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ABSTRACT Population-based meta-heuristic is a high-level method intended to provide sufficient solution
for problems with incomplete information among a massive volume of solutions. However, it does not
guarantee to attain global optimum in a reasonable time. To improve the time and accuracy of the coverage in
the population-based meta-heuristic, this paper presents a novel algorithm called the raccoon optimization
algorithm (ROA). The ROA is inspired by the rummaging behaviors of real raccoons for food. Raccoons
are successful animals because of their extraordinarily sensitive and dexterous paws and their ability to
find solutions for foods and remember them for up to three years. These capabilities make raccoons expert
problem solvers and allow them to purposefully seek optimum solutions. These behaviors exploited in
the ROA to search the solution spaces of nonlinear continuous problems to find the global optimum with
higher accuracy and lower time coverage. To evaluate the ROA’s ability in addressing complicated problems,
it has been tested on several benchmark functions. The ROA is then compared with nine other well-
known optimization algorithms. These experiments show that the ROA achieves higher accuracy with lower
coverage time.

INDEX TERMS Raccoon optimization algorithm (ROA), nonlinear continuous optimization problems,
structural optimization, evolutionary algorithm, meta-heuristic algorithm.

NOMENCLATURE

Gopt Global Optimum
loci Location of the raccoon in current iteration
MF Migration Factor
npreserve Perseveration Parameter
Nreachable Number of reachable zone candidates
Nvisible Number of visible zone candidates
NI Number of iterations
Rbesti Best solution among reachable zone population

in current iteration
ROA Raccoon Optimization Algorithm
RZP Reachable Zone Population
RZR Reachable Zone Radius
Vbesti Best solution among visible zone population in

current iteration
VZP Visible Zone Population
VZR Visible Zone Radius

I. INTRODUCTION
Developing algorithms is a well-known and important aspect
of mathematics and computer science. One of the special

cases of developing algorithms is nature-inspired algorithms.
They principally inspired by two basic ideas:
• The human brain;
• The evolutionary process.

Algorithms based on the evolutionary process are a successful
and well-studied category of natural algorithms. They are
computational methods inspired by the natural evolutionary
process. The relation between natural evolution and problem
solving is illustrated in Figure 1a [1].

Evolutionary algorithms fall into the category of meta-
heuristics algorithms and are widely used for problems such
as NP-hard combinatorial problems [2], job scheduling prob-
lems [3], andmulti-objective optimization problems [4]–[10].
Meta-heuristic algorithms have two main directions:
intensification and diversification. Intensification refers to
searching near the current best solutions (local optima), while
diversification refers to searching widely for better solutions
(global optima) [11]. The other promising directions of meta-
heuristic algorithms are having many neighborhood searches
to avoid of getting stuck in local optimums [12], provid-
ing constructive basic to increase the quality of heuristic
selection and consequently increase the accuracy, reducing
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the iterations as much as possible to have shorter coverage
time [13].

By a quick search on Wikipedia a numerous state-of-
the-art meta-heuristics and evolutionary algorithms can be
found. Some of the most recent algorithms are Hydrological
cycle Algorithm [14], Spiral optimization Algorithm [15],
Invasive Weeds Optimization (IWO) [16], Killer Whale
Algorithm [17], An Improved Teaching-Learning-Based
Optimization [18], GrayWolf optimization [19], and Fruit Fly
Optimization Algorithm [20]. Some of these algorithms will
be discussed in detail in the next section. It has been demon-
strated that the aforementioned algorithms solve or improve
the optimum solution for various kinds of problems. But,
there are two common and general questions ‘‘which algo-
rithm is better than the others?’’ and ‘‘by having the tsunami
of novel meta-heuristics algorithms’’, is there still need to
propose a new algorithm?. As Sörensen [21] nicely explained,
the answer to the first question is that ‘‘it depends’’. It depends
on the problem domain and is possible to determine which
algorithm is more suitable for a specific domain of optimiza-
tion problem. For the second question, as meta-heuristics
algorithms do not guarantee the most optimum solution
within a reasonable time, where this field still needs to have
novel algorithms. However, they must follow the aforemen-
tioned promising direction of meta-heuristics algorithms and
have effective improve on it.

In this study, a novel algorithm named the Raccoon Opti-
mization Algorithm (ROA) which is fully shaped based on
the promising direction of the meta-heuristics optimization
algorithm is proposed. ROA by inspiring from racoon’s life
cycle which is searching in two different zones simultane-
ously for food provides a lightweight technique to explore
solution state space. This feature both reduces the risk of
becoming stuck in local optima and saves time during explo-
ration. Raccoons also are known as expert problem solvers
that can remember problem solutions for up to three years;
similarly, the ROA remembers its best solution and moves
purposefully toward the optimum solution. Searching in the
solution state space based on this technique leads to reduce
the times of iteration and consequently the coverage time
remarkably reduce. Moreover, the complexity of ROA is less
than previous complex evolutionary algorithms such as arti-
ficial fish [22]. This makes ROA even faster than the others.
It can be said that the overarching goal behind the ROA is
to create a meta-heuristics algorithm that is able to reach the
optimum solution in a shorter time. The problem domain that
ROA is suited for is combinatorial problems.

The remainder of this paper is organized as follows.
In Section II, a brief history of evolutionary algorithms is
given, related research works in this area are studied, and
their strengths and weaknesses are discussed. Section III
provides a short description of the raccoon’s natural lifestyle
which inspired our proposed approach. In Section IV,
the ROA is presented, and its implementation details are
given. In Section V, the ROA is used to solve different
benchmark functions, and its results are compared with those

of similar algorithms. Finally, Section VI discusses and con-
cludes this work and presents suggestions for future work.

II. BRIEF HISTORY OF EVOLUTIONARY ALGORITHMS
AND RELATED WORKS
The application of Darwinian Principles (the natural process
of evolution) [23] in solving scientific problems began in
the 1940s before the emergence of computers [13]. In 1948,
Turing proposed ‘‘genetical or evolutionary search’’ [24].
The first computer-based optimization experiments using
these ideas were conducted in 1962 by Bremermann [25].
In the 1960s, three main implementations of this idea were
developed that separated evolutionary algorithms into three
main categories:

• Evolutionary Programming, proposed by
Fogel et al. [26] in the USA;

• Genetic Algorithm, proposed by Holland [27] in
the USA;

• Evolution Strategies, proposed by Rechenberg [28] and
Schwefel [29] in Germany.

However, since the 1990s, the computer science research
community has combined these three categories into a
broader field called Evolutionary Computing (EC), and
each of the existing methods became a category in this
field [30]–[32].

Without a doubt, the 1980s and 1990s were the age of
efflorescence for meta-heuristic algorithms. In 1983, a new
optimization technique named simulated annealing (SA) was
proposed by Kirkpatrick et al. [33]. This algorithm called
Simulating Annealing (SA) inspired by the annealing pro-
cess of metals. SA explores solution state space sequentially,
therefore, some of the candidate solutions may be revisited
many times. It leads to an increase in computation time with-
out any enhance upon optimum solution [34]. To tackle this
problem, in 1986, Fred Glover introduced a new algorithm
named Tabu search. This algorithm was probably the first
in this field to make use of memory in meta-heuristics [35]
by having a list called tabu list. Avoidance of revisiting is
depended on the size of this list. A large tabu list also cannot
be efficient enough and solve SA problem.

Dorigo [36] defended his PhD thesis in 1992 at the Uni-
versity of Politecnico di Milano; his dissertation introduced a
new optimization algorithm named Ant Colony Optimization
(ACO). ACO is more efficient for the problems like travel-
ing salesman and vehicle routing [37]. An American social
psychologist named James Kennedy and an American engi-
neer named Russell C. Eberhart in 1995 jointly proposed the
Particle Swarm Optimization (PSO) algorithm [38]. PSO has
been studied, improved and utilized in numerous problems.
The important issue in the PSO that should be considered
is the local coverage. PSO is able to find local coverage
of one-dimensional problems, but it has been proven that it
cannot find local coverage when the dimension is more than
one [39]. Moreover, there is no guarantee that the coverage
point of a particle is a local optimum [40]. Later, in 1996,
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Storn and Price [41] implemented an innovative algorithm
named Differential Evolution (DE).

Up to that point, research had focused on the search
for algorithms that obtained better results than previous
algorithms. However, in 1997, Wolpert and Macready [42]
shocked the evolutionary algorithm community by demon-
strating that no universal best algorithm exists. Instead,
each algorithm achieves good results for some types of
optimization problems, but other algorithms will perform
better on other types. It also has been nicely explained
by Sörensen [21].

The search for optimization algorithms continues in the
21st century. It started with the Harmony Search (HS)
algorithm, which was proposed by Geem et al. [43].
Despite its advantages, HS still needs further improve-
ment on coverage time, accuracy, global optimum and hav-
ing more user-friendly parameters-setting [44]. In 2004,
Nakrani and Tovey [45] presented a new algorithm called
the Honey Bee Algorithm (HBA). One year later, inspired
by HBA, two other algorithms were presented: a Bee Algo-
rithm (BA) by Pham et al. [46] and the Artificial Bee Colony
(ABS) algorithm by Karaboga [47]. Then, many improve-
ments for HBC like artificial bee colony algorithm have
proposed in [48], the bees are using a solution update during
searching for new sources of foods. The solution update
strategy has some issues like slow coverage of optimal or even
near-optimal solutions [49]–[51] and becoming stuck in the
local optimum [50], [51].

Then another algorithm called Firefly Algorithm (FA) pro-
posed byYang [52]. Standard FA, likemany other algorithms,
needs improvement on local and global search [53], [54].
In 2009, two researchers from Cambridge University in the
UK and Raman College of Engineering in India, named
Xin-She Yang and Suash Deb, presented a new algorithm
named the Cuckoo Search (CS) algorithm [55]. The cover-
age speed of the original CS is not efficient and has been
improved slightly by some researchers like [56]. The origi-
nal CS also does not support multi-objective problems [57].
It also needs improvement on searching global solution [58].
Yang [59] developed the Bat algorithm in 2010. The most
important advantages of the BA is quick coverage that makes
it proper when a fast algorithm is needed like classification.
Even though BA is efficient but it still requires to improve
parameter tuning, parameter control and accuracy [60].
Figure 1b shows a timeline of the history of optimization
algorithms up to 2010.

From 2010 till now there are numerous algorithms have
been proposed in the literature that are surveyed in many
papers like [61]–[71]. Each of these algorithms have its own
pros and cons, however, due to lack of space we only mention
the common drawbacks between them: they mostly need
great effort to utilize, they have complicated parts or details
therefore it is hard to understand, inefficient number of itera-
tion and lack of optimum coverage time.

Hence, the ROA that presented in this study attempts
to gain improvements such as easy understanding and

FIGURE 1. (a) Natural Evolution vs. Evolutionary Algorithms. (b) Brief
History of the EA.

application, simple computation process, a small number of
iterations, fast coverage time, and higher accuracy.

III. RACCOON LIFESTYLES
The raccoon (sometimes spelled racoon) is a mammal that
originated in North America. Raccoons are known as intel-
ligent and curious creatures. These qualities, combined with
their dexterous paws, make raccoons extremely successful in
searching for food; raccoons have often been known to make
its way into houses to find food.

There is an old myth that raccoons wash their food in
water before eating it. However, the truth is something beyond
washing. The animal’s paws have more touch receptors than
any other part of its body, and these receptors are more
sensitive when wet. Additionally, scientists showed that a
large portion of the processing area of the raccoon’s brain
is dedicated to its paws. Thus, it dips its food into water to
make its paws more sensitive and examine the food more
carefully [72].

Raccoons are colorblind; consequently, they are poor at
distinguishing colors. However, their eyes are very sensitive
to green light, and they are able to see well at night and
in twilight. Their eyes, in combination with their power-
ful sense of smell, are their second tool for finding food.
Moreover, zoologists believe that raccoons have an excellent
memory; they can remember events even three or four years
later [72], [73].

The success of this animal in finding food in a short time
and its good memory were the main inducements to propos-
ing the ROA. Considering the solution domain of the problem
as the living environment of the animal, the raccoon, using its
amazing paws and vision, tries to find the best food (solution)
in its realm.
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IV. RACCOON OPTIMIZATION ALGORITHM (ROA)
The process of finding the global optimum for a predefined
fitness function in the ROA is inspired by the natural food
searching habits of raccoons. In this process, the domain of
the fitness function is taken as the living environment of a
raccoon. Food, which represents different possible solutions
of the fitness function, is spread throughout the raccoon’s
living environment. The goal is to find the best solution
among all the possible solutions. This algorithm makes use
of two different population sets: the Reachable Zone Popu-
lation (RZP) and the Visible Zone Population (VZP). These
population sets will be explained in detail later.

The total process of the algorithm is divided into three
steps: i) Parameter Definition, ii) Initialization and iii) Main
Loop. Each step will be studied in detail in the following
sections.

A. PARAMETER DEFINITION
This step defines various algorithm parameters. The parame-
ters control the general behavior of the algorithm and should
be set in a problem-specific manner. The parameters are as
follows.

1) REACHABLE ZONE RADIUS
Unlike other optimization algorithms, in the ROA, the candi-
date solutions in each iteration cannot stem from anywhere
inside the problem solution domain; instead, the candidate
solutions in this population must be inside the reachable zone
of the animal. Thus, we define a radius for this population,
which is the maximum distance of this population’s members
from the current location of the animal, named loc. We call
this radius the Reachable Zone Radius (RZR). The RZR is
specified by the user.

2) REACHABLE ZONE CARDINALITY
The reachable zone cardinality represents the number of
solution candidates inside the reachable zone population
(RZP). The number of candidate solutions that RZP contains,
is called Nreachable and is specified by the user as a parameter.
The RZP is discussed in detail in the next section.

3) VISIBLE ZONE RADIUS
The area in which the raccoon can check for food visually is
called the visible zone. The size of this zone is limited by the
Visible Zone Radius (VZR). The VZR is the maximum dis-
tance at which the raccoon can find the current food location
and is specified by the user.

4) VISIBLE ZONE CARDINALITY
The visible zone cardinality represents the number of solution
candidates inside the visible zone population (VZP). This
value is denoted as Nvisible and is declared by the user as
a parameter. However, because a raccoon’s eyes are as not
precise as its paws, the number of candidates it can test
visually should be smaller than the number of candidates it

Pseudocode 1 Step 1. Parameter Definition
1: RZR← Reachable Zone Radius
2: Nreachable← Number of Reachable Zone Candidates
3: VZR← Visible Zone Radius
4: Nvisible← Number of Visible Zone Candidates
5: NI ← Number of Iterations
6: MF ← Migration Factor

can touch.

Nvisible < Nreachable (1)

5) NUMBER OF ITERATIONS
As is commonly the case for optimization algorithms,
the ROA is repetitive in nature. Thus, it repeats its main
process by a predefined number of times. The maximum
number of iterations or repetitions is defined by the user using
a parameter named NI .

6) MIGRATION FACTOR
Optimization algorithms can become stuck in local optima.
This occurs when the algorithm finds a solution that is opti-
mal in part of the solution domain even though better solu-
tions might exist in other parts of the solution domain. This
local optimum can deceive the algorithm and cause it to return
a solution that is not globally optimal. The ROA simultane-
ously searches in two different zones, which reduces the risk
of becoming stuck in a local optimum and improves the algo-
rithm’s global exploration ability. Nevertheless, becoming
stuck in a local optimummight still occur. Thus, the ROAuses
migration, which is a technique to help avoid local optimum
traps. Migration occurs when the algorithm remains in a
specific location for a predefined number of iterations. This
condition is named perseveration. The predefined number of
iterations at which perseveration occurs is called the Migra-
tion Factor (MF) and is specified by the user as a parameter.
Perseveration and migration are discussed in more detail in
the next section.

Pseudocode 1 shows a summary of the essential parameters
for the algorithm.

B. INITIALIZATION
After setting the parameters of the algorithm, the next step is
to initialize it. ROA initialization consists of three steps. The
first step defines the initial location of the raccoon; the second
step builds the initial reachable population; and the last step
constructs the visible population. Each step will be described
in detail in the following sections.

1) INITIAL LOCATION
First, a random location is assigned to the raccoon in
the problem solution domain using a random function.
In this algorithm, the location of the raccoon in iteration i,
i ∈ {0, 1, · · · ,NI }, is denoted as loci. The initialization step
is considered iteration zero; thus, the initial location is loc0.
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As mentioned in the previous chapter, the raccoon has a
very good memory; hence, in this algorithm, it remembers
the location of the best food that it has found in its whole life.
This location is called the global optimum (Gopt ). Initially,
in iteration zero (initialization), because no location has been
evaluated yet,Gopt is set to the current random location of the
animal.

Gopt = loc0 (2)

2) INITIAL REACHABLE POPULATION
After setting loc0, a reachable population is built around it.
The first population of candidate solutions in the ROA is
named the Reachable Zone Population (RZP). The RZP is
defined by a circle around the raccoonwith radius equal to the
RZR and includes a set of possible solutions. This population
represents the set of possible food items around the animal
that it can reach with its paws. The set of possible solutions in
this area might be enormous; therefore, only a random subset
of the candidates is selected for examination:

RZP = {r0, r1, . . . , rNreachable} (3)

where Nreachable is the number of reachable zone can-
didates, which is specified by the user, and ri,∀i ∈
{0, 1, · · · ,Nreachable} are random candidates that indicate cur-
rent food locations. The ri in an N-dimensional optimization
problem is defined as follows:

ri = (x0, x1, . . . , xNreachable ), ∀i ∈ {0, 1, · · · ,Nreachable}

(4)

Considering δ(loc, candidate) as the distance of the candidate
solution from the raccoon’s current location (loc), the candi-
dates inside RZP must satisfy the following relation:

0 < δ(loc, ri) ≤ RZR; ∀i ∈ {0, 1, · · · ,Nreachable} (5)

RZP is important in this algorithm because a raccoon’s sense
of touch is its most powerful sense, which it uses to examine
the possible solutions more precisely. Precision here refers to
the large number of solution candidates that are examined by
the raccoon. Therefore, the initial reachable zone population,
denoted by RZP0, is defined as follows:

RZP0 = {ri|i ∈ {0, 1, · · · ,Nreachable},

0 < δ(loc0, ri) ≤ RZR} (6)

After forming the initial reachable population (RZP0),
the algorithm searches for the best solution among this group;
this best solution is called Rbest0 . Considering the optimiza-
tion problem as a maximization problem and f as the fitness
function to be optimized, we have

Rbest0 = rj
where

rj ∈ RZP0
and

f (rj) = max{f (ri)|ri ∈ RZP0, i ∈ {0, 1, · · · ,Nreachable}}

(7)

3) INITIAL VISIBLE POPULATION
After forming the reachable population, the next step is to
form the visible population. The second population used in
the ROA consists of a set of possible solutions visible to the
raccoon’s eyes, called the Visible Zone Population (VZP).
The VZP is defined by a circle around raccoon with radius
VZR and consists of Nvisible possible solution candidates.

VZP = {v0, v1, . . . , vNvisible} (8)

where Nvisible is the number of visible food items and is
specified by the user, and vi,∀i ∈ {0, 1, · · · ,Nvisible} are
random candidates that represent current food locations. In an
N-dimensional optimization problem, vi is defined as follows:

vi = (y0, y1, . . . , yNvisible ); ∀i ∈ {0, 1, · · · ,Nvisible} (9)

Additionally, these potential candidates should not be inside
the raccoon’s reachable zone. In other words, the gap between
the members of this population and the location of the rac-
coon should be greater than the RZR and less than or equal to
the VZR.

Considering δ(loc, candidate) as the distance of the candi-
date solution from the current location (loc) of the animal,
all the members of the VZP should satisfy the following
condition:

RZR < δ(loc, candidate) ≤ VZR (10)

Consequently, the initial visible zone population, denoted
by VZP0, is defined as follows:

VZP0 = {vi|i ∈ {0, 1, · · · ,Nvisible},

RZR < δ(loc0, vi) ≤ VZR} (11)

As in the previous step, after constructing this population,
the best member of this community will be found. This best
candidate is called Vbest0 . Considering the optimization prob-
lem as a maximization problem and f as the fitness function
to be optimized, we have

Vbest0 = vj
where

vj ∈ VZP0
and

f (vj) = max{f (vi)|vi ∈ VZP0, i ∈ {0, 1, · · · ,Nvisible}}

(12)

4) PERSEVERATION PARAMETER
Finally, nperseveration is defined as the perseveration value.
This value is used to evaluate the perseveration. A technique
based on perseveration is used to avoid local optima and is
described in the main loop section in detail.

Initially, in this step, nperseveration is set to zero.

nperseveration = 0 (13)

Pseudocode 2 details the initialization step.
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Pseudocode 2 Step 2. Initialization
1: loc0← Random Initial Location
2: Gopt ← loc0
3: RZP0← Initial Reachable Population
4: Rbest0 ← Best Reachable Candidate in RZP0
5: VZP0← Initial Visible Population
6: Vbest0 ← Best Visible Candidate in RZP0
7: nperseveration← 0

FIGURE 2. A sample initialization of the ROA.

Figure 2 shows one sample initialization of the algo-
rithm. In this example, the initial location of the raccoon
is at the origin. Around this position, two populations
are constructed. The first population is RZP0, within the
radius RZR. The other population is VZP0, within the
radius VZR. In each iteration, three optimum values exist
(loc, Rbest , and Vbest ); these are shown on the plot as crossed
circles.

C. MAIN LOOP
The next portion of the algorithm is the main loop. In this
part, the following steps are repeated NI times.

1) RELOCATION TO BEST LOCATION
In each iteration i, i ∈ {0, 1, · · · ,NI }, the best value rela-
tive to the current location of the raccoon (loci−1), the best
value in the reachable population of the previous iteration
(Rbesti−1 ), and the best value in the visible population of the
previous iteration (Vbesti−1 ) are selected. Then, the raccoon
moves to the best position among these three values. Con-
sequently, the raccoon’s new location is the location with
the best fitness among these three values. Considering the
optimization problem as a maximization problem and f as
the fitness function to be optimized, this can be notated as

follows:

loci = lc
where

lc ∈ {loci−1,Rbesti−1 ,Vbesti−1}

and

f (lc) = max{f (h)|h ∈ {loci−1,Rbesti−1 ,Vbesti−1}. (14)

After relocating the raccoon to the new location,
loci and Gopt are evaluated, and the one with the best fitness
is assigned to Gopt .

Gopt = (f (Gopt ) > f (loci))→ (Gopt )

∧¬(f (Gopt ) > f (loci))→ (loci) (15)

2) MIGRATION
After performing relocation, if the location of the animal
has not changed for a number of iterations, the raccoon has
reached the best food in its local area. However, this best
solution could be a local optimum, which could stuck the
algorithm. This condition is called perseveration.
To evaluate perseveration, a perseveration parame-

ter nperseveration is defined. In the initialization step,
nperseveration is set to zero. In each main loop iteration,
if the raccoon does not relocate (loci = loci−1), the value
of this parameter is increased by one (nperseveration =
nperseveration + 1). On the other hand, if the animal relocates
to a new location (loci 6= loci−1), this parameter will be reset
to zero (nperseveration = 0).

nperseveration = (loci = loci−1)→ (nperseveration + 1)

∧(loci 6= loci−1)→ 0 (16)

To avoid becoming stuck in a local optimum, perse-
veration is checked in each iteration by comparing the
value of nperseveration with the Migration Factor (MF). When
MF = nperseveration, then migration is performed. Migrating
the raccoon means relocating it to a new random location
outside its visible zone in the hope of finding a better solution.
This random location (loci) can be any location inside the
problem domain where

δ(loci, loci−1) > VZR (17)

After performing migration, nperseveration is reset to zero
(nperseveration = 0).
Note that the raccoon remembers the best solution that it

has ever found as Gopt ; thus, if migration moves the raccoon
to a place with worse solutions, the move will not affect the
problem’s overall execution, and the raccoon will gradually
relocate to better places.

3) GENERATE NEXT GENERATION
At the end of each generation, we build new populations
similar to those in the initialization step. The difference here
is the location (loci) of the raccoon. The new populations are
centered around the new location of the animal. However,
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Pseudocode 3 Step 3. Main Loop
1: for i = 1 to NI do
2: loci←best location in loci−1, Rbesti−1 , and Vbesti−1
3: if f (loci) > f (Gopt ) then
4: Gopt ← loci
5: end if
6: if loci = loci−1 then {Perseveration}
7: npersevere = npersevere + 1
8: else
9: npersevere = 0
10: end if
11: if npersevere = MF then {Migration}
12: loci←new random location outside of VZPi−1
13: npersevere = 0
14: end if
15: RZPi← Reachable Population Around loci
16: Rbesti ← Best Candidate in RZPi
17: VZPi← Visible Population Around loci
18: Vbesti ← Best Candidate in VZP
19: end for

Pseudocode 4 ROA
1: parameters Definition
2: Initialization
3: Main Loop
4: if f (locNI ) > f (Gopt ) then
5: Return locNI
6: else
7: Return Gopt
8: end if

if the animal remains at its previous position (persevera-
tion), we make sure that the members of the new population
will have locations that do not repeat those of the previous
population:

(loci = loci−1) ⇔ RZPi ∩ RZPi−1 = ∅

∧

(loci = loci−1) ⇔ VZPi ∩ VZPi−1 = ∅ (18)

The pseudocode for this stage is presented in
Pseudocode 3.

After repeating the main loop NI times, the best fitness
value ofGopt and locNI will be the best solution found during
the raccoon’s life cycle.

The overall computational process of the ROA is illustrated
by a flowchart in Figure 3. Moreover, Pseudocode 4 presents
the combination of the different stages to form the complete
algorithm.

V. BENCHMARKS AND EXPERIMENTS ON THE ROA
In this section, the efficiency and quality of the proposedROA
are tested using different benchmark functions with different
characteristics, and the ROA’s results are compared with
the results of well-known metaheuristic algorithms including

FIGURE 3. ROA.

the Genetic Algorithm (GA), Partial Swarm Optimization
(PSO), Artificial Bee Colony (ABC), Ant Colony Optimiza-
tion (ACO), the Cultural Algorithm (CA), the Imperialist
Competitive Algorithm (ICA), the Firefly Algorithm (FA),
An Improved Teaching-Learning-Based Optimization with
Differential (TLBO) and the Invasive Weed Optimization
algorithm (IWO).
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We chose five different test functions with different char-
acteristics to test the behavior of the proposed algorithm in
different situations. First, a simple one-dimensional function
is presented to show the structure and the process flow of the
algorithm. The other four functions are the Ackley function,
Rastrigin function, Grienwank function, and Rotated Hyper-
Ellipsoid Function, which are well-known functions that are
frequently used to test optimization algorithms. The test
functions used as benchmarks in this section stem from the
BBOB 2010 [74] and ‘‘Virtual Library of Simulation Exper-
iments, test functions and datasets’’ project [75]. The set of
optimization test problems in [74] and [75] includes different
types of benchmarks with different dimensions, and it has
been shown that these functions cover most difficulties in
global optimization problems [76]. Hence, these benchmarks
can be used to examine optimization algorithms from differ-
ent aspects. In case of multi dimension functions, the dimen-
sion for the experiments are considered as 10.

Each optimization algorithm has its own parameters, which
are defined as follows for this study:
• GA

– Selection Method: Tournament
– Population Size = 100
– Crossover Percentage = 0.8
– Mutation Percentage = 0.3
– Mutation Rate = 0.02
– Tournament Size = 3

• PSO
– Swarm Size = 100
– Inertia Weight = 1.0
– Inertia Weight Damping Ratio = 0.99
– Personal Learning Coefficient = 1.5
– Global Learning Coefficient = 2.0

• ABC
– Colony Size = 50
– Number of Onlooker Bees = 50
– Abandonment Limit Parameter = 150
– Acceleration Coefficient Upper Bound = 1

• ACO
– Archive Size = 10
– Sample Size = 40
– Intensification Factor = 0.5
– Deviation-Distance Ratio = 1

• CA
– Population Size = 50
– Acceptance Ratio = 0.35
– Alpha = 0.3
– Beta = 0.5

• ICA
– Population Size = 50
– Number of Empires/Imperialists = 10
– Selection Pressure = 1
– Assimilation Coefficient = 1.5
– Revolution Probability = 0.05

– Revolution Rate = 0.1
– Colony Mean Cost Coefficient = 0.2

• FA
– Number of Fireflies (Swarm Size) = 25
– Light Absorption Coefficient (γ ) = 1
– Attraction Coefficient Base Value = 2
– Mutation Coefficient (α) = 0.2
– Mutation Coefficient Damping Ratio = 0.98
– Uniform Mutation Range (δ) = 0.05 ×

(DomainMax − DomainMin)
• TLBO

– Population Size = 50
– Unknown Variables Lower Bound = −10
– Unknown Variables Upper Bound = 10

• IWO
– Initial Population Size: 10
– Maximum Population Size = 25
– Minimum Number of Seeds = 0
– Maximum Number of Seeds = 5
– Variance Reduction Exponent = 2
– Initial Value of Standard Deviation = 0.5
– Final Value of Standard Deviation = 0.001

In the following, the optimization solutions for the four
selected benchmarking functions are obtained using the opti-
mization algorithms described above; then, the results are
compared.

A. ONE-DIMENSIONAL FUNCTION
The first benchmark function presented here is a one-
dimensional, unimodal function. This function is not compre-
hensive enough to show the quality and performance of the
proposed algorithm. However, its structure allows us to show
the actual behavior of the algorithm with different conditions
and iterations beyond the complexity of the fitness function.
Hence, this function is utilized to illustrate the ROA’s struc-
tures and techniques in searching for the optimum (minimum)
point in the solution domain.

This function is defined as follows:

f (x) = (x2 + x)cos(x) − 10 ≤ x ≤ 10 (19)

The known global optimum of this function is f (x) =
−100.22 for x = 9.6204. Figure 4 shows the graphical
representation of this function [77].

The ROA is executed to optimize this function. For this
execution, the algorithm’s parameters are set as shown below.
• Nreachable = 10
• RZR = 1
• Nvisible = 5
• VZR = 3
• NI = 30
• MF = 3
Figure 5 shows the locations of the raccoon in different

iterations during a single run. To test the capacity of this algo-
rithm, the initial location (loc0) was manually set to −10.0,
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FIGURE 4. f (x) = (x2 + x)cos(x).

FIGURE 5. Raccoon’s locations in different iterations.

which is far from the known global optimum; moreover,
a local optimum exists nearby. Therefore, in this situation,
the behavior of the algorithm can be examined when fac-
ing a local optimum, which is a bottleneck for optimization
problems.

As shown in Figure 5, the raccoon starts at x = −10.0.
However, after several iterations, it tries to migrate to another
random location, which in this sample run is x = 3.957. Over
the 30 total iterations in this example, the raccoon performs
five migrations; at the end, the migrations guide it to the local
optimum on the plot, which is x = 9.620.
The raccoon stores the best-so-far solution in Gopt . How-

ever, when the raccoon changes its location to a different
location (migrates), it is more likely to find a solution with
a worse fitness value in the next round. The locations of the
raccoon during different iterations show the impact of migra-
tions on its life cycle. Figure 6 shows the fitness values (costs)
of the raccoon’s locations in different iterations (f (loci), i ∈
{0, 1, · · · ,NI }). In this figure, the raccoon’s migrations are
clearly visible as large jumps. Initially, after each migration,
the value of the location is worse, but after a few iterations,

FIGURE 6. Cost plot for locations.

FIGURE 7. Cost plot.

it returns to the optimum value. However, in iteration
number 8, the raccoon reaches an optimum solution, which
is equal to−89.132527, and because no better solution exists
within its visible zone, it remains there (perseveration). Nev-
ertheless, it is known that this is only a local optimum for
this function. After three iterations (MF = 3), the raccoon
migrates to another random location. Again, this movement
initially causes the solution value to be unfavorable, but after
completing several rounds, at iteration 15 it reaches the point
whose cost is−100.2206, which is the known global solution
for the problem. This scenario shows the impact of migra-
tions, which helps the ROA avoid local optima and helps it to
find the global optimum.

As explained before, in each iteration, regardless of where
the raccoon is (loci), it stores the best solution that it has found
so far inGopt . Figure 7 presents the values ofGopt in different
iterations. In the first iterations, the solutions that it finds are
not accurate. However, as the algorithm proceeds, the raccoon
moves closer to the global optimum, and at iteration 15,
it reaches the best known solution. Because this is the global
optimum of the function in this domain, the value of the
Gopt remains unchanged after this iteration.
This simple example shows the overall behavior of the

ROA in solving the optimization problem. As the example
shows, the raccoon tries to search different areas of the
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FIGURE 8. Ackley’s function.

solution domain to find the best food while remembering
the previous best location. The following sections show more
complicated examples, which consist of well-known bench-
mark functions for testing optimization algorithms. The ROA
and other state-of-the-art metaheuristics are applied to these
benchmark functions to compare their abilities from different
points of view.

B. ACKLEY’s FUNCTION
One of the most widely used multidimensional test functions
for optimization algorithms is Ackley’s function [76]. This
multimodal function poses a risk for metaheuristics algo-
rithms because it has many local optima where algorithms
can easily become stuck. The function is defined as follows:

f (x) = −a.e−b.
√ ∑N

i=1 x
2
i

n − e
∑N
i=1 cos(c.xi)

n + a+ e1

− 32.768 ≤ xi ≤ 32.768 (20)

The recommended parameter settings for this function are
a = 20, b = 0.2, and c = 2π . The known global minimum
of this function is f (x) = 0 for xi = 0, i = 1. · · · , n [75].
Figure 8 shows a visualization of this function for two vari-
ables and the recommended parameter set.

To examine the quality of the ROA’s solution, the ROA and
nine other well-known optimization algorithms (GA, PSO,
ABC, ACO, CA, ICA, FA, TLBO and IWO) are imple-
mented and executed under identical conditions to optimize
this fitness function. All these algorithms are implemented
in MATLAB R2018a x64 and executed on a computer with
a 1.90 GHz Intel Core i5-4300U processor and 8 GB of
memory.

Each implemented algorithm is executed 30 times, with
30 iterations in each run. The best results obtained from these
executions are summarized in Figure 9, which shows the
values of the fitness function (cost) in each iteration.

Figure 8 shows that by the last iterations, all the algorithms
are close to the best solution. However, because optimization
algorithms are approximate in nature, none of these algo-
rithms reach the exact solution in 30 iterations. Therefore,
the proximity of the solutions to the real known global opti-
mum in a limited number of iterations is a measurement

FIGURE 9. Experiments on Ackley’s function.

FIGURE 10. Last five iterations in experiments on Ackley’s function.

unit for optimization algorithms. To clarify this, the last
five iterations are enlarged in Figure 10.

Figure 10 shows the results obtained from the last five
iterations of the different algorithms. According to Figure 9,
the ROA starts with results that are worse than those of all
the other algorithms. However, this algorithm rapidly moves
closer to the solution, and after iteration 25, it approaches
the known globally optimum solution. As this plot shows,
the TLBO algorithm and the ROA achieve better results than
the others. However, the TLBO algorithm’s result at iteration
30 is equal to 0.083, while the ROA reaches a point with a cost
value of 0.0024. The globally optimum value for Ackley’s
function is known to be 0. Therefore, on average, the ROA
achieves better results than all the other algorithms.

One of the ROA’s techniques to avoid local optima
is migration. To show how the algorithm acts during
different iterations, the fitness values of the raccoon’s
locations (f (loci)) are measured in each iteration and plot-
ted in Figure 11, which shows that during this execution,
the raccoon performs two migrations. After starting execu-
tion, in iteration 12, the raccoon reaches a point with a fitness
value of 1.87. Although this point is the minimum fitness
value in this area, it is only a local optimum. Therefore,
the raccoon stores this point in Gopt and migrates to another
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FIGURE 11. Locations of the Raccoon in the Ackley sample run.

FIGURE 12. Average execution times for Ackley’s function.

random location. This random location has a fitness equal
to 19.89, which makes it a very bad choice, but after a few
iterations, migrations lead the raccoon to a point with fitness
equal to 0.0024 at iteration 25, which is the global optimum.
However, the animal does not stop here; it performs additional
searches in the hope of finding an even better result.

Optimization algorithms are mostly used in large real-
world applications; consequently execution times can be
considerable. Hence, the execution times of the optimiza-
tion algorithms can be used as another evaluation measure.
This experiment captures the execution times of the different
algorithms. The obtained results are presented in Figure 12,
which shows that the ROA has the shortest execution time,
meaning that it has the fastest performance for solving this
optimization problem.

In this section, Ackley’s optimization function was
optimized using different optimization algorithms; then,

the obtained results were compared. Overall, in terms of
proximity to the global optimum, the proposed ROA obtained
better results in a limited number of iterations than did the
other algorithms. The ROA obtained a result of 0.002414,
while the TLBO algorithm, which was the next closest,
reached 0.08331 and the GA, which obtained the worst result,
reached 2.7482.

Moreover, the ROA, which finished in 0.020 seconds,
was also the fastest algorithm. Compared to the FA,
which finished in 0.205 seconds and was the slowest, the
ROA performed 90% faster. Moreover, the TLBO achieved
the second-best execution time at 0.022 seconds, which
is 9% slower than the ROA.

C. RASTRIGIN FUNCTION
Another benchmark function used to test the Raccoon Opti-
mization Algorithm is the Rastrigin function. This function
has been chosen from Real Parameter BBOB 2010 [74]
benchmark function set.

The Rastrigin function is a multi-modal functions with
adequate global structure for optimization algorithms, and it
has many local optima but only one global optimum, which
is f (xi) = 0 for xi = 0, i = 1, · · · , d . Having many local
optima and only one global optimum has this function a
widely used test function for optimization algorithms [78].
The multidimensional version of this function is defined as
follows:

f (x) = 10(D−
D∑
i=1

cos(2πzi))+ ||z||2 + fopt

z = 310T 0.2
asy (Tosz(x − x

opt )) (21)

For more information about the notations and parame-
ter definitions in this function refer to [74]. In this experi-
ment, ten dimensional version of this function (D = 10) is
considered.

In the problem domain, this function has many small peaks
and valleys, making it a serious challenge for optimization
algorithms. When optimizing the Rastrigin function, the risk
of getting stuck in a local optimum is high, and proximity to
a local optimum increases the risk.

Similar to the experiments in the previous sections,
the ROA is executed along with the nine other well-known
optimization algorithms to optimize this function; then,
we show the results to compare the performances of these
algorithms. In this experiment, similar to the conditions used
to optimize Ackley’s function, each algorithm is executed
30 times, with 30 iterations for each run. Then, the best results
for each optimizer are calculated. The best results obtained
while optimizing this function are shown in Figure 13.

In optimizing Ackley’s function, the algorithms’ results
were similar across all iterations. However, on this function,
different algorithms behave differently. Algorithms such as
the ROA, and PSO start from a fairly good location and
gradually approach the known global optimum. In contrast,
other algorithms do not performwell and are not able to reach
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FIGURE 13. Experiments on the Rastrigin function.

FIGURE 14. Last five iterations in experiments on the Rastrigin function.

the vicinity of the solution. Among all the implemented algo-
rithms, only the ROA, GA, ICA, FA and IWOmanaged to get
close to the known optimum solution in this limited number
of iterations. To examine the results in the last iterations,
the results are enlarged for the last five iterations as shown
in Figure 14.

It is known that the optimumvalue of the Rastrigin function
in this domain is f (xi) = 0 for all xi = 0. The plot
in Figure 14 shows that only the ROA and the FA man-
aged to get within a reasonable proximity of the solution.
At iteration 30, the fitness values of results obtained for the
ROA and FA are 0.00014, and 0.02968, respectively, which
means that the ROA improved the result and got much more
closer to real known global optimum.

Next, the behavior of the ROA in different iterations is
discussed. The raccoon’s location during each iteration (loci)
was captured, and the fitness values of the raccoon’s locations
at different iterations (f (loci)) are shown in Figure 15.
As the plot shows, in this run, the raccoon performed

four migrations in total. However, it reached the global opti-
mum after only two migrations, in iteration 21. Subsequently,
it continued to migrate in the hope of finding better results.

FIGURE 15. Locations of the Raccoon in the Rastrigin sample run.

FIGURE 16. Execution times of algorithms on Rastrigin.

Because this function has numerous local optima, after a few
iterations, the algorithm became stuck in a local optimum.
However, the migrations helped it escape from local optima
and continue to try to find the global optimum.

The average execution times of the different algorithms
to solve the Rastrigin function are presented in Figure 16,
showing that the ROA required the shortest execution time
to solve this function.

In the next section, another optimization function the
Griewank function is optimized. As with the other bench-
marks, the results obtained from these experiments are com-
pared and discussed in detail.

D. GRIEWANK FUNCTION
The other benchmark function used in this paper is
the Griewank function. This function was proposed by
Griewank [79]. In the optimization field, this function is one
of the most challenging and widely used functions for testing
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FIGURE 17. Griewank function.

FIGURE 18. Griewank Function in a limited domain.

TABLE 1. Numbers of local minima in [14, 14]n and [28, 28]n [81].

optimization algorithms [80]. The standard Grienwank func-
tion is defined below:

f (x) =
d∑
i=1

x2i
4000

−

d∏
i=1

cos(
xi
√
i
)+ 1−600≤xi≤600 (22)

The known global minimum of this function is f (x) = 0
for xi = 0; i = 1, · · · , n. A graphical representation of this
function is shown at Figure 17.

One the most important characteristics of this function is
the exponential increase in the number of local optima as the
function dimensions grow, which makes it challenging for
optimization algorithms. To show the local optima situation,
the plot Figure 17 is enlarged in Figure 18 to show a limited
portion of the domain.

As mentioned above, the minima of this function grow
exponentially with the dimension. Table 1 presents the
minima for small domains for one, two, and three dimen-
sions [81]. Due to this characteristic, this function is a widely
used benchmark for optimization algorithms.

FIGURE 19. Experiments on the Grienwank function.

FIGURE 20. Last five iterations in experiments on the Grienwank function.

We optimized the ten dimensional Griewank function
using the optimization algorithms introduced earlier. Again,
each algorithm is executed 30 times with 30 iterations in
each run. The best results obtained in these experiments are
captured for each algorithm and shown in Figure 19.

Because the problem domain for this function is wider
than that for the other benchmark functions ([−600, 600]),
all the algorithms were started with relatively large fitness
values (> 100). However, they gradually get close to the
solution after several iterations. After half of the iterations
have been completed, all the algorithms have found solu-
tions close to the global optimum. Therefore, this plot is
enlarged to show the differences of the last iterations in detail.
Figure 20 shows last five iterations of these experiments.

As Figure 20 shows, similar to the other benchmark func-
tion experiments, the ROA obtains the best result among all
the compared algorithms. The FA Algorithm achieves second
best. After completing the 30 iterations, the ROA reaches a
solution with a fitness value equal to 0.003484, whereas the
FA’s fitness value for the last result is 0.090823, and that of
the GA algorithm, which has the solution with the highest
fitness value, is 0.554962.
To further evaluate the ROA, the fitness values of the rac-

coon’s locations in each iteration (f (loci)) are calculated and
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FIGURE 21. Locations of the Raccoon in the Griewank sample run.

FIGURE 22. Execution times of algorithms on Griewank.

shown in Figure 21. The raccoon performed three migrations.
At the beginning of the execution, the raccoon was far from
the real solution. However, after 26 iterations, it was close to
the desired location, and finally, at iteration 28, it obtained
its best solution. In the second half of the raccoon’s life,
the animal does not perform any migrations because there are
many local optima around the global optimumof the function,
and when the raccoon reaches this area, it must search many
different locations.

Finally, the execution times of the different algorithms are
considered, as shown in Figure 22. Similar to all the previous
benchmarks, the ROA both requires the least execution time
and reaches the best solution in the shortest time.

E. ROTATED HYPER-ELLIPSOID FUNCTION
The Rotated Hyper-Ellipsoid (RHE) is a continues function
to test optimization algorithms. This function is an extension

FIGURE 23. Experiments on the rotated hyper-ellipsoid function.

FIGURE 24. Last five iterations in experiments on the Rotated
Hyper-Ellipsoid function.

version of two other functions like Axis Parallel Hyper-
Ellipsoid and SumSquares function. RHEmostly is evaluated
on the domain xi ∈ [−65.536, 65.536] where i = 1 . . . d .

f (x) = 6n
i=1(6

i
j=1xi)

2

Rotated Hyper-Ellipsoid Function is a convex function
which is at a risk to stuck in local optimum. The global
minimum of the function is at the point x∗ = (0, . . . , 0)
with f (x∗) = 0.

Rotated Hyper-Ellipsoid Function has been examined in
dimension of 10. Unlike the other test functions used in
this study, Rotated Hyper-Ellipsoid Function does not have
numerous local optimizations. The reason for choosing this
kind of function is to show the ability of ROA in finding
optimum solutions in both kinds of problems. As the previous
functions, the ROA is executed along with aforementioned
optimization algorithms.

The result of experiments are depicted in Figure 23. Each
algorithm is executed ten times, with 30 iterations for each
run, and the best results among these runs are chosen for each
algorithm. At the last iterations the result of all algorithms are
vary close to each other. Due to this, the 10 last iterations is
enlarged in figure 24 to have a better insight into the results.
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FIGURE 25. Execution times of algorithms on rotated Hyper-Ellipsoid
function.

The figure indicates that among all the other algorithms,
ROA obtained better results. The FA and ICA algorithms
could achieve second best results.

Moreover, ROAwas able to obtain a solution with a fitness
value equal to 4 × 10−6 in 30 iterations. Whiles the other
algorithms like PSO have fitness 0.61 which are the highest
value between these algorithms. It shows the ability of ROA
in finding optimum results rather than the others in fewer
iterations.

Figure 25 shows the ROA is faster than the other aforemen-
tioned algorithms in terms of coverage time.

VI. CONCLUSION AND DISCUSSION
In this paper, inspired by the lifestyle of the raccoons, a new
optimization algorithm, named ROA (Raccoon Optimization
Algorithm) is proposed. Based on the experimental results
and problem-solving ability of the meta-heuristic algorithms,
we can summarize that ROA is a proper algorithm to solve
problems in terms of accuracy and time.

As noted in the paper, ROA is fully shaped based on
the promising direction of the meta-heuristic optimization
algorithm. ROA enjoys a novel and sufficient neighborhood
searches to avoid of becoming stuck in local optimum.
Its neighborhood searches are quite different from other well-
known algorithms. This algorithm makes use of two different
search zones in each iteration. Moreover, it provides a proper
technique of searching in the solution state space by searching
two different zones, named visible and reachable, in parallel.
By this technique, the number of neighborhoods in each iter-
ation remarkably increase and better results can be achieved.
Moreover, due to having visible zones, getting stuck in the
local optimum and consequently efforts for getting out of this
valley is reduced. These features of ROA have an effective
impact on coverage time.

In addition, the raccoon can remember best previously
visited location. Then, if it does not manage to find better
solutions in the future iterations, it can revert back to the best
location. Additionally, this ability helps raccoon to moves
purposely toward the optimum solution. All these character-
istics set of racoon’s life and rummaging style jointly are the
basis of ROA which leads to solving problems more simply
and accurately.

The ROA eliminates the computational complexity of other
previous algorithms such as artificial fish by proposing a
simple and easy computing process. All these characteris-
tics are demonstrated by using some well-known benchmark
algorithms along with ROA in solving optimization bench-
mark functions which are challenging enough to examine the
abilities of the algorithms. The results of these experiments
show that the ROA obtains more accurate solutions in fewer
iterations along with a shorter coverage time.

The ROA’s execution time could be further reduced by
running the algorithm on a parallel architecture. Having
n raccoons explore in parallel means while sharing their
experiences would be one approach to reducing the execution
time. Thus, parallelizing the ROA is the first important future
work that we intend to investigate.

Another possibility for our future work is to use machine
learning, which might result in the better movement because
the racoons could remember and learn from their experiences.
Finally, we aim to apply the ROA to multilevel k-way hyper-
graph partitioning to improve the scheduling and mapping
of exa-scale parallel processes into heterogeneous parallel
architectures.
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