
γthσ

2

KηξPtx

)
FY

(
Ip

KηξPtx

)
fx(x)dx

= 1−
2

0(M )
(
√
11,k )MKM

(
2
√
11,k

)
+

2
0(M )

×

N∑
n=1

(
N
n

)
(−1)n

(
(
√
n12,k )MKM

(
2
√
n12,k

)
− (
√
11,k + n12,k )MKM

(
2
√
11,k + n12,k

))
.

(23)

Similarly, the two terms in the second summand P2(γk )
both include Y that is statistically independent of Z and X .
Thus, by employing (15) and (19), we can calculate P2(γk )
conditioned on Y as

P2(γk |Y ) = FZ

(
γthσ

2Y
Ip

)(
1− FX

(
Ip

KηξPtY

))
.

(24)

Then, with (18), the unconditional CDF marginalized out Y
is given by

P2(γk )

=

∫
∞

0
FZ

(
γthσ

2 y
Ip

)(
1− FX

(
Ip

KηξPty

))
fY (y)dy

= −2
N∑
n=1

(
N
n

)
(−1)n

M−1∑
m=0

n12,k

0(m+ 1)

×

(
(
√
n12,k )m−1K1−m

(
2
√
n12,k

)
− (
√
11,k + n12,k )m−1K1−m

(
2
√
11,k + n12,k

))
,

(25)

where the equation (3.471.9) in [22] is also utilized for the
integral during the derivation.

Finally, by substituting (23) and (25) into (21), we obtain
(7) and complete the proof.

APPENDIX B
PROOF OF PROPOSITION 2

When Pt � Ip, Pk ≈ KξηPt
M∑
m=1

gm,k according to (3). Thus,

by employing (15) and (20), we have

Pslackout,k
Pt�Ip
= Pr

(
KηξPtXZ

σ 2 ≤ γth

)
=

∫
∞

0
FZ

(
γthσ

2

KηξPtx

)
fX (x)dx

= 1−
2

0(M )
(
√
11,k )MKM

(
2
√
11,k

)
, (26)

wherein the equation (3.471.9) in [22] is utilized for the
integral.

Then, by substituting (26) into (6), we have (8) and
complete the proof.

APPENDIX C
PROOF OF PROPOSITION 3
When Pt � Ip, Pk ≈

Ip
max

n=1,...,N
gn,k

according to (3). Thus,

by employing (15) and (18), we have

Pstrictout,k
Pt�Ip
= Pr

(
IpZ
σ 2 Y

≤ γth

)
=

∫
∞

0
FZ

(
IpZ
σ 2 Y

≤ γth

)
fY (y)dy

= 1+
N∑
n=1

(
N
n

)
(−1)n

n12,k

11,k + n12,k
. (27)

Then, by substituting (27) into (6), we have (9) and
complete the proof.
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