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ABSTRACT A community in networks is a subset of vertices primarily connecting internal components, yet
less connecting to the external vertices. The existing algorithms aim to extract communities of the topological
features in networks. However, the edges of practical complex networks involving a weight that represents
the tightness degree of connection and robustness, which leads a significant influence on the accuracy of
community detection. In our study, we propose an overlapping community detection method based on the
seed expansion strategy applying to both the unweighted and the weighted networks, called OCSE. First,
it redefines the edge weight and the vertex weight depending on the influence of the network topology and
the original edge weight, and then selects the seed vertices and updates the edges weight. Comparisons
between OCSE approach and existing community detection methods on synthetic and real-world networks,
the results of the experiment show that our proposed approach has the significantly better performance in
terms of the accuracy.

INDEX TERMS Overlapping community detection, complex network, weighted network, dense subgraph.

I. INTRODUCTION
Many complex systems in the real world, such as social net-
work, scientific collaboration network and protein interaction
network, can be abstracted into complex networks [1]. With
the deepening of research on complex networks, it is found
that the nature of community structure is often found in many
complex networks, which is characterized by relatively close
links within communities and relatively sparse links among
different communities [2].

The problem of community detection has been addressed
in many different fields such as biology, physics, and
mathematics [3]. A large number of community detection
algorithms have been developed in recent years. These
methods can be generally divided into two categories.
The first category is non-overlapping community detec-
tion method that partition complex network into several
independent community structures, where vertices belong

to only one of the communities, including clustering
algorithm based on graph partitioning [4], [5], clustering
algorithm based on spectral analysis [6], [7], clustering algo-
rithm based on hierarchical [8] and density-based cluster-
ing algorithm [9], [10]. The second category is overlapping
community detection method that allow one vertex to belong
to multiple communities at the same time [11]–[13]. For
example, humans belong to different social communities,
depending on their hobbies, professions, families, etc. There
have been many different methods to detect overlapping
communities. Clique percolation by Palla et al. [14], neigh-
borhood ratio matrix by Eustace et al. [15], label propaga-
tion by Raghavan et al. [16], core-vertex and intimate degree
by Wang and Li [17], and subspace decomposition by
Eustace et al. [12] are some of the popular approaches.

Of all the methods, Local Expansion andOptimization [18]
method is well popularity by researchers. In this method,
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a particular vertex is first selected called seed vertex as a
community, which start to expand from the seed vertex. This
expansion is achieved by adding neighborhood vertices to
the community. At each step, vertices in the neighborhood
of the current community are added according to the value of
the scoring function. When the vertices in the neighborhood
do not improve the value of scoring function, the expansion
will be terminated. The performance of the algorithm is
determined by the seed selection and expansion strategy [19].
Our proposed method is based on local Expansion and Opti-
mization. The main reason is that this method is robust and
scalable. The seed expansion is completed independently,
multiple seeds can be expanded in parallel, thus greatly
accelerating the speed of the algorithm. And Local Expan-
sion method only needs local neighborhood information of
vertices and does not need global information of network
topology. Therefore, the method shows good performance
when the entire network is too large to handle. Figure 1 shows
Zachary’s karate club network.

FIGURE 1. Zachary’s karate club network.

A large number of meaningful community detection algo-
rithms have been proposed in complex networks, but there
still are some challenges that required to be solved. One of the
challenges is determination of community boundaries. Some
algorithms have their own limitation in terms of applicability
and their performance depends on the selection of the seed
vertex and expansion strategies. For instance, in some real-
world networks where community boundaries are hard to
identify, these algorithms fail to identify community bound-
aries [20]–[22]. Another challenge is: edges or vertices in
the real complex networks often contain some vital prior
information. For example, the protein interaction network
is obtained by high-throughput experiments, and the edge
weight often represents the experimental credibility. The
edge weight in the cooperative network usually represents
the closeness degrees of cooperation between cooperative
objects. EM-BOAD [3] has better performance for commu-
nity detection in weighted networks. Community detection
using local communities [20] works well when the seed ver-
tex is at the center of local community [21].

In order to solve the above-mentioned problems, in our
study, we propose an overlapping community detection algo-
rithm for complex networks based on the seed expansion
strategy (OCSE) applying to both the unweighted and the

weighted networks. The algorithm adopts edge-reweighting
method to reset the network edges weight depending on
the influence of the network topology as well as the orig-
inal edge weight, and promotes the defuzzification of the
network community structure. Then the algorithm adopts
vertex-reweighting method to reset the network vertices
weight depending on the new edges weight. The rule of seed
vertex selection makes the seed vertex is more representative.
Combined with the degree of membership, we give a reason-
able expansion process. The proposed algorithm successfully
detects communities on benchmark networks and real-world
networks. The main contributions of our study are summa-
rized as follows:

(1) We propose an edge-reweighting method. More spe-
cific, different from the existing approaches [23], [24],
we comprehensively consider the network edge infor-
mation and network topology information to recalculate
edges weight, which is to enhance the weight of the
community edges further.

(2) Different from the existing seed expansion meth-
ods [19], [25], we redefine the weight of vertices in the
network according to the new edges weight, select a
vertex with the highest weight as community seed ver-
tex, and then iterate to obtain weighted dense subgraphs
according to the seed expansion strategy and the weight
updating method in linear time.

(3) We improve the content of the degree of membership
to measure the link closeness between vertices and
weighted core communities, and allocate unclustered ver-
tices to the weighted core communities to obtain more
accurate community detection performance.

(4) Our proposedOSCE approach applies to both unweighted
and weighted networks. More specific, we report on
the experimental outcomes based both real and artificial
network datasets, and the results show clearly that our
proposed approach has the higher accuracy compared to
existing community detection algorithms.

The rest of this paper is organized as follows; Section II,
briefly outlines a list of related works and the motive of our
research. Detailed steps of the proposedmethod are presented
in Section III. Section IV, presents the experiment results, and
comparison with completing algorithms. Finally, this paper is
concluded in Section V.

II. RELATIVE WORK
There have been many relevant studies on edge-reweighting
method. It can be mainly summed up from two aspects:
one is based on the attributes of edges, the edges weight
are defined by the attributes of existing edges, such as the
betweenness [26], [27]. Another is to redefine the edges
weight based on the similarity between vertices, such as the
common neighbor ratio and clustering coefficient [28], [29].

Edge-reweighting can be directly applied to the existing
community detection algorithms to improve the accuracy of
the community detection results [30], [31]. A prior study [32]
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uses local information of the network and edge-reweighting
method to reconstruct the weighted network. Community
detection on this weighted network is more accurate than that
on the original network. Another prior work [33] proposed
an strategy to detect overlapping communities based on the
vertex location. In this method, the community belonging
of vertices is determined based on the position of vertices
in the topological potential field. The random walk network
preprocessing approach [31] was based on random walk.
In proposed method, the author thinks that two random walks
start from two different vertices in the network, if these two
walking behaviors have a high degree of similarity, then the
probability of the two vertices in the same community is
larger, if these two walking behaviors are obviously different,
the probability of the two vertices in the same community
is lower. Indeed, Edge-reweighting method is simple and
efficient, which can improve the accuracy of community
detection results. The main reason is that edge-reweighting
method is adopted to improve the weight of the inner edges
of the community in the network and reduce the weight of the
edges between the communities and make the communities
more recognizable.

In real networks, the edge feature can be reflected by the
edge weight. For instance, in the social network, the edge
weight can be represented as the close relationship between
individuals. The edge weight in scientific cooperation net-
work represents the number of cooperation between scien-
tists. In the protein interaction network, the edge weight
indicates the credibility of the protein interaction through
high-throughput experiments. Due to the importance of edge
attributes [34], the edge weight with realistic significance
should be considered to detect community. In terms of above
reasons, we considered the attributes of the edges and the
similarity between the vertices to reweight the edges for
community detection. The detailed process is introduced in
the following sections.

III. OVERVIEW OF THE PROPOSED METHOD
In this section, we describe the main steps of our approach,
as well as illustrate the supports on how OCSE improve the
process of finding communities.

A previous study [26] has illustrated that the vertex simi-
larity measures can enhance community detection, but how to
combine the vertex similarity with the actual edge weight is
our first research point. Focusing on these issues, we design a
method of recalculation of edges weight, which is taken into
consideration the edges information and topological struc-
ture of the network. Then the vertices weight is recalculated
according to the new edges weight information. The new ver-
tices weight is more genuinely reflect the importance of ver-
tices in the network. Themaximumweight vertex is chosen as
the seed vertex. The weighted dense subgraphs are obtained
according to the seed expansion strategy and weight update
strategy. However, there are number of overlapping vertices
in some weighted dense subgraphs, these weighted dense
subgraphs with higher overlap rate should be merged into

a weighted core community. At the current stage, the dense
subgraphs have been found out, but there are still some
remaining sparse vertices in the network that are not divided.
In order for all vertices to have community ownership, we put
forward the concept of the degree of membership to mea-
sure the link closeness between vertices and weighted core
communities, and then allocate the uncluttered vertices to the
corresponding weighted core communities according to the
degree of membership. The results of community detection
are obtained. The flow-graph of the proposed algorithm is
shown in Figure 2 based on the seed expansion strategy, called
OSCE.

FIGURE 2. The flow-graph of the proposed OCSE algorithm.

A. EDGE-REWEIGHTING
Given a network G = (V , E), the set of vertices V = {v1,
v2, . . . , vn}, and n = |V |. Each edge (vi, vj) denotes a
connection relationship between a pair of vertices vi and vj.
m = |E|., the set of v neighbors (NG(v) = {u|(u, v) ∈ E}) is
abbreviated as N (v), and the degree of v is denoted as Dv.
In addition, NG(U ) =

⋃
x∈U

NG(x) denotes the subgraph U

neighbors in G.
Hub-Promoted similarity measure (HP) [32] is defined as

the number of common neighbors dividing by the minimum
of the number of two vertices’ neighbors, which is proposed
for quantifying the topological overlap of pairs of substrates
in metabolic networks [26]. The vertices with lower degree
determine the similarity value. Furthermore, analogously to
HP, Hub-Depressed similarity measure (HD) [35] considers
the opposite effect on hubs. It is defined as the number of
common neighbors dividing by the maximum of the number
of two vertices’ neighbors. We introduce these two prefer-
ence relationships into the networks. In order to measure
the connection strength between vertices more accurately,
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we need to define the weight between vertices first, as shown
in Equation (1).

w′(vi, vj) = α ×
|N (vi) ∩ N (vi)|2

min{|N (vi)|, |N (vi)|}2

+β ×
|N (vi) ∩ N (vi)|2

max{|N (vi)|, |N (vi)|}2

+ (1− α − β)× u(vi, vj) (1)

Where N(vi)∩N(vj) represents the common neighbors
between vi and vj. If the edge (vi, vj) exists in the network,
u(vi, vj) is equal to the original edge weight. Conversely, if the
edge (vi, vj) does not exist, u(vi, vj) is equal to zero. The first
two items of Equation (1) reflect the similarity degree of vi
and vj in the network topology. The third item of Equation (1)
reflects the original edge weight. Equation (1) thoroughly
integrates the network topology and the real edge informa-
tion. However, for the edge weight, only make sense if there
is an edge between two vertices. Therefore, we redefined
the edge weight according to Equation (1). In summation,
the final edge weight w(vi, vj) definition is illustrated in
Equation (2). The constant ε ∈ [0, 1] is used to distinguish
whether there is an edge between vertices in the network.

w(vi, vj) =

ε +
1− ε
w′avg

× w′(vi, vj), (vi, vj) ∈ E

0, (vi, vj) /∈ E

w′avg =

∑
(vi,vj)∈E

w′(vi, vj)

|E|
(2)

B. SEED VERTICES SELECTION
The seed vertices are usually more important than other ver-
tices in the network and lie in comparatively dense areas of
the network, which should be lie in the topological centrality
of the community. Therefore, the seed vertices should be far
apart in the network structure. Based on these principles,
the vertex weight is defined as shown in Equation (3).

wd(vi) =
∑

vj∈N (vi)

w(vi, vj)× Dj (3)

The vertex weight wd(vi) is positively related to the degree
of vi neighbors and the weight of adjacent edges of vi, which
reflects the importance of vi in the network. A vertex with the
highest weight is selected as the first seed vertex.

In order to make as many vertices as possible to have
their own community in the process of seed expansion. When
selecting the seed vertex of the next community, the selection
probability of vertices that have been seed vertices should
be reduced. Therefore, after finding a dense subgraph Ct ,
reducing the weight of the edges in Ct can avoid selecting the
vertices in Ct as seed vertex with high probability. The new
edges weight in Ct is w(vi, vj)/

√
|Ct |, and (vi, vj) ∈ E(Ct ).

If a vertex weight changes too much, it should not be selected
as the seed vertex of another dense subgraph. This ensures
that the seed vertices are far apart in the network structure.
Therefore, we need to define the changing rate of the vertex

weight. The changing rate of the vertex weight is defined as
shown in Equation (4).

rate(v) = 1−
wd ′(v)
wd(v)

(4)

Where wd(v) represents the weight of the vertex v before
updating the edge weight. wd′ (v) represents the weight of
the vertex v after updating the edge weight. If rate(v) > θ ,
the vertex v should not be selected as the seed vertex again.
Figure 3 shows that the seed vertices in the karate club
network are obtained by OCSE (black vertices). It can be seen
that the number of seed vertices are moderate and they have
relatively good representation.

FIGURE 3. Seed vertices (33, 9, 4) in Zachary’s karate club network
obtained by OCSE.

C. SEED EXPANSION STRATEGY
In order to get a weighted dense subgraph for the current seed
vertex.We design an evaluation function to evaluate the dense
degree of the subgraph. Assuming S is a connected subgraph
of G, VS represents the vertex set of S, and ES represents the
edge set of S. That is ns = |VS | andms = |ES |. Add

ns(ns−1)
2 −

ms edges to S to get a complete graph S ′. The newly added
edgesweight is set as the average edgeweight ofG. The dense
degree of S is evaluated by the difference between the weight
of the existing edges in S and the newly added edges weight
in S ′. Equation (5) is the evaluation function for S. The larger
the value of f (s), the denser the subgraph S. According to the
definition, if there is only one vertex inS, then f (S) = 0.

f (s) =
∑

(vi,vj)∈Es

w(vi, vj)−
ns(ns − 1)− 2ms

2

×

∑
(vi,vj)∈Es

w(vi, vj)

m
(5)

For a vertex v(v /∈ Vs), we define a fitness function
δS (v) = f (S ∪ {v})− f (S). During the seed vertex expansion
process, the vertex with the largest value and δS (v) > 0
is allocated to the current subgraph S. OCSE executes the
above procedure iteratively until no other vertices satisfy the
condition and produces a current weighted dense subgraph.
Figure 4 shows that OCSE produces weighted dense sub-
graphs according to the fitness function. Different shapes
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FIGURE 4. Weighted dense subgraphs in Zachary’s karate club obtained
by OCSE.

represent different dense subgraphs (triangle vertices, hexag-
onal vertices and quadrilateral vertices).

D. COMMUNITY MERGER
After completing the above steps, OCSE can find many
dense subgraphs. However, there may be many overlap ver-
tices between some dense subgraphs. These dense subgraphs
should be merged. Figure 4 shows that there are half vertices
overlapped between the dense subgraph consisting of vertices
{9, 31, 33, 34} (hexagonal vertices) and the dense subgraph
consisting of vertices {24, 30, 33, 34} (triangular vertices).
These two subgraphs should bemerged. In this paper, the con-
dition for merging of two dense subgraphs is that the number
of overlap vertices between two subgraphs is no less than half
the number of a smaller dense subgraph. The communities
after merging are called weighted core communities. Figure 5
shows that OCSE obtains the weighted core communities in
Zachary’s karate club.

E. POST-PROCESSING OF UNCLUSTERED VERTICES
The weighted core communities are obtained by OCSE,
which includes some local dense subgraphs. However, there
are still some unclustered vertices (shown as the round ver-
tices in Figure 5). Therefore, we first define the degree of
membership to measure the link closeness of unclustered ver-
tices and the weighted core communities. Equation (6) shows
the degree of membership of the vertex v to the weighted
core community C . The value of b(v, C) is positively related

FIGURE 5. Weighted core communities in Zachary’s karate club obtained
by OCSE.

to the adjacent edges weight of v and the adjacent vertices
weight of v in C . Select a weighted core community with
the maximum value and allocate v to the weighted core com-
munity. The algorithm iteratively allocates the unclustered
vertices to the existing weighted core communities according
to Equation (6) until all the unclustered vertices are allocated.
Figure 6 shows the final clustering result obtained by OCSE
in Zachary’s karate club.

b(v,C) =
∑

vx∈N (v)∩VC

w(vx , v)+
∑

vx∈N (v)∩VC

wd(vx) (6)

FIGURE 6. Final communities in Zachary’s karate club obtained by OCSE.

F. ALGORITHM COMPLEXITY ANALYSIS
Algorithm 1-3 describe the procedure of OCSE in details.
Step 1-4 of Algorithm 1 initializes vertices and edges weight
in the network. The average time complexity is proportional
to the total number of edges. It takes at most O(c × |E|).
Step 5-23 of Algorithm 1 obtains the weighted dense com-
munities, and all edges in the network are traversed in each
iteration. The time complexity of this phase depends on the
number of iterations. Assuming that the number of iterations
is t , the total time isO(t×E). Algorithm 2 is themerging oper-
ation for the weighted dense communities. Assuming there
are S (S � |V |) weighted core communities, And its time
complexity is O(S2). Algorithm 3 is the process of allocating
unclustered vertices and the maximum time complexity is
O(|V |). Summarizing the above analysis, the total average
time complexity of OCSE is O(c × t × |E| + |V |), c and t
are constants.

IV. EXPERIMENTAL
We analyze and test the performance of the OSCE algo-
rithm and competing algorithms on several real and synthetic
networks. The first experiment is to test our algorithm on syn-
thetic networks, and the second experiment is to test our algo-
rithm on real-world networks. Furthermore, we also applied
the same networks in the competing algorithms, includ-
ing NLA [33], MCMOEA [36], COPRA [37], CPM [14],
BASH [38], IEDC [39], ACC [40] and Li et al. [13]. These
competing algorithms listed in TABLE I. Note that the time
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Algorithm 1 Seed Expansion Process
Input: A network G = (V , E , U ). V and E represent the set
of the vertices and edges respectively. U denotes the weight
matrix of G
Output:Set of weighted dense subgraphs {C1,C2, . . . ,Ct}
1: Initialize: n = |V |, m = |E|, t = 0, F = V
2: if α > 0 then
3: C = Ø, β = 0.7-α
4: calculate the weight matrix of each edgeWn×n(G) and

the vertices weight wd(v) in F
5: if F 6= Ø then
6: t = t + 1, Ct = Ø
7: select a vertex v with the highest weight in F
8: F = F-{v}, Ct = Ct ∪ {v}
9: if δCt (x)=maxv∈N (Ct) δCt (v) and δCt (x)>0 then
10: Ct = Ct ∪ {x}, go to step 9
11: end if
12: if |Ct| ≤ 3 then
13: t = t − 1, go to step 5
14: end if
15: update the vertices weight in Ct according to

formula (6)
16: for each vertex x ∈ Ct do
17: if cr(x) ≤ θ then
18: F = F-{x}
19: end if
20: end for
21: go to step 5
22: end if
23: end if
24: return {C1,C2,. . . ,Ct}

Algorithm 2 Community Merger Process
Input: Set of weighted dense subgraphs {C1,C2, . . . ,Ct}
Output: Set of weighted core communities
{C1′,C2′, . . . ,Cl ′}
1: for each weighted dense subgraph Ci ∈ {C1, . . . ,Ct} do
2: if |Ci∩Cj|/min{|Ci|, |Cj|}>0.5 and i 6= j then
3: Ci = Ci ∪ Cj
4: end if
5: end for
6: return {C1′,C2′, . . . ,Cl ′}

complexity given is for theworst case.α, β and v are constant.
The maximum vertex degree in G is Dmax , PS is the size
of population and genmax is the maximum number of gen-
erations. The hardware environment of the experiment is a
PC with a stand-alone Intel Xeon processor with 2.67GHz
and 32G memory. The software platform is python 2.7 in
Windows. The parameters setting of OCSE applied in both
experiments are given in TABLE II, and are determined by
a preliminary experiment using a small number of graph
instances [41].

Algorithm 3 Post-processing of Unclustered Vertices
Input: Set of weighted core communities
{C1′,C2′, . . . ,Cl ′}
Output: result of community detection

1: Initialize: T = V −
l⋃
i=1

C
′

i , ξ (C) = Ø

2: repeat
3: for each vertex v in T do
3: for each core community {C1′, . . . ,Cl ′} do
4: calculate b(v, Cl’)
5: ξ (C)← b(v, Cl’)
6: end for
7: Select the maximum value of ξ (C) and its
corresponding community set is Cj
8: Cj = Cj∪{v}
9: ξ (C) = Ø
10: end for
11: until T 6= Ø
12: return result of community detection

TABLE 1. Algorithms included in the experiments.

TABLE 2. Settings of important parameters.

A. EVALUATION METRICS
The detected communities is C = {C1, . . . ,Cs}. The known
communities is O = {O1, . . . ,Ot}. Many methods have
been put forward to measure the effect of community detec-
tion, but only a few measures are suitable for overlapping
communities. In our study, we introduce three well-known
evaluation criteria to measure the performance of the applied
algorithms, Average F1 Score (F1-score) [42], Normalized
Mutual Information (NMI) [43] and Overlapping Modularity
(Qov) [44].
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NMI is a useful informationmeasure in information theory.
It is introduced by Leon Danon et al. and used to measure the
similarity between the detected communities and the known
communities. The formula is as follows:

I (A,B) =

−2
CA∑
i=1

OB∑
j=1

log( NijNNi.N .j
)

CA∑
i=1

Ni. log(Ni.N )+
OB∑
i=1

N .j log(
N.j
N )

(7)

Where CA is the number of known communities, OB is the
number of detected communities, Ni. represents the sum of
the elements of the ith row in matrix N , and N.j represents
the sum of the elements of the jth column in matrix N .
NMI is a good evaluation index for the network with known
communities. The larger the value of the function, the more
similar the detected communities is to the known communi-
ties, that is, the higher the quality community detection.When
the result of community detection is consistent with the real
community, the value of the function is 1.

F1-score measures the correctly classified members in
each community based on the ground-truth information.

1
2

 1
|C|

∑
Ci∈C

F1(Ci,Og(i))+
1
|O|

∑
Oi∈O

F1(Cg′(i),Oi)

 (8)

Where the best matching g and g’ is defined as follows:

g(i) = argmax
j

F1(Ci,Oj)

g′(i) = argmax
j

F1(Cj,Oi) (9)

Where F1(Ci, Oj) is the harmonic mean of Precision and
Recall. It is defined as follows.

F1 =
2× precision× recall
precision+ recall

(10)

The core idea of Q function [45] is that if there are
more edges in a subgraph than in random network, some
community structures are exist in the subgraph. In order
to evaluate the quality of overlapping community detection.
Nicosia et al. [44] proposed Qov function. It is defined as
follows.

Qov =
1
m

∑
c∈C

∑
i,j∈V

[βl(i,j),cAij −
βoutl(i,j),ck

out
i β inl(i,j),ck

in
j

m
]

βoutl(i,j),c =

∑
j∈V

F(αi,c, αj,c)

|V |

β inl(i,j),c =

∑
i∈V

F(αi,c, αj,c)

|V |
(11)

The value ofQov function is closely related to F(αi,c, αj,c).
In Nicosia’ experiment, he adopted the following definition.

F(αi,c, αj,c) =
1(

1+ e−f (αi,c)
) (
1+ e−f (αj,c)

) (12)

Where f (αi,c) is a simple linear function. f (x) = 2Px − P,
P ∈ R, according to the article [44], we set P equal to 30. If all
vertices belong to a community, the value of Qov function is
0. Generally speaking, the higher the value of Qov, the higher
the quality of overlapping community structure.

B. TEST ON SYNTHETIC NETWORKS
In this section, we use the LFR (Lancichinetti-Fortunato-
Radicchi) benchmark [46] proposed by Lancichinetti and
Fortunato to produce overlapping artificial networks. The
LFR benchmark contains dozens of adjustable parameters.
The detailed explanation of each parameter is shown in
TABLE III.

TABLE 3. Description of LFR benchmark parameters.

The most significant impact on the LFR benchmark net-
works are the mixing parameters µ, the number of over-
lapping vertices in the community On, and the number of
overlapping vertices linking communities Om. We mainly
study the performance of different algorithms under these
three parameters, and set the average degree of the artificial
networks to 10, according to the literature [47], this figure is
close to the average degree of most real networks. The maxi-
mum degree (mark) is set to 50, and the community size is in
the range of [20, 50]. Considering the stochastic factor, we run
five times for each algorithm and take the average of these
values as the results.

We first test the NMF and F1 value of different algo-
rithms when Om increases from 2 to 8. The results are
shown in Figure 6. With the increase of Om, the number
of overlapping vertices linking communities is continuously
increasing, which increases the difficulty of detecting over-
lapping communities. As seen in Figure 7, we can see that
ACC, MCMOEA, Ref. [13] and OCSE show better perfor-
mance, which have strong robustness. CPM,NLA,BASH and
COPRAaremore sensitive to parameterOm, which lead to the
results of volatility on the low side.

Figure 8 shows that the NMF and F1 value of different
algorithms when µ increases from 0 to 0.45. µ is the mixing
parameter which represents each vertex shares a fraction 1−µ
of its links with the other vertices of its community and a
fraction µ with the other vertices of the network. We set the
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FIGURE 7. NMI (left) and F1-score (right) for networks with different Om.

FIGURE 8. NMI (left) and F1-score (right) for networks with different µ.

range of µ to [0, 0.45]. When µ exceeds 0.5, the generated
community structure in the network is difficult to reflect and
it is more similar to the random network. When µ = 0, there
is no additional noise in the artificially synthesized network.
It can be observed that all the algorithms perform well, and
both the NMI and F1 value are close to one. With the increase
ofµ and the result in the performance degradation of all algo-
rithms. But the performance of OSCE slows down, evenwhen
µ = 0.45, it still maintains higher NMI value and F1 value.
The NMI and F1 value of OSCE decrease slowly with the
decline of community quality, which shows the effectiveness
and robustness of OSCE. In addition, the ACC algorithm also
shows better performance.

FIGURE 9. NMI (left) and F1-score (right) for networks with different On.

Figure 9 shows that the NMF and F1 value of different
algorithms when On increases from 50 to 500. On represents
the number of overlapping vertices in the community. All

algorithms efficiency are decreased with the increase of the
number of overlapping vertices. However, it can be seen that
the performance of OSCE is superior to other algorithms,
the worst is COPRA.

Based on the above results, it can be seen that although the
proposed method does not perform best on different types of
networks, overall, compared with the other eight algorithms,
it shows good performance.

C. TEST ON REAL-WORLD NETWORKS
We use the standard networks [41], [48] of research on com-
munity detection to analyze the performance of OSCE. These
datasets are described in detail in TABLE IV.

TABLE 4. Description of real-world networks.

1) ZACHARY’S KARATE CLUB
The network is a classical dataset in the field of social network
analysis. Sociologist Zachary spent two years observing the
social relationships among 34 members of a karate club in an
American university. Based on the association of these mem-
bers in the club and outside, he construct a social network of
members, which consists of 34 vertices. If there is an edge
between two vertices, which means that the two members are
friends who have frequent contacts.

2) COLLEGE FOOTBALL NETWORK
The network consists of 115 vertices with 12 communities.
Each vertex represents a college team that participated in the
2000 U.S. football season, and the edge between the two
vertices indicates that at least one match was played between
the two teams.

3) DOLPHINS SOCIAL NETWORK
D. Lusseau and others studied social relationship between
62 bottlenose dolphins in Doubtful Sound Strait of New
Zealand. Each vertex in the network represents a dol-
phin. Each edge represents the frequent contact between
two dolphins.

4) BLOGS NETWORK
Adamic and Glance recorded hyperlink relationships of
Weblog in 2005. We removed the isolated single vertices,
which can reduce noise.
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5) POLL BOOKS NETWORK
Amazon’s book sales record is related to American politics.
Each vertex in the network represents a book sold onAmazon,
and the edge represents the two books have been bought at the
same time by buyers.

6) EMAIL NETWORK
The mail exchange relationship between the university stu-
dents. Each vertex in the network represents an email account,
and each edge represents the relationship between the sending
and receiving emails.

7) LEMIS NETWORK
The data set is the relationship between the characters that
is summarized by Hugo’s Les Miserables. Each vertex rep-
resents a character in the novel. If multiple roles appear in a
scene at the same time, there will be an edge between them.

8) JAZZ NETWORK
A network of relationships between jazz musicians, the ver-
tices in the network are musicians, and the edge represents
the relationship of common playing.

9) NEURAL NETWORK
A directed, weighted network representing the neural net-
work of nematode.

10) POWER GRID
An unweighted network representing the topology of the
western states power grid of the United States.

Considering the stochastic factor, we run 5 times for each
algorithm and recorded the mean values in our results. The
results are shown in Figure 9 – Figure 11.

FIGURE 10. NMI on real-world networks with ground truth.

As seen in Figure 10 and Figure 11, The OSCE algorithm
performs better than other algorithms on Karate and Football
datasets, and the communities obtained are very close to the
real situation. The NMI value on Karate is even stable at
one. The performance on the blogs dataset is second, and is

FIGURE 11. F1-score on real-world networks with ground truth.

very close to the result of the best performance algorithm
(Ref. [13]). For real-world networks without ground truth,
we use overlapping modularity (Qov) to evaluate the results of
community detection. As seen in Figure 12, the OSCE model
on all five data sets shows the relatively good performance.

Overall, OCSE considers the network topology and the
original weight information in the community detection pro-
cess. It can produce results that are close to the real network,
and exhibit better performance.

FIGURE 12. Qov on real-world networks without ground truth.

D. SIMILARITY MEASURES
This section mainly verifies that our measure method of
HP combined with HD is superior to other similarity mea-
sures. For the method we proposed, the structural similarity
is mainly reflected in the first two items of Equation (1).
We replace the first two items of the Equation (1) into other
similarity measures. The experiment is carried out on the real
world networks. We introduce 7 typical similarity measures
and list the definition of the weight between vertices based
on these similarity measures separately.
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1) Common Neighbor similarity measure (CN) [35]: It is
the simplest and classical measure index of local infor-
mation. It only considers the number of common neigh-
bors between two vertices, and ignores the differences
of common neighbors and the relationships between
common neighbors. For Common Neighbor similarity
measure, the definition of the weight between vertices
is as follows.

w′(vi, vj) = |N (vi) ∩ N (vj)| + u(vi, vj) (13)

2) Salton similarity measure (Salton) [49]: The Salton
algorithm adds the information of the degree of two
vertices on the basis of the common neighbor similar-
ity. It considers that the similarity between vertices is
directly proportional to the number of common neigh-
bors and inversely proportional to the degree of ver-
tices. Therefore, the Salton algorithm is also called the
prior similarity algorithm. For Salton similarity mea-
sure, the definition of the weight between vertices is as
follows.

w′(vi, vj) =
|N (vi) ∩ N (vj)|√

Di × Dj
+ u(vi, vj) (14)

3) Jaccard similarity measure (Jaccard) [50]: It considers
that the similarity between vertices is proportional to
the proportion of the number of common neighbors
to the total number of all their neighbors. That is to
say, compared with the vertices with more neighbors,
the vertices with fewer neighbors are more vulnerable to
neighbors. For Jaccard similarity measure, the definition
of the weight between vertices is as follows.

w′(vi, vj) =
|N (vi) ∩ N (vj)|
|N (vi) ∪ N (vj)|

+ u(vi, vj) (15)

4) Leicht Holmem Newman similarity measure
(LHN) [51]. It is similar to the Salton algorithm. The
algorithm is mainly to reduce the influence of vertex
degree on similarity. For Leicht Holme Newman sim-
ilarity measure, the definition of the weight between
vertices is as follows.

w′(vi, vj) =
|N (vi) ∩ N (vj)|
|Di ∪ Dj|

+ u(vi, vj) (16)

5) Preferential Attachment similarity measure (PA) [35]:
The PA algorithm removes the influence of common
neighbor vertices. The probability that it defines a link
is directly proportional to the degree of the vertex. That
is, it considers that the more vertices that the vertex
linked, the easier it is to do the link-generating behavior.
The network information used by the algorithm is only
the degree of the vertex, so it has better efficiency,
and more suitable for large-scale network data. For
Preferential-Attachment similarity measure, the defini-
tion of the weight between vertices is as follows.

w′(vi, vj) = Di × Dj + u(vi, vj) (17)

6) Hub-Promoted similarity measure (HP) [28]: Compared
with the Salton algorithm, the numerator of HP function
is also the number of common neighbors of two vertices,
but its denominator is a smaller degree value of the two
vertices degree. This improvement makes the algorithm
better applied in the metabolic network. The vertices
with lower degree determine the similarity value. For
Hub-Promoted similarity measure, the definition of the
weight between vertices is as follows.

w′(vi, vj) =
|N (vi) ∩ N (vj)|
min{Di,Dj}

+ u(vi, vj) (18)

7) Hub-Depressed similarity measure (HD) [31] : The HD
algorithm is similar to HP, but the denominator of HD
function is opposite to HP. It considers that the ver-
tex with large degree has a greater influence on the
similarity value. For Hub-Depressed similarity mea-
sure, the definition of the weight between vertices is as
follows.

w′(vi, vj) =
|N (vi) ∩ N (vj)|
max{Di,Dj}

+ u(vi, vj) (19)

The experimental results are shown in Figure 13 and
Figure 14. As shown the structural similarity measures

FIGURE 13. NMI on real-world networks, obtained by our community
detection methods with different structural similarity measures.

FIGURE 14. F1-score on real-world networks, obtained by our community
detection methods with different structural similarity measures.
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proposed in this paper, it obviously offers better performance
than other similarity measures. The result of using PA is the
worst. When HP and HD are used separately, its performance
is general and some results less than the other similarity
measures. However when using use a combination of HP and
HD, its performance is apparently improved.

V. CONCLUSION
The community reflects the local characteristics of individual
behavior in the network and relationships. The study of the
community in the network plays a vital role in understanding
the structure and function of the whole network, and can help
us analyze and predict the interaction between the elements of
the network. In fact, community detection plays an important
role in the analysis of metabolic network, analysis of genetic
regulatory networks and master gene recognition. For exam-
ple, the complex and community modules in the predicted
protein interaction network are important for understanding
the organization and function of the biological system and
the prediction of the function of the unknown protein.

In this study, we aim to develop a community detection
method that can extract the overlapping community structure
of real-world networks. In specific, based on the existing
studies on community detection only considering the network
topology or the edge weight, we developed an overlapping
community detection algorithm based on the seed expansion
strategy (OCSE), which is a conceptual model of network
community structure according to the edge information and
the network topology information. The experimental findings
showed that OSCE can get a better performance in terms of
accuracy compared to existing algorithms.
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