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ABSTRACT Human beings have a strong capability to identify objects in different viewpoints. Unlike
computer vision that requires sufficient training samples in various scales and rotations, biological visual
systems can efficiently recognize objects in diverse spatial states. To achieve this objective, images are
processed into a segment-based representation and then a vertical stream variational auto-encoder (VSVAE)
is utilized to generate images based on the preprocessed segments in this study. The novel structure of the
two vertical streams can be also considered as a computational model for the interaction between the ventral
pathway and the dorsal pathway in the visual cortex. The reconstructive capability of the VSVAE is testified
by using a series of geometric information sets to enhance the segment-based representation. By visualizing
the learnt features in the hidden layers of VSVAE, the biological plausibility of the model is discussed.
In addition, the proposed methodology is able to facilitate the classification accuracy, especially when the
images are severely transformed.

INDEX TERMS Invariant recognition, representation argumentation, segment-based image representation,
variational auto-encoder, visual cortex modeling.

I. INTRODUCTION
Cognitive computational simulation in brain-like intelligence
is one of the core issues in artificial intelligence. Amongst
various brain mechanisms, the most comprehensively-
researched area is the visual system in the high-level mam-
mals. Many years of researches on the visual cortex, which
is the central processor of the visual system, have divided
it into multiple functional areas with different functional-
ities and several visual pathways that are responsible for
processing different types of information. Deep neural net-
work is the major technical framework used to model the
visual pathways. Deep learning technologies have achieved
breakthrough experimental results in the fields of machine
vision such as image classification, target detection and video
analysis. These methods mainly use deep neural networks to

learn the distributions of features such as texture, brightness,
and color of images in different regions. At present, their
performances depend heavily on the massive, high-quality
training samples, complex structures and sophisticated
hyper-parametric tuning. They still need improvements espe-
cially in generalization ability, interpret-ability, and training
efficiency. Therefore, how to use the visual characteris-
tics and biological evidences to imitate the visual cogni-
tive mechanism and modularize the integration of different
visual pathways becomes an important topic for the cross-
discipline researches of brain science and brain-like artificial
intelligence.

Utilizing operations such as convolution and pooling,
mainstream models still can hardly learn features that
are invariant to certain transformations of the objects.
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Enhancing the capability of learning such features usually
requires to build quite deep and complex networks. However,
the brain’s visual system does not require repeated training
to recognize the same object in different spatial states. When
the inputs are rotated, scaled, and shifted, the activation states
of the entire convolutional neural network will change sig-
nificantly. However, the neurobiologists scanned the human
brain and found that the biological activation varied slightly
in our brain [1]. The current mainstream models can learn the
corresponding invariant features through augmented training
samples under different levels of rotations and scales for the
objects. In the biological recognition process, the brain can
autonomously rotate and scale the object to be an easily-
recognized state, and then judge the object’s category. This
illustrates that the biological vision system has a strong ability
to perform spatial transformation. Therefore, the research
of biological visual mechanisms aimed to achieve a brain-
like intelligent method that can effectively recognize objects
in different spatial states is one of the key scientific chal-
lenges in artificial intelligence. The solution of this problem
is expected to establish a methodology that truly enables the
‘Equivariance-like’ human visual system [2], which is gen-
uinely different from the invariant feature learning at different
scales.

Utilizing biological mechanisms for modelling the visual
cortex to solve practical problems in computer vision is
a crucial issue in the last decades. The recent researches
mainly focus on the individual modelling of the primary
vortex V1 [3], V2 [4], V4 [5] and IT [6] in the ventral
pathway. For the high-level visual areas, a research proposed
a method based on the sparse auto-encoder to model the
V4 ventral pathway and successfully monitored its shape
selectivity [7]. In another research, the authors discovered
that the higher-level cells can integrate the contour fragments
detected from the lower areas in the visual cortex [8]. Most of
these researches can effectively model individual region sep-
arately yet they barely explore the relationships and hierarchy
amongst different visual functional areas. Riesenhuber et al.
proposed a classical visual model based on the research of
Hubel and Wiesel [9], which uses iterative simple and com-
plex cell layers for modelling the increasingly complexity of
the information processing along the ventral pathway [10].
They also designed a feed-forward visual information and
effectively applied it in practical object recognition mis-
sions [11]. Using deep learning methods to design neural
computational models is prevail and achieved remarkable
successes. The current visual system can be clearly catego-
rized into two pathways, which are the ventral pathway and
the dorsal pathway. The ventral flow is considered to be the
main mediator transforming the visual signals to memory,
cognition and consciousness, while the dorsal flow is mainly
related with the spatial information of the object andmotional
controls. Fig. 1 displays the biological structure of the two
streams. By imitating the double-stream structure of the
visual cortex, researchers proposed novel models for vision
understanding and image classification [13]–[15], and found

FIGURE 1. The biological structure of the dorsal/ventral streams. The
biological directions of both streams are nearly vertical from each other.

that the structure can facilitate the feature learning process
and the classification performances by fusing the results of
different neural pathways. Another study proposed a system
that can automatically design novel computational models
by an artificial dorsal stream (ADS) for the task of head
tracking [16].

Image has another important feature, which is the
contour of the object. It has been widely used for shape
construction [17], image segmentation [18] and object
recognition [19], [20] in the past and achieved excellent
experimental performances compared to the pixel-based
methods. Segment-based representation is a powerful approx-
imation to the object contour, which provides a compact,
flexible and well-structured object description. There are
many approaches for line segments detection. Line Segment
Detection (LSD) [21] is a quite effective one, whose time
complexity is proportional to the quantity of pixels to be
processed in the image. Researchers also designed a segment
detection method based on the visual cortex mechanism,
which can achieve more accurate and intrinsic results [22].
In the computer vision fields, using line segments for visual
missions has been studied for years and still plays an
important role in many advanced applications. In particu-
lar, this paper uses a well proven Discrete Contour Evolu-
tion (DCE) [23] to approximate the segment distribution.
Deep learning has also been well applied in some contour
detection researches [24], [25]. Furthermore, with the explo-
sive growth of touch screens, sketch-based images can be
retrieved easily, which are also a form of contour-based repre-
sentation. Hand-drawn shapes are well studied by researchers
for sketch parsing [26], image retrieval [27], face sketch
synthesis [28] and photo matching [29]. Those researches
proved that contour-based images can achieve an effec-
tive reconstructive efficiency and a superior performance in
discrimination.

Variational Auto-Encoder (VAE) [30] is one of the most
important extensions to enhance the regular auto-encoders.
With a high degree of data correlation, the regular auto-
encoders can only compress data that is similar to the training
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data, because the extracted features are generally highly
relevant to the original training set. One famous application
of the VAE is called Adversarial Auto-Encoder (AAE) [31],
which is a probabilistic auto-encoder that uses the Generative
Adversarial Networks (GAN) to perform a variational infer-
ence. Another extended version of VAE called PixelGAN
auto-encoders is proposed, in which the generative path is
a convolutional autoregressive neural network on pixels [32].
In another research [33], scientists proposed a series of latent
representation models for improving the network anomaly
detection by introducing new regularizers on a classical AE
and a VAE. Another research presented a dual autoencoder
network model based on the retinex theory to perform a
low-light image enhancement, which analyzed and compared
the stacked and convolutional autoencoders with the con-
straint terms of the variational retinex model [34]. Also,
the VAE-based method can be developed to model images,
as well as associated labels or captions [35]. In this paper,
we propose a VAE-based framework to model the two path-
ways in the visual cortex. The early integration of both path-
ways is studied by using a novel vertical structure. The reason
of using a latent variable model is that it offers an effective
mechanism for the manifold learning, which can visualize
the generated segments in a particular low-dimension space.
The characteristic enriches the flexibility of the visualizations
and the generative capability. Also, the utilization of VAE can
effectively alleviate the dilemma between the expansion of
representations and the computational efficiency. The GAN
and its extended versions are not applied in this work due
to their sophisticated implementations and difficulties for
convergences in training.

In the traditional deep learning methods, the size of the
input layer is decided by the resolution of the processed
images, thus high-resolution images normally require a large
network to process, which makes the training quite time-
consuming. One effective way is to use convolutional oper-
ations to preserve spatial relation of an image and pooling
operations to learn features at a more global scale and finally
use a few full-connected layers for classification. These
CNN-based models were proposed in 1990s and have been
significantly developed recently with the great developments
of the computational capacity and establishments of massive
databases. However, the CNN-based technical frameworks
heavily rely on the computational resources and the integrity
of the databases, their computational efficiency, interpret-
ability and train-ability are still problems urge to be solved.
Particularly, the pixel-based models are vulnerable to trans-
formations in scales and rotation. For a rotating object, when
it is noticed, we understand that it is the same object whose
orientation is changing but other properties remain the same.
For a pixel-based feature learning system, if an image is
rotated, it is clear that the activations of the neuron from
the first few layers will be quite different compared with its
original state, which means that the variances can be only
achieved by learning deep features of the object. In another
word, the invariances cannot be achieved without a large

number of training samples. However, the biological mecha-
nism can perform such invariant recognition easily, a person
can recognize a rotating object in different spatial conditions
without any training phases. In this paper, we use a segment-
based representation formed by the geometric information,
which can achieve higher invariances than the pixel-based
representations. It uses a vertical-stream geometric structure,
which complies with both visual pathways in the visual
cortex and can be considered as an effective computational
modelling for the integration of the two streams. The main
contributions are presented below.

1) It verifies the feasibility of using segments-based repre-
sentation to generate various samples in differentiated scales,
rotations, translations and deformations.

2) The model is further developed to facilitate the image
classification.

3) The visualizations can be compared with the biological
evidences obtained by the neuroscientists.

The remainder of the paper is organized as follows.
In Section II, we briefly introduce the preprocessing method
for the original images. The overall method is described in
Section III. Section IV analyses the characteristics of the pro-
posed representation and evaluates the experimental results
on various datasets. Section V discusses the possible devel-
opments of the proposed method in the future and concludes
the paper.

II. A TWO-STAGE PREPROCESSING FOR
LINE-SEGMENT NORMALIZATION
Themajor difficulty of training a neural network by using line
segments is that the number of segments for each image can
be arbitrary. To solve this problem, we propose a two-stage
preprocessing method to normalize the images to be repre-
sented by an equal quantity of segments. The most intrinsic
principle of normalizing the image is to use a reasonable
number of segments to depict a major proportion of the object
contour. However, due to the limited capacity of the segment
detection algorithm, many clutters have been detected and
the contours of the labelled target could be partially missing.
To normalize the segment-based images, we need to select
an appropriate number, then for those images with exceeding
numbers of segments, we need to approximate them to a
smaller number of segments. On the other hand, we can split
segments to increase the total number. Notably, the splitting
of the segments does not lead to the loss of contour informa-
tion while the approximation does. Particularly, for a dataset
with a large number of images, the line segment detection
results can be varied from tens to hundreds, which makes
the normalized number quite hard to be determined. Given
a small normalized number, a large number of segments
will be approximated, which causes significant geometric
information loss for those images with exceeding numbers
of segments and also makes the approximation quite time-
consuming. On the contrary, a large normalized number will
generate amassive neural network. Therefore, we initially use
the salience of detected segments to filter a certain number of
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segments in order to compress the quantity of the segments to
a certain extent, which is the first step of the normalization.
To determine which segments are less important in the image,
we use the parameter of width in the LSD results, which
indicates the detective level of each segment. Afterwards,
we use the approximate operation to further adjust the number
of segments so as to achieve the objective of normalization.
For approximating the segments, the DCE algorithm is used,
which can iteratively merge two segments into one and pre-
serve as much geometric information as possible. The details
of the DCE algorithm can be viewed in [23].

The algorithm of the two-stage preprocessing can be
viewed in Algorithm 1 and Fig. 2 is a simple demonstration
of the proposed two-stage approximation for the segments.

Algorithm 1 Preprocessing and Normalization
Input:

S= {s0, s1, . . . sn−1};
Nor_num;

Output:
Snor ;

1: while n > Nor_numdo
2: if n > 1.3 ∗ Nor_num then
3: Find sm with the smallest width in S;
4: Remove sm from S;
5: else if n < 1.3 ∗ Nor_num then
6: S ←DCE(S);
7: end if
8: n← n−1;
9: end while
10: while n <Nor_num do
11: Find sl with the longest length in S;
12: Split sl to s1l and s

2
l with equal lengths;

13: Replace sl with s1l and s
2
l in S;

14: S ← S={s0,s,. . . s1l ,s
2
l . . . sn−1};

15: n←n + 1;
16: end while
17: Calculate the centroid P_cen of S;
18: Calculate the mean length Lp of S;
19: RS← [XPcen−Lp/2, YPcen, XPcen + Lp/2,YPcen];
20: Find sk in S with the shortest distance to RS;
21: Set the nearer endpoint of sk as the starting point of
the directed segment and the further endpoint of sk as the
ending point of the directed segment;
22: −→s0 ←

−→sk ;
23: Remove sk from S and add −→s0 in Snor ;
24: for i = 1;i < Nor_num−1; i++ do
25: Find −→sk as a directed segment with the shortest

distance to −→si−1 in S;
26: Remove −→sk from S;
27: −→si ←

−→sk ;
28: Add −→si in Snor ;
29: end for
30: Snor ← {

−→s0 ,
−→s1 , ...

−−−−−−→sNumnor−1};

III. METHOD
A. VERTICAL STREAM VARIATIONAL AUTO-ENCODER
The visual cortex of brain mainly processes visual informa-
tion in two pathways, which are the ventral stream and dorsal
stream respectively. The current typical convolutional neural
networks that implement a hierarchical feature learning struc-
ture can be considered as a methodology inspired partially
from the ventral pathway. One major problem with this tech-
nical framework is that they are vulnerable to transformations
in scales and rotations. The main reason is that the CNNs
merely use down-sampling and convolution to acquire global
features and enhance the invariance. Therefore, the network
cannot learn features that are genuinely invariant to the geo-
metric transformations whereas the biological system does
not require sophisticated training for achieving such function-
ality. Particularly, the biological visual systems have an effec-
tive interactive mechanism between the two pathways, thus it
is conceivable to broaden the networks so as to implement a
dorsal stream for better invariances. In this study, we do not
attempt to change the intermediate processes of the traditional
networks, such as the synaptic plasticity. Instead, we broaden
the input layer to form a vertical stream that uses a series
of geometric variations to achieve translation, scale, rotation
and other forms of transformations. The presented represen-
tations in geometric information directly describe the spatial
information of the objects, which are expected to model the
dorsal stream and further explore the computational model
of the interactions between the ventral and dorsal streams.
Compared to the work in [14] that uses multiple streams
to handle different geometric information, the VSVAE can
integrate multiple sets of geometric features and fuse their
invariances together by using a single VAE.

As shown in the top of Fig. 3, the inputs of the segments are
geometrically transformed into a series of variations accord-
ing to the original segments. The inputs are expanded to inte-
grate different forms of transformations, such as translation,
scale, rotation and deformation. The transformed geometric
representations are appended after the original segments and
a horizontal combination of different geometric representa-
tions can be formed. Because of the expansion of the inputs,
the auto-encoder in the vertical direction changes accordingly
but the dimension of the output is still equal to the dimension
of the original segments. As a result, the network can be
considered as a form of asymmetric auto-encoder. Compared
to the existing multi-stream frameworks, both streams in the
proposed model are vertical with each other, which can be
better accordance with the biological mechanism of the visual
cortex. The overall framework of the proposed model can be
seen from Fig. 3.

B. GEOMETRIC TRANSFORMATIONS
For clarity, some notations and operators used in this paper
are listed in the Table 1. The segments are preprocessed into
a standard normal distribution with a mean 0 and a variance 1.
All weights are initialized by using a random uniform distri-
bution between −1 and 1.
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FIGURE 2. The two-stage preprocessing for approximating the segments. The segments with less importance
according to their detected widths are removed in the first stage. Afterwards the remained segments are further
approximated by using the DCE algorithm.

TABLE 1. Notations and definitions.

The geometric transformations used in this method are
different from the affine transformations as they follow an
encoder-decoder paradigm. The original distributions of the
line segments are formed in a simple two-endpoint represen-
tation, as show in

si = {xb, yb, x t , yt }, (1)

where xb and yb are the coordinates of the beginning point
of si, and x t and yt are the coordinates of the terminal point
of si. For a given image, it is preprocessed into a set of
segments Snor by using the Algorithm 1, which can be seen in

Snor = {s0, s1 . . . . . . sn−1}, (2)

where Snor is a 4∗nmatrix. In this study, we proposed a series
of k geometric transformations in

9 = {ψ0, ψ1 . . . . . . ψk−1}. (3)

For a given set of 9, an original set of Sn can be trans-
formed into

9(Sk ) = {ψ0(Sn), ψ1(Sn).....ψk−1(Sn)}, (4)

where 9(Sk ) is a 4∗n∗k matrix. And for any ψj, we have φj
as the reverse transformation of ψj:

φj(ψj(Sn)) = Sn. (5)

φ0 is a special normalized form of the original segment
distribution, where all the starting points and ending points
are normalized into aN (0, 1) . It can be seen from Fig. 4 that
the invariant information is distributed in different subsets of
the geometric representations, where each of them is able to
identify a particular type of transformation.

C. TRAINING
The training implementation in this paper is different from the
traditional VAE, where the loss function not only contains the
reconstruction loss, the Kullback-Leibler divergence loss, but
also a regularization term of weight decay. In our condition,
the loss function becomes:

L(θ , ϕ; si) = Eqϕ (z|9(si))(log pθ (9(si)|z))

−DKL(qϕ(z|ψ0(si)) ‖ pθ (z))

+ λ ∗WL2(θ, ϕ). (6)

Equation (6) is the reconstruction loss, or expected nega-
tive log-likelihood of the ith segment. The expectation is taken
with respect to the encoder’s distribution over the representa-
tions. The first term is the cross entropy, which encourages the
decoder to learn how to reconstruct the data. If the decoder’s
output does not reconstruct the data well, it will incur a large
cost in this loss function.

The second term is an imposed regularization, which is
theKullback-Leibler divergence between the encoder’s distri-
bution and decoder’s distribution. This divergence measures
how much information is lost when using q to represent p.
It is also a measure of how closed between q and p.
The third term is the newly added regularization term of the

weight decay, which indicates the magnitude of the weights
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FIGURE 3. The overall framework of the proposed method. Top: the geometric transformations as an input expansion stream for the
images, where the segment-based images are translated, scaled, rotated and deformed to a certain extent. Bottom: an asymmetric
variational structure uses the expanded representation to form the original segments as a feature learning stream, where the two
streams are vertical in this structure.

and helps preventing over-fitting. As a type of Bayesian
regularization, the term tends to make the large weights suffer
and the model is regularized to be simple and of better gen-
eralization power. λ is the control parameter to determine the
relative importance amongst the terms, which is ranged from
0.0001 to 0.1 and tuned by a grid search in the experiments.
The definition of weight decay is defined in

WL2(ϕ, θ) =
∑
wi∈ϕ

w2
i +

∑
wj∈θ

w2
j . (7)

IV. EXPERIMENTS
The experimental part consists of five subsections. First of all,
the experimental configurations of the experiments are given
and the datasets are introduced. Secondly, the capability of
reconstructions of the proposed model is verified on different
datasets. Thirdly, the manifold learning results are exhibited
and the superiority of our method is presented by comparing
with other pixel-based models. Afterwards, we discuss the
biological plausibility by visualizing the hidden neurons in
the VSVAE. Lastly, we verify the ability of the generated
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FIGURE 4. The different geometric transformations and their
corresponding changing areas in the segment-based representation.
When a segment-based image is translated (a), scaled (b), rotated (c) and
deformed (d), only the corresponding regions in the representation are
changed, while the rest regions remain the same.

samples to facilitate the performances for the image classi-
fication.

A. DATASET INTRODUCTIONS
The MNIST Handwritten Digit Dataset: a well-known
dataset for handwritten numbers from 0 to 9, has a training
set of 60,000 examples and a test set of 10,000 examples.
The digits have been size-normalized and centered in a fixed-
size image of 28∗28. The handwritten digits can be effectively
represented by a dozen of segments. In this paper, the number
of segments used to normalize the images in the MNIST
dataset is set to 30.

Aaron Koblin Sheep Dataset: a set of crowd sourced
drawings of around 8000 sheep. The drawings are all orga-
nized in a 3-stroke data structure, which indicates the draw-
ing sequences. In this paper, the original representations are
reorganized in the two-endpoint representation. Furthermore,
the drawings are more complex than the handwritten digits,
so the numbers of segments used to normalize the drawings
are set to 50, 100 and 200, respectively.

The Street View House Numbers Dataset (SVHN): a
dataset contains over 600,000 labelled digits cropped from
street view images (a training set and an extra set) and
26032 test images. The goal of this task is to classify the digit
in the center of each cropped 32∗32 color image. This is a
difficult real-world problem. We preprocessed these samples
in the same way as the MNIST dataset.

B. SEGMENT RECONSTRUCTION AND RECOVERY
In this subsection, the reconstructive capability of segment-
based images from the VSVAE are qualitatively assessed.
It can be seen that our model has a good train-ability in recon-
struction, which means that the learnt geometric features can
form up the original distributions of segments effectively. The
variational approximation from Section III were used for the
encoder and decoder respectively, where they have a same
number of hidden units.

We compared the reconstructive results between the
VSVAE and the original VAE in Fig. 5. It can be observed that
the proposed model converges very quickly and gives birth

FIGURE 5. The comparison of the reconstruction results between the
proposed VSVAE and the original VAE on the MNIST dataset.

to better reconstructions. It can be seen from Fig. 6 that the
number of segments also affects the reconstructive capability,
since the sheep drawings are of more complex topological
structures than the handwritten digits. When the normalized
number of segments are too small, the reconstructed shapes
are heavily distorted.

FIGURE 6. The reconstruction results of the Aaron Koblin Sheep Dataset
by different quantities of segments. The sizes of the latent spaces are set
to 2. It can be observed that the number of segments resulted from the
preprocessing significantly affects the performance of reconstruction.
(a) 50 segments. (b) 100 segments. (c) 200 segments.

Furthermore, we testify the reconstructive capability of the
proposed method by evaluating its ability to recover seg-
ments when they are significantly denoised. For the proposed
segment-based representations, the segments can be denoised
by cutting off its individual length according to the midpoint
of each segment. The ability to recover the partial segments
reflects the reconstructive capability and general robustness.
The segments can be considered to be shrunk to a certain
level. Fig. 7 is some samples of different shrinking levels.
It can be seen from the results that the reconstructive results
remain satisfactory even when the geometric patterns are
significantly weakened.

C. ANALYSIS OF THE MANIFOLD LEARNING RESULTS
In this subsection, we analyze the proposed method by visu-
alizing the learnt latent spaces. For each z, we plotted the
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FIGURE 7. The comparison of the reconstruction results between the
proposed VSVAE and the original VAE on the MNIST dataset.

corresponding pθ (x|z) with the learned parameters θ . The
capability of the proposed auto-encoder to impose a specified
prior distribution p (z) on the coding distribution is studied
by comparing with the traditional VAE. The manifold learn-
ing results exhibit the variations amongst different classes.
It can be seen from our results that the generated samples
in the manifold are of obvious variations compared with
the traditional ones. That is, the samples are generated in
different scales and toward different orientations. It can be

observed from the dimension reduction results that samples
within a same class tend to be more centralized, which makes
it superior than the original VAE from the perspective of
separability. One essential issue in the proposed method is
the selection of the geometric features. The visualization
results of the manifold also significantly contribute to
the optimization for a desired combination of geometric
representations.

In the presented manifold in Fig. 8, the distributions of
digits are considerately separated. Unlike the traditional VAE,
where the digit 9s are entangled with digit 4s, the digit 9s are
entangled with digit 6s in the proposed method, and digit 6s
are entangled with a large proportion of 5s. The reason
9s and 6s are entangled is probably due to their similarity in
geometry. Furthermore, digits within a same class are more
centralized than the traditional pixel-based model, such as
digit 1s and 7s, which are relatively simple in their geometric
distributions. In Fig. 9, we presented the separated manifold
results for the digit 0s, 1s and 2s. It can be seen from the
results that, the segment-based VSVAE results have various
geometric deformations in shapes. Besides, the scales and
rotations are more obvious than the pixel-based results.

FIGURE 8. Comparison of the visualizations of the learned data manifolds for the generative models with a 2-dimensional latent space
on the MNIST dataset.
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FIGURE 9. The comparisons of the manifold learning results. (a-c): digits
of 0s,1s and 2s in 30 segments; (d-f): digits of 0s,1s and 2s in 784 pixels.
It is obviously that our model can generate samples with better
diversities, especially in scales and rotations.

D. BIOLOGICAL PLAUSIBILITY
Feature learning methods based on deep learning techniques
are often regarded as black boxes. In most cases, those
models are hard to be explained and not applicable for logical
reasoning. Researchers have to rely on experiences and trail-
and-errors to design a satisfactory network. Since the geomet-
ric features have special characteristics, their visualization
results can be cross-validated with the neuro-biological find-
ings. This provides a mutually beneficial research approach
for the optimization of the deep learning models. By visu-
alizing the neurons in the hidden layers, it is helpful to
realize the simulation of the biological characteristics of
the brain visual cortex and the approximation of biological
data, and eventually to establish a parameter-tuning method
with biological plausibility. Because the geometric features
amongst line segments have explicit geometric meanings and
topological relations, it is believed that deep hidden neurons
learned through this representation can gain a better interpret-
ability. There are many ways to visualize the neurons in the
hidden layers. This paper uses the method of maximizing the
activation value to find an input that can maximally activate
the neuron, which can be regarded as a visual representation
of the hidden neuron.

For the proposed geometric representation, effective
visualizations of the hidden layers can enhance the interpret-
ability of the model on some level, then can further provide
guidance for the geometric feature selection and hyper-
parameter configurations. Similar with the pixel-based learn-
ing paradigm, the learnt features in the shallow layers are
simple and fundamental segments with different orienta-
tions. With the depth of the layers goes deeper, the hidden
layer visualization exhibits increasingly complicated shapes,
which have more concaves and bulges. The visualization
results in Fig. 10 reveal the shape selectivity of the learnt
features in deep layers, which is accordance with the dataset
of shape stimulus used by neurobiology for verifying the
shape selectivity of the V4 neurons in the ventral pathway.

FIGURE 10. The visualizations of the neurons in the hidden layers.

It is found that the orientation columns located in the
primary visual cortex form like a pinwheel structure [36],
where multiple orientation columns converge. Orientation
columns are organized radially around a center known as a
singularity. In this study, it is found that the visualizations for
the first few hidden layers are formed as a very similar pat-
tern compared with the neurological discovery. The segment-
based visualizations in the shallow networks also perform a
pinwheel pattern when they are organized in a certainmanner.
The characteristics can be also performed by the traditional
pixel-based method by using sparse coding. The comparison
is shown in Fig. 11.

FIGURE 11. Pinwheel structure in the sparse coding. (a) training results
based on pixels; (b) training results based on segments, where the
orientations of the segment-based visualization are better converged;
(c) pinwheel structure in the primary visual cortex.

Overall, the proposed method enables abundant feasibil-
ities to interpret the learning system. Not only the recon-
structive capability and manifold results, but also the consis-
tency with the biological evidences can be utilized to select
features and configure networks. By using those technical
skills, the method is further testified on its classification
performances.

E. PERFORMANCE EVALUATION
In this subsection, we firstly evaluate the overall performance
of the proposed representation on the SHVN dataset, then
the performance of the proposed method against to the
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geometric transformations is particularly verified on several
transformed versions of the MNIST dataset. The selected
features are tuned by analyzing the reconstructions, visual-
izations and the class separability of the manifold. By utiliz-
ing these measures, the networks for classifications can be
effectively constructed. The number of normalized segments
still plays a vital role to the overall performance. In order
to evaluate this important hyper-parameter, we preprocessed
both datasets by using different normalization numbers.
Hyper-parameters such as regularization parameters, learning
rate and weight decay were fine-tuned on the validation sets,
whose size is 5000 for both datasets. Stochastic gradient
descent is used as the optimization method and the datasets
are shuffled after each training iteration. In both tasks, we use
a weight decay parameter of 0.0001, a sparsity parameter
of 0.1 and the experiments are implemented on two NVIDIA
GTX 1070 GPUs.

Unlike the MNIST dataset that has a clean background for
each image, the SVHN dataset is more complicated as each
digit has a real-world background. Even for human, the recog-
nition rate is around 98%. For this reason, the LSD algorithm
gives birth to quite poor results for a small proportion of the
training samples in this dataset. In order to avoid negative
effects of these samples, we only preserve the images with
sufficient detected edges for training. The lowest boundary
is set to 20. As a result, approximately 94% of images are
remained for training, and all images are remained in the test
set for a fair comparison. In this task, three normalization
numbers of segments are used on the SVHN dataset, which
are 30,45 and 60 respectively. The performance comparison
can be viewed in Table 2. It can be seen from the results that
our performances generally outperform the other methods.
Notably, the number of segments affects the results signifi-
cantly when the edges are not sufficiently provided.

TABLE 2. Comparison of performance on the SVHN dataset.

In this paper, the proposed segment-based representation
can acquire better invariances than the traditional pixel-based
representations. In order to further evaluate the characteristics
of the VSVAE, we implemented a series of experiments in
this subsection. Initially, we introduce a set of augmented
datasets of the MNIST dataset, where all the images are
rotated, scaled and translated to a certain extent. We imposed
random variations to the original dataset up to differentiated
maximum extents from 0.3 to 0.9, which generate 7 variated
datasets VMNIST0.3 to VMNIST0.9. And the VMNIST1.0 is

the original dataset. For each image in the dataset VMNISTX,
it is randomly rotated, scaled and translated to a certain level
that is under the maximum value of X . Fig. 12 is an illustra-
tion about how we transform the images for the VMNISTX
datasets.

FIGURE 12. An illustration for the image transformations. The image is
scaled to one quarter of the original. The rotation ratio is 15 degrees,
which is 15/360=1/24. Besides, the scaled image is also translated to a
certain extent.

In this task, the number of segments for the digits is nor-
malized to 30. We implement a simple four-layer network for
this classification mission. The numbers of neurons for the
two hidden layers are set to 100. For each VMNISTX dataset,
the experiment is run for 100 epochs. Our model is tested
on each dataset with comparison to the AlexNet [39], the
CapsuleNet [2] and a regular CNN that contains two con-
volution layers, two pooling layers and two fully-connected
layers. Fig.13 shows that our model has an obvious advantage
when the dataset is significantly transformed. It can be also
noted that the overall performance is optimized when the
dataset is slightly transformed.

FIGURE 13. Comparison of the classification accuracies amongst the
proposed model, CNN, the CapsuleNet [2] and the AlexNet [39].

Furthermore, we also evaluate the training efficiency of
the proposed method for the VMNISTX datasets by using
different batch sizes. Though it costs time to preprocessing
images and generating geometric information, it still gets a
better computational efficiency as it converges faster than
the regular CNNs, which can be seen in Fig. 14. The results
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FIGURE 14. Comparison of computation efficiency amongst the proposed
model, CNN and the AlexNet [39] by using different batch sizes.

of CapsuleNet is not presented as its training is much more
time-consuming than the other methods.

V. CONCLUSIONS
This paper explores the possibility that uses a segment-
based representation to build generative models for images.
A vertical-stream generative model is proposed based on a
variational encoder-decoder structure and a series of geomet-
ric transformations. It is discovered that the generated images
are of better discrimination for geometric transformations
than those pixel-based models. Furthermore, we visualize
the hidden neurons as the learnt features to illustrate the
biological plausibility of the proposed model. It can be seen
from the results that the visualizations perform the same
pattern as the neurons functionality in the superior visual
functional areas of the visual cortex. The proposed method is
not a simple form of data argumentation, but a comprehensive
utilization of geometric characteristics for a better interpret-
ability, train-ability and flexibility. It is found that the perfor-
mances in both accuracy and training efficiency are excellent,
especially when the images are significantly transformed.

The computational simulation of the visual cortex mech-
anism and its applications in machine vision have achieved
certain research results. However, the research results of
neurobiology and the machine vision models still have not
been fully integrated. The study of the visual cortex double-
stream mechanism has accumulated a large number of neuro-
biological achievements that can be utilized for modelling.
It is imperative to further utilize those biological evidences
to improve the cross-disciplinary research for the existing
technical framework. Still, the theoretical proofs of the pro-
posed method are not well studied in this paper. The features
are manually selected by observing the visualizations and
the characteristics of the explicit geometric representations.
By combining the biological plausibility and effective math-
ematical measures, this work can be further extended to
establish a self-adapted system.
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