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ABSTRACT We propose the deep hierarchical network (DHN) for the quantitative analysis of facial palsy.
Facial palsy, also known as Bell’s palsy, is the most common type of facial nerve palsy that results in the
loss of muscle control in the affected facial regions. Typical symptoms include facial deformity and facial
expression dysfunction. To the best of our best knowledge, all approaches for the automatic detection of facial
palsy consider hand-crafted features. This paper reports the first deep-learning-based approach developed
for the real-time quantitative analysis of facial palsy. The proposed DHN consists of three component
networks: the first detects the subject’s face, the second detects the facial landmarks and line segments
on the detected face, and the third detects the local palsy regions. The first component network is built on
the YOLO2 detector. The second component network is developed on a fused network architecture that
incorporates a line segment learning network for locating the facial landmarks and line segments. The third
component network is developed on an object detection network with the line-segment-embedded input that
combines the landmarked region and the line segments detected by the second component network. The
novelties of this research include: 1) the modification of a state-of-the-art edge detector for extracting the
facial line segments; 2) the embedding of the line segment learning for the detection of facial landmarks
and local palsy regions; 3) the quantitative description of the facial palsy syndrome intensity; and 4) the
release of the first clinically labeled database, the YouTube Facial Palsy (YFP) database. The making of the
YFP database solves the issue that previous methods were all evaluated on proprietary databases, making
the comparison of different methods extremely difficult. The YFP database includes 32 videos of 21 patients
collected fromYouTube and labeled by clinic specialists. To enhance the robustness against facial expression
variations, we include the CK+ facial expression database in the training. We show that the proposed DHN
not only just detects the local palsy regions but also captures the intensity of the facial palsy syndrome
over time, enabling the quantitative description of the syndrome. The experiments show that the proposed
approach offers an accurate and efficient real-time solution for facial palsy analysis.

INDEX TERMS Facial palsy, bell palsy, medical image diagnosis, face alignment, face recognition.

I. INTRODUCTION
Facial palsy, also known as Bell’s palsy, is a common type of
facial palsy. Typical symptoms include drooping, stiffness or
loss of control on the affected side of the face. Facial palsy not
only significantly affects the facial appearance but also leads
to impaired feeding functions and adverse psychosocial con-
sequences [11]. The diagnosis of facial palsy usually relies

on the visual inspection of facial symmetry and expression
dysfunction by clinicians. Manual visual inspection has some
disadvantages, for example, it is difficult to quantify the
intensity and variation of the symptoms, difficult to track
the symptom changes between clinic visits and difficult to
compare the symptoms across patients in a quantitative way.
Automatic inspection by using a camera can circumvent
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these disadvantages. The approaches for automatic inspec-
tion of facial palsy have been emerging in recent years.
A brief review on recent approaches is given in Sec. II.
However, almost all approaches up-to-date consider hand-
crafted features, the deep-learning based approaches are yet
to be developed. Another serious issue with the previous
approaches is that their experiments were performed on pro-
prietary databases, making benchmarking and performance
comparison difficult.

Our proposed framework, called the Deep Hierarchical
Network (DHN), consists of three deep convolutional neu-
ral networks (CNNs). The first CNN, called the Face Net,
is for detecting the patient’s face; the second CNN, called
the Landmark Net, is for locating the facial landmarks on
the detected face; and the third CNN, called the Region Net,
is for locating the local palsy regions on the detected face.
The Face Net is built on the state-of-the-art YOLO-3 network.
The Landmark Net is developed with a line segment learning
architecture that we explore in this study. The Region Net is
developed on a relatively shallow CNN embedded with the
line segments learned by the Landmark Net for fast target
region detection. Given an image to the proposed DHN,
the Face Net first detects the face, then the Landmark Net
locates the landmarks on the detected face, and then the
Region Net locates the local palsy regions with an intensity
score computed based on cross-entropy loss of the network
output. Our experiments were performed on the YouTube
Facial Palsy (YFP) database, which is the first public database
that we made for the study on the visual inspection of facial
palsy symptoms. It contains 32 video clips of 22 facial palsy
patients collected from YouTube. We convert the videos
into sequences of images, and have the images labeled by
facial palsy clinicians. As the number of patients is limited,
we adopt the Leave-One-Person-Out (LOPO) protocol for
performance evaluation.

This paper is an extension of our conference paper in [9],
where we proposed a hybrid network with three component
networks. The differences and advancements made in this
extended version can be summarized as follows:

1) In the previous version [9], we used the HourGlass
architecture developed by Bulat and Tzimiropoulos [2]
for the Landmark Net to locate the facial landmarks.
In the current version, we develop our own algorithm
using a network embedded with line segment learning,
which improves both the landmark localization and
local palsy region detection.

2) In the previous [9], we used the Darknet frame-
work [17] as the Region Net to locate the local palsy
regions. In this extended version, we develop a differ-
ent network architecture with the line segments as an
important clue to locate the local palsy regions.

3) In the previous [9], we computed the frequency of the
appearance of the detected palsy regions as the inten-
sity. In this extended version, we explore the softmax
probability at the output layer as the better representa-
tion of the symptom intensity.

The contributions made in this study are threefold:
1) A pioneering deep learning approach is proposed for

facial palsy analysis which can accurately detect the
local palsy regions and interpret the intensity of the
symptom over time;

2) Incorporation of line segment learning into a deep
learning framework is verified effective for the
improvement of the palsy region localization and inten-
sity estimation;

3) The first public facial palsy database, the YouTube
Facial Palsy (YFP) database, is released which is com-
posed of videos collected fromYouTube and labeled by
medical specialists.

In the following sections, we first present a review on
the previous work in Sec. II. The development of our pro-
posed framework is elaborated in Sec. III. The introduction
to the YFP database is given in Sec. IV-B along with our
experiments to study the performance of the proposed DHN
approach. The conclusion of this study is given in Sec. VI.

II. RELATED WORK
Several approaches for automatic detection and diagnosis of
facial palsy have been proposed in recent years. According to
our survey, all of the approaches exploit handcrafted features
and classifiers, with experimental results reported on propri-
etary databases. We select a few latest studies and summarize
their methods and experiments in this section.

To conduct an objective and quantitative analysis of
facial palsy, Ngo et al. proposed an approach based
on the limited-orientation modified circular Gabor filters
(LO-MCGFs) [15]. The LO-MCGFs employs uniform pass-
bands to remove noises and enhance the desired spatial
frequencies, and uses the bounded filter support to spec-
ify the region of interest. These virtues make the approach
effective for extracting the facial asymmetry features. The
facial dataset considered in their study is composed of image
sequences of 75 facial palsy patients and 10 participants
without facial palsy, made by the Osaka Police Hospital. Each
image sequence is composed of 60 still images taken from
the same subject and the intensity in each image is scored
into 3 levels, strong, median and weak. As it is a propri-
etary dataset, it is not known whether the images are from
continuous frames, and how the intensity level is assigned.

Kim et al. [10] propose a smartphone-based automatic
diagnosis system that consists of three modules, namely
a facial landmark detector, a feature extractor and a
classifier. The incremental face alignment, proposed by
Asthana et al. [1], is used for detecting the facial landmarks.
Given the facial landmarks, they compute the asymmetric
index using the displacement of shape landmark sets that
correspond to the eyebrows and mouth regions while the
subjects change their expressions. To extract the asymmetric
index, the forehead and eye regions are considered in heuris-
tic approaches that measure the displacements and ratios of
different distances. The Linear Discriminant Analysis (LDA)
and Support Vector Machine (SVM) are then employed for
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FIGURE 1. The proposed Deep Hybrid Network (DHN) is composed of a face detector Netf , a facial landmark locator
Netm (denoted as LMK DTR) and the palsy region detector Netp. Netm is composed of a line segment detector LSN and a double
dropout network (DDN) for landmark localization.

classification. The system is evaluated on a private database
with 23 facial palsy patients and 13 volunteers without facial
palsy.

A multiresolution local binary patterns (LBPs) is proposed
in [5] to characterize the local and global region patterns for
the analysis of facial palsy. As the facial landmark localiza-
tion was not feasible then, the authors used the initial frame
as the reference frame to locate four pairs of local regions in
the consecutive frames and detect five apex frames by image
subtraction. The asymmetry across the face is justified based
on the features extracted from the temporalâĂ"spatial domain
in each local region. The features are enhanced by a block
processing scheme. The symmetry of facial movements is
measured by the resistor-average distance (RAD) between
the features extracted across the face. The SVM is used to
provide quantitative evaluation of the facial palsy symptom.
Their method is validated by experiments on 197 videos.
No information is provided about the numbers of patients and
normal subjects in the videos.

A quantitative approach that considers both the static facial
asymmetry and the speed of appearance change is proposed
by Wang et al. [23]. They first trained an ASM (Active
Shape Model) [23] for locating the facial landmarks on
each patient’s face. The landmarks are used to segment the
face into 8 regions, and the facial asymmetry is computed
based on the distances between landmarks within each region
and across corresponding regions. The static facial asymme-
try is computed by the localization of local deformations,
the extraction of asymmetric distances and the quantification
of bilateral asymmetry. They use the SVM with RBF ker-
nel to classify the degrees of facial palsy in different facial
movements, and evaluate the performance on a proprietary
database with 62 patients.

In summary, these methods highlight the progress made
up to date on the automatic detection and analysis of facial
palsy with the following aspects: 1) All previous approaches
consider handcrafted features and classifiers; 2) Facial asym-
metry is the core character to identify for facial palsy;

3) The databases used in the previous studies are proprietary,
making performance comparison extremely difficult.

III. DEEP HIERARCHICAL NETWORK
We formulate the facial palsy identification as a region detec-
tion problem, and consider the facial-palsy-caused deforma-
tion regions, or simply the palsy regions, on a patient’s face as
the target regions to locate. Our proposed solution is the Deep
Hierarchical Network (DHN), which is composed of three
component networks. The first component network is a face
detector, denoted as Netf ; the second component network
is a facial landmark locator, denoted as Netm; and the third
component network is a facial palsy region detector, denoted
as Netp. Figure 1 shows the overall configuration of the
proposed DHNwith the component networks and the outputs
from each component network. Given an image, Netf first
detects the face, then Netm locates the landmarks on the face,
and then Netp locates the facial palsy regions. The landmark
detector Netm has two sub-networks, the Line Segment Net-
work (LSN) and the Double Dropout Network (DDN). The
former detects the facial line segments, and the latter locates
the facial landmarks using the detected face image and the
associated facial line segments as the fused input. The fused
input is also used by the region detector Netp for locating
the local palsy regions. The three component networks, Netf ,
Netm and Netp, are elaborated in the following sections.

A. FACE DETECTION
The Face Detector Netf is built on the pretrained YOLO2 and
retrained on the Wider Face database [25]. The YOLO2, also
known as YOLO-9000, proposed by Redmon and Farhadi,
is a state-of-the-art real-time object detector [17]. It reports
76.8 mAP (mean Average Precision) on the benchmark VOC
2007 (the Pascal Visual Object Classes Challenge) at process-
ing speed 67 FPS, and 78.6 mAP at 40 FPS, outperforming
many state-of-the-art approaches, including the Faster RCNN
with ResNet [19] and the SSD [12]. For face detection,
we train the YOLO2 using the WIDER FACE database [25],
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which offers 393,703 labeled faces in 32,203 images with a
large variation in pose, illumination, expression, scale and
occlusion. Following the data partition specified in [25],
the WIDER FACE is split into a training and validation
set with 199k faces in 16,106 images and a test set with
194k faces in 16,097 images. We change default settings
of YOLO2, including the partition of input image into a
grid of 11×11 cells, each cell associated with 2 bound-
ing boxes for prediction, and only one class (face) is con-
sidered. Compared with other contemporary approaches on
the benchmark AFW database, Netf achieves AP (Aver-
age Precision) 99.25% on AFW benchmark, better than the
DPM (97.2%) [20], the HeadHunter (97.1%) [14], SSD-512
(98.6%) [12] and the Faster RCNN (95.3%) [19]. Note that
the Faster RCNN and SSD are proposed for object detection,
we tailored them for face detection the same way as we did
for Netf .

B. FACIAL LANDMARK LOCALIZATION
The Landmark Locator Netm is composed of 1) the Line
Segment Network (LSN) for estimating the line segments
that connect the facial landmarks and 2) the Double-Dropout
Network (DDN) for locating the facial landmarks.

1) LINE-SEGMENT NETWORK
Many facial landmarks are located on the edges of the whole
face and of the facial components, e.g., eyes, nose and mouth.
The Line Segment Network (LSN) is proposed to take the
advantage of this observation by detecting the line segments
that connect all of the landmarks. The line segments are
obtained by connecting the neighboring landmarks in each
training image, generating a target line segment map for
learning. Given a training face sample Uk with landmarks
labeled, we connect the neighboring landmarks that follow
the shapes of the facial components and the whole face, and
generate Vi, the binary image of the facial line segments.
This can be readily done as most databases offer landmarks
numbered in a predefined order. This way of forming a land-
marked line segment map can be applied to the whole training
set and end up with the image pair set [Uk ,Vk ]k=1,··· ,Ku ,
i.e., each training sample is composed of an image and a land-
marked facial line segment image. Given [Uk ,Vk ]k , the LSN
is designed to take Uk as input and generate V̂k as output,
so that the error between V̂k and Vk is minimized by the
end-to-end training.

The design of the LSN network considers the state-of-the-
art RCF (Richer Convolutional Feature) network [13] as the
base net, and improves it with shallower convolution layers
for better scaled and leveled features. The shallower convo-
lution layers account for the fact that our targets, including
eyes, mouth and the whole face, are in the same scale as the
input is a face cropped by the face detector, instead of the
multi-scaled objects considered in the general edge detection.

The proposed LSN is structured as that shown in Figure 2.
As the RCF network is the base of the LSN, and the VGG-16
network [16] is the base of the RCF, the LSN can be well

FIGURE 2. Network structure and parameter settings of the proposed
Line Segment Network (LSN), modified from VGG-16 with all
fully-connected layers removed and all convolution blocks made of two
convolution layers.

explained by looking into the architecture of the VGG-16.
The VGG-16 consists of two double-convolution blocks,
three triple-convolution blocks and three fully-connected lay-
ers. The fully-connected layers are all removed in the RCF,
which keeps the five convolution blocks with 13 convolu-
tion layers. The convolution layers are commonly denoted
as conv-1-1, conv-1-2, conv-2-1, ... conv-5-2 and conv-5-3,
where conv-i-k denotes the k-th convolution layer at Block-i.
A pooling layer with 2× 2 window is implemented between
the convolution blocks.

The modifications made on the VGG-16 include the
following:

• Each conv layer is connected to a conv layer with kernel
size 1 × 1 and channel depth 21 (denoted as 1 × 1-21).
The resulting layers in each block are accumulated using
an eltwise layer to form hybrid features.

• Each eltwise layer is connected to a 1× 1-1 conv layer,
followed by a deconv layer for feature map upsampling.
The deconv layer is connected to a sigmoid layer for
minimizing the cross-entropy loss from the target.

• All upsampling layers are concatenated and followed by
a 1 × 1-1 conv layer for fusing the feature maps from
each block. The fused feature is connected to a sigmoid
layer for minimizing the cross-entropy loss.

• The above three follow the RCF setups [13]. In addition,
we further modify the network to keep two convolution
layers in each block as the line segment features are
of high spatial frequencies, which will be weakened by
deeper convolution.
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Given the LSN configuration shown in Figure 2, the fol-
lowing loss is computed at each pixel with respect to the pixel
label as

L(Xi;W ) =


α · log(1− P(Xi);W ), if yi = 0
0 if 0 < yi ≤ η
β · logP(Xi;W ), otherwise

where α = γ ·
|Y+|

|Y+| + |Y−|
, β =

|Y−|
|Y+| + |Y−|

(1)

Y+ and Y− denote the set of line segment pixels (or pos-
itive pixels) and the set of background pixels (or negative
pixels), respectively. The hyper-parameter γ is a weight coef-
ficient chosen to balance the positive and negative sets. The
activation value fired by the network and the ground-truth
line segment probability at pixel i are presented by Xi and yi,
respectively. As the VGG-16 is employed as the backbone
network, P(·) is the sigmoid function, and W denotes the
network parameters to be learned from training.

Summing up the above loss from each convolution block
and the fused loss contributed by all convolution blocks,
the total loss considered in the proposed framework can be
written as follows

LT =
|I |∑
i=1

(
K∑
k=1

L(X ki ;W )+ L(X fusei ;W )

)
(2)

where |I | is the number of pixels in image I , K is the number
of convolution blocks (5, in this case), X ki is the activation
value from block k , and X fusei is the fused activation output.

2) DOUBLE DROPOUT NETWORK
The Double Dropout Network (CDN) is derived from the
Multiple Dropout Network (MDN) that we proposed for
facial landmark localization [7]. The following are experi-
mentally verified in [7]:

1) Dropout added to the convolutional layers can better
prevent the regression network training from overfit-
ting than the general practice with dropout added to the
fully-connected layers;

2) Two dropouts can better balance the training time and
stability than other setups with fewer or more dropouts;

3) Shallow network can better balance the runtime speed
and accuracy than deeper network.

Due to these advantages, the DDN is designed as a
VGG-10 with two double-convolution blocks, one triple-
convolution block and three fully-connected layers, with two
dropout layers implemented next to the second and third
convolution blocks. We keep the same network settings as of
the MDN landmark detector in [7]. Note the following big
differences between our DDN and the MDN in [7]:

1) As we do not have to deal with non-frontal faces for
facial palsy analysis, at least for the time being, we do
not have the pose classifier as in the framework of
the MDN;

2) The input to the MDN is a facial image only, but we
consider the facial line segment image given by the
LSN as an addition input to the facial image, i.e., the
DDN considers both the image and associated line
segments as input.

C. DETECTION OF FACIAL PALSY REGION
The Facial Palsy Region Detector Netp takes the facial image
combined with the associated facial line segment image as
input and delivers the local palsy regions in the output.
The network structure is similar to that of the Darknet [17]
but with landmark-oriented 8 × 8 cells to cover the facial
area where the local palsy regions can appear. The approach
consists of the following steps.

1) The input combines the face detected by Netf and the
facial line segment image rendered by LNS, i.e., the
input includes the three RGB channels and the addi-
tional fourth channel for the line segment image.

2) The facial landmarks given by Netm are used as the
references to implement the grid of 8×8 cells, as shown
in Figure 3. The 8 × 8 cells are designed for detecting
all possible sizes of palsy regions.

3) Each cell is associated with 2 bounding boxes for
predicting the palsy regions of two classes, which are
classes Eyes andMouth. The former captures the palsy
regions at the eyes region and the latter for the mouth
region.

4) The core part of the network is modified from
the Darknet-19, and it consists of 4 blocks with
11 convolution layers and 4 max-pooling layers
(v.s. 7 blocks, 19 convolution layers and 5 max-pooling
in Darknet-19). As the configuration shown in Figure 3,
it operates on the input firstly by 2 single-convolution
blocks, then 2 double-convolution blocks, then 1 triple-
convolution blocks, then 1 convolution layer fol-
lowed by a Route-Reorganization-Route and another
convolution layer for multi-block feature extraction.
A 2× 2max-pooling is implemented at each of the first
4 blocks.

5) We train and evaluate the network on the YFP
(YouTube Facial Palsy) database. The details are
reported in Sec. V.

FIGURE 3. The Facial Palsy Region Detector Netp consists of 4 blocks with
11 convolution layers and 4 max-pooling layers. The last
Route-Reorganization-Route and the convolution layer Conv8 are for
multi-block feature extraction. The input is the facial image coupled with
the facial line segment image.

The palsy region detector Netp aims at the minimization
of the prediction loss, Lp, which is the sum of the following
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three losses, the location loss Ln, the region confidence loss
Lo and the class probability loss Lc.

Ln = λlocob

S2∑
i

Nb∑
j

Iobij [(x
pr
ij − x

ob
ij )

2
+ (yprij − y

ob
ij )

2

+ (wprij − w
ob
ij )

2
+ (hprij − h

ob
ij )

2]

+ λlocno_ob

S2∑
i

Nb∑
j

Ino_obij [(xprij − x
c
ij)

2
+ (yprij − y

c
ij)

2

+ (wprij − w
c
ij)

2
+ (hprij − h

c
ij)

2] (3)

where xobij , y
ob
ij , w

ob
ij , h

ob
ij are respectively the center coordi-

nates and the width and height of the target, i.e., the palsy
region, associated with Cell-(i, j). xprij , yprij , wprij , hprij are
respectively the coordinates and the width and height of the
anchor-based predicted box. xcij, y

c
ij, w

c
ij, h

c
ij are respectively

the center coordinates and the width and height of the cell
without overlap with any palsy region. λlocob and λlocno_ob are the
weights imposed on the palsy region (target) and non-palsy
region (background).

Lo = λ
conf
ob

S2∑
i

Nb∑
j

Iobij
[
Conf prij − IOU (Bprij ,B

tr
ij )
]2

+ λ
conf
no_ob

S2∑
i

Nb∑
j

Ino_obij (Conf prij )
2 (4)

whereConf prij is the confidence of the predicted box based on
Cell-(i, j), IOU (Bprij ,B

tr
ij ) is the Intersection-over-Union of the

predicted bounding box Bprij and the ground-truth bounding

box Btrij of Cell-(i, j). λ
conf
ob and λconfno_ob are the weights to com-

promise the cells overlapped with targets and those without.

Lc =
S2∑
i

B∑
j

Iobij {p
pr
ij (Ck )− p

tr
ij (Ck )}

2 (5)

where pprij (Ck ) and p
tr
ij (Ck ) are respectively the probabilities

of the predicted box and of the ground-truth box being with
the region class Ck .
As we implement an 8 × 8 grid, the output of Netp is an

8×8 tensor, due to the design with 2 bounding boxes for each
cell, 4 numbers for the coordinates of each bounding box,
the probability that each bounding box confines or overlaps
a local palsy region, and the probabilities that each bounding
box classified to Class-Eyes and Class-Mouth.

IV. DATA PREPARATION
Among the three component networks, the training and test-
ing of the face detector Netf is addressed in Sec. III-A, this
section presents the data used for training and testing the
landmark detector Netm and the palsy region detector Netp.

A. FACIAL LANDMARK DATABASES
We consider the 300W and Menpo databases for train-
ing and evaluating the landmark detector Netm [22], [26].
Both databases offer specific training and testing sets. The
300W consists of nearly frontal images with 68 annotated
landmarks. The 300W training set is composed of several
popular datasets, for example, AFW and HELEN [21]; the
testing set provides 300 indoor and 300 outdoor face images.
The Menpo database has 8979 training images (6679 nearly-
frontal and 2300 nearly-profile faces) and 7281 test images
(5335 nearly-frontal and 1946 nearly-profile faces). 68 land-
marks are annotated on each nearly-frontal face, and 39 land-
marks on each nearly-profile face. Because our facial palsy
analysis focuses on nearly-frontal faces, the Menpo profile
faces are not considered in our experiments. All Menpo
nearly-frontal faces are put together with the 300W training
set for training the Netm, and the performance evaluated on
the 300W test set. The training phase involves the following
steps:

1) Connect the neighboring landmarks on each training
face image to make the associated line segment image;

2) Train the LSN by using the training set as input and the
associated line segment images as output;

3) Use the above trained LSN as the pretrained component
in Netm, composed of LSN and DDN, and train Netm
by using the training set as input and the associated
landmark locations as output.

In addition to the 300W test set, we also select 500 faces
randomly from the YFP database as another test set. The
performance of Netm is reported in Sec. V with a comparison
to other contemporary approaches.

B. YOUTUBE FACIAL PALSY (YFP) DATABASE
We have collected 32 videos of 21 facial palsy patients from
YouTube, and a few patients havemultiple videos. The patient
in each video speaks to the camera and the camera records
the facial expression variation across time. Depending on
different patients at different time of recording, some images
show the syndrome of the palsy-caused deformation with
high intensity and some with median or low intensity, justi-
fied by the severity revealed by the deformation pattern. The
imageswith very low intensitymay appear similar to a normal
face, and in some cases, even the clinician can hardly tell
whether the face is with the palsy syndrome if only looking
at one single image without referencing other frames. For
some patients, the palsy-induced facial asymmetry is easy to
observe even when the patient stops talking and keeps neutral
in the expression.

As the duration of the shortest facial palsy syndrome usu-
ally lasts for a second or so, we converted each video into an
image sequence with sampling rate 6FPS. For each image,
we manually cropped the local palsy regions when the facial
palsy intensity was considered sufficiently high by a clini-
cian. The palsy regions were labeled by three independent
clinicians, and we used the intersection of the independently
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cropped regions as the ground truth. When cropping on each
image, we labeled the intensity observed in each palsy region
as 0.5 for low or 1.0 for high, and the ground truth was defined
by averaging. In addition to the syndrome intensity, we also
labeled the palsy regions into Classes Eyes orMouth, depend-
ing on whether the palsy region appeared at the eyes or mouth
area. This part of labeling was performed semi-automatically
by using the facial landmarks. Since the facial landmarks are
numbered in a specific order, the class labels Eyes or Mouth
for the palsy regions were given directly from the numbered
landmarks that are in these regions. The YFP database can be
available to the research community by request.

V. EXPERIMENTAL EVALUATION
A. PERFORMANCE OF FACIAL LANDMARK DETECTOR
The experimental results for the data and setups reported
in the previous sections are presented in this section. All
experiments were run on a Ubuntu 14.04 with Titan X GPU,
and CUDA 7.5 with cuDNN 4.0 on Caffe. The accuracy of
the facial landmarks is measured by the common Normal-
ized Mean Error (NME), which is the average point-to-point
Euclidean distance normalized by the interocular distance
(the distance between the outer corners of the eyes) [21]. The
NME can be written as follows.

NME =
1
N

N∑
i=1

||zi − si||2
di

(6)

where zi denotes the ground-truth coordinates of the land-
marks of the face−i, si is the estimated coordinates and di
is the interocular distance.

The performance of the landmark detector Netm on the
300W is shown in Tabel 1, together with the performance
of other contemporary approaches. The proposed Netm out-
performs others for facial landmark localization. As the
configuration elaborated in Sec. III-B, Netm is actually the

TABLE 1. Landmark accuracy on 300W in the normalized mean error. The
best three in each category column are in boldface.

DDN (Double Dropout Network) with line segment learning
added in. Without the LSN for line segment learning, Netm
is simply the DDN, whose performance is the same as of
the MDN [7], as shown in the table. Therefore, the perfor-
mance difference between Netm andMDN in the table reveals
the contribution made by the inclusion of the line segment
learning.

Fig. 4 shows several samples of the landmarks located
on the testing set of 500 palsy faces. The NME on this set
is 9.22, close to the performance obtained on the challenge
subset of 300W. Because it is not a central concern to locate
the landmarks on palsy faces in this study, we use the same
Netm which was tested on the above 300W and does not
consider any facial palsy samples in the training. Although
the inclusion of palsy samples in training may improve the
landmark accuracy on palsy faces, the selection of training
samples, e.g., with different portions of strong and weak
palsy patterns, can result in different capacities of handling
different palsy patterns. This task is beyond the scope of this
paper, and can be considered in the continuing work.

B. PERFORMANCE OF LOCAL PALSY REGION DETECTOR
As only 21 patients are available in the YFP dataset,
we adopt the leave-one-person-out (LOPO) protocol that

FIGURE 4. Samples of landmark detection on palse faces. The top row are ground truth landmarks, the middle row are the
landmarks detected by the proposed Netm, and the bottom row are the errors between the detected and ground-truth. Errors ≤ 2
pixels are in green, ≤ 4 pixels in yellow, > 4 pixels in orange.
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takes 20 patients for training and the remaining one for testing
in one session, and in the next session the one in testing
is replaced by one who was in the previous training. This
process is repeated for all 21 patients, and the performance is
measured by the average. To make our solution robust against
expression variation, we have included the CK+ database
in our training/testing sets, and compared with setup that
excludes the CK+. In the experiment with CK+ included in
the training, we randomly split the CK+ into five subject-
independent subsets, and run 5-fold cross validation together
with the 21 LOPO tests on the YFP dataset. In the experiment
without CK+ in the training, we run the same tests on the
same testing subsets.

To better understand the contribution of the line segment
learning, we built another network without the line segment
network included in the pipeline, i.e., the configuration in
Figure 1 with the LSN removed. The palsy region detec-
tor Netp in Figure 3 was also modified with the facial line
segment image removed and the facial image was used as
the only input. Figure 5 shows the performances with and
without CK+ considered in the training. When the CK+ is
not included and the framework does not consider facial line
segments, the palsy region detector Netp detects many false
positives on the CK+ test set, and the overall performance
gives EER (Equal Error Rate) 77.7%. When the CK+ is
included, the accuracy is improved to EER 87.5%. When the
facial line segment is included in the input, the performance
reports EER 82.3% for the case without CK+ included in the
training. The best performance, EER 91.2%, is given by the
setup with the facial line segment included in the input and
the CK+ is included in the training. The experiments reveal
the following observations:

• The inclusion of the CK+ substantially improves the
robustness against expression variations, which can be
a major cause for false positives.

FIGURE 5. Performance comparison between different setups: the model
without line segments and trained on YFP gives 77.7% EER (Equal Error
Rate), with line segments gives 82.3% (YFP+LS), without line segments
and with CK+ included in training gives 87.5% (YFP+CK), with line
segments and with CK+ included gives 91.2% (YFP+ CK+ LS).

• The incorporation of facial line segment learning can
enhance the network’s capability of detecting the target
local regions.

To identify the intensity variation of the facial palsy syn-
drome over time, we extract the softmax probability from
the output of the DHN when processing each frame as the
intensity indicator. As the data in our training set are labeled
score 1 for high intensity, 0.5 for low intensity and 0 for
no intensity or the normal face. All scores are labeled on
the training data and considered in the DHN training phase.
Figures 6 and 7 show the intensity variation of the facial
palsy syndrome over time for Subject-1 and Subject-6 in our
database. The intensity is expressed in % with the frame
number in parenthesis (·). It can be seen that the intensity is
quantitatively captured by the softmax probability output of
the DHN for each frame.When the intensity is low, the mouth
shape appears close to normal; when it is high, the mouth
deformation shows a strong asymmetric pattern.

FIGURE 6. Intensity variation over time for Subject-1, intensity expressed in % with the frame number in
parenthesis (·). Top row shows the faces captured at the time specified on the intensity variation at the
bottom row.
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FIGURE 7. Intensity variation over time for Subject-6, intensity expressed in % with the frame number in
parenthesis (·). Top row shows the faces captured at the time specified on the intensity variation at the
bottom row.

VI. CONCLUSION
We present the development of a pioneering deep learning
framework, the Deep Hierarchical Network (DHN), for quan-
titative analysis of facial palsy. The proposed hierarchical
framework is composed of a face detector, a facial land-
mark detector and a local palsy region detector. We have
experimentally verified that the line segment learning in the
framework leads to an important part of deep features able
to improve the accuracy of facial landmark and palsy region
detection. To enhance the robustness against facial expression
variations, we include the CK+ expression database in the
learning phase so that the framework is trained to distinguish
common facial expressions from facial palsy patterns. The
novelties of this study include the modification of a state-of-
the-art edge detector for extracting the facial line segments,
the embedding of the line segment learning for the detection
of facial landmarks and local palsy regions, the quantita-
tive description of the syndrome intensity, and the release
of the first clinically labeled YFP (YouTube Facial Palsy)
database. Experiments show that the proposed framework can
be a highly effective solution for the automatic quantitative
analysis of facial palsy.

REFERENCES
[1] A. Asthana, S. Zafeiriou, S. Cheng, andM. Pantic, ‘‘Incremental face align-

ment in the wild,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2014, pp. 1859–1866.

[2] A. Bulat andG. Tzimiropoulos, ‘‘How far are we from solving the 2D&3D
face alignment problem? (and a dataset of 230,000 3D facial landmarks),’’
in Proc. Int. Conf. Comput. Vis., 2017, pp. 1021–1030.

[3] X. P. Burgos-Artizzu, P. Perona, and P. Dollár, ‘‘Robust face landmark
estimation under occlusion,’’ in Proc. ICCV, Dec. 2013, pp. 1513–1520.

[4] X. Cao, Y. Wei, F. Wen, and J. Sun, ‘‘Face alignment by explicit shape
regression,’’ Int. J. Comput. Vis., vol. 107, no. 2, pp. 177–190, 2014.

[5] S. He, J. J. Soraghan, B. F. O’Reilly, and D. Xing, ‘‘Quantitative analysis
of facial paralysis using local binary patterns in biomedical videos,’’ IEEE
Trans. Biomed. Eng., vol. 56, no. 7, pp. 1864–1870, Jul. 2009.

[6] Q. Hou, J. Wang, L. Cheng, and Y. Gong, ‘‘Facial landmark detection
via cascade multi-channel convolutional neural network,’’ in Proc. ICIP,
Sep. 2015, pp. 1800–1804.

[7] G.-S. Hsu and C.-H. Hsieh, ‘‘Cross-pose landmark localization using
multi-dropout framework,’’ in Proc. IEEE Int. Joint Conf. Biometrics
(IJCB), Oct. 2017, pp. 390–396.

[8] G.-S. J. Hsu, K.-H. Chang, and S.-C. Huang, ‘‘Regressive tree struc-
tured model for facial landmark localization,’’ in Proc. ICCV, 2015,
pp. 3855–3861.

[9] G.-S. J. Hsu, W.-F. Huang, and J.-H. Kang, ‘‘Hierarchical network for
facial palsy detection,’’ in Proc. CVPRW, 2018, pp. 1–7.

[10] H. S. Kim, S. Y. Kim, Y. H. Kim, and K. S. Park, ‘‘A smartphone-based
automatic diagnosis system for facial nerve palsy,’’ Sensors, vol. 15, no. 10,
pp. 26756–26768, 2015.

[11] A. M. Kosins, K. A. Hurvitz, G. R. Evans, and G. A. Wirth, ‘‘Facial
paralysis for the plastic surgeon,’’ Can. J. Plastic Surgery, vol. 15, no. 2,
pp. 77–82, 2007.

[12] W. Liu et al., ‘‘SSD: Single shot multibox detector,’’ in Proc. Eur. Conf.
Comput. Vis. Cham, Switzerland: Springer, 2016, pp. 21–37.

[13] Y. Liu, M.-M. Cheng, X. Hu, K. Wang, and X. Bai, ‘‘Richer convolutional
features for edge detection,’’ in Proc. CVPR, 2017, pp. 5872–5881.

[14] M. Mathias, R. Benenson, M. Pedersoli, and L. Van Gool, ‘‘Face detection
without bells and whistles,’’ in Proc. Eur. Conf. Comput. Vis. Springer,
2014, pp. 720–735.

[15] T. H. Ngo, M. Seo, N. Matsushiro, W. Xiong, and Y.-W. Chen, ‘‘Quan-
titative analysis of facial paralysis based on limited-orientation modified
circular Gabor filters,’’ in Proc. 23rd Int. Conf. Pattern Recognit. (ICPR),
Dec. 2016, pp. 349–354.

[16] O. M. Parkhi, A. Vedaldi, and A. Zisserman, ‘‘Deep face recognition,’’
in Proc. BMVC, 2015, pp. 1–6.

[17] J. Redmon and A. Farhadi. (2016). ‘‘YOLO9000: Better, faster, stronger.’’
[Online]. Available: https://arxiv.org/abs/1612.08242

[18] S. Ren, X. Cao, Y. Wei, and J. Sun, ‘‘Face alignment at 3000
FPS via regressing local binary features,’’ in Proc. CVPR, Jun. 2014,
pp. 1685–1692.

[19] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-time
object detection with region proposal networks,’’ in Proc. ANIPS, 2015,
pp. 91–99.

[20] M. A. Sadeghi and D. Forsyth, ‘‘30 Hz object detection with DPM V5,’’
in Proc. Eur. Conf. Comput. Vis. Springer, 2014, pp. 65–79.

[21] C. Sagonas, E. Antonakos, G. Tzimiropoulos, S. Zafeiriou, and
M. Pantic, ‘‘300 faces in-the-wild challenge: Database and results,’’ Image
Vis. Comput., vol. 47, pp. 3–18, Mar. 2016.

[22] C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic, ‘‘300 faces
in-the-wild challenge: The first facial landmark localization challenge,’’
in Proc. CVPRW, 2013, pp. 397–403.

[23] T. Wang, J. Dong, X. Sun, S. Zhang, and S. Wang, ‘‘Automatic recognition
of facial movement for paralyzed face,’’ Bio-Med. Mater. Eng., vol. 24,
no. 6, pp. 2751–2760, 2014.

[24] X. Xiong and F. De la Torre, ‘‘Supervised descent method and its applica-
tions to face alignment,’’ in Proc. CVPR, 2013, pp. 532–539.

VOLUME 7, 2019 4841



G.-S. J. Hsu et al.: DHN With Line Segment Learning for Quantitative Analysis of Facial Palsy

[25] S. Yang, P. Luo, C.-C. Loy, and X. Tang, ‘‘Wider face: A face detection
benchmark,’’ in Proc. CVPR, 2016, pp. 5525–5533.

[26] S. Zafeiriou, G. Trigeorgis, G. Chrysos, J. Deng, and J. Shen, ‘‘The Menpo
facial landmark localisation challenge: A step towards the solution,’’
in Proc. CVPRW, Jul. 2017, pp. 2116–2125.

[27] X. Zhu, Z. Lei, X. Liu, H. Shi, and S. Z. Li, ‘‘Face alignment across large
poses: A 3D solution,’’ in Proc. CVPR, 2016, pp. 146–155.

GEE-SERN JISON HSU (M’07–SM’14) received
the dual M.S. degree in electrical and mechani-
cal engineering and the Ph.D. degree in mechan-
ical engineering from the University of Michigan,
Ann Arbor, in 1993 and 1995, respectively.

From 1995 to 1996, he was a Post-Doctoral
Fellow with the University of Michigan. From
1997 to 2000, he was a Senior Research Staff with
the National University of Singapore. In 2001,
he joined Penpower Technology, where he led

research on face recognition and intelligent video surveillance. In 2007,
he joined the Department of Mechanical Engineering, National Taiwan
University of Science and Technology (NTUST), where he is currently an
Associate Professor. His research interests include computer vision and pat-
tern recognition. He is a Senior Member of the IEEE and IAPR. His team at
Penpower Technology was a recipient of the Best Innovation and Best Prod-
uct Award at the SecuTech Expo for three consecutive years (2005–2007).
He received several best papers awards after joining NTUST, including
ICMT 2011, CVGIP 2013, CVPRW 2014, ARIS 2017, and CVGIP 2018.

JIUNN-HORNG KANG received theM.D. degree
from the School of Medicine, in 1998, the M.M.S.
degree from the Medicine Graduate Institute
of Clinical Medicine, in 2008, and the Ph.D.
degree from the Institute of Biomedical Engineer-
ing, National Taiwan University, Taipei, Taiwan,
in 2011. He is currently an Associate Professor
with the School of Medicine, Taipei Medical Uni-
versity, Taipei. His main interests include bio-
signal procession and non-linear system analysis.

WEN-FONG HUANG received the B.S. degree
in mechanical engineering from the National
Kaohsiung University of Science and Technology,
Kaohsiung, Taiwan, in 2016, and the M.S. degree
in mechanical engineering from the National
Taiwan University of Science and Technology,
Taipei, Taiwan, in 2018. His research interests
include deep learning and facial landmark.

4842 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORK
	DEEP HIERARCHICAL NETWORK
	FACE DETECTION
	FACIAL LANDMARK LOCALIZATION
	LINE-SEGMENT NETWORK
	DOUBLE DROPOUT NETWORK

	DETECTION OF FACIAL PALSY REGION

	DATA PREPARATION
	FACIAL LANDMARK DATABASES
	YOUTUBE FACIAL PALSY (YFP) DATABASE

	EXPERIMENTAL EVALUATION
	PERFORMANCE OF FACIAL LANDMARK DETECTOR
	PERFORMANCE OF LOCAL PALSY REGION DETECTOR

	CONCLUSION
	REFERENCES
	Biographies
	GEE-SERN JISON HSU
	JIUNN-HORNG KANG
	WEN-FONG HUANG


