
Received October 17, 2018, accepted November 6, 2018, date of publication November 29, 2018,
date of current version January 11, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2883964

Minimizing Geo-Distributed Interactive Service
Cost With Multiple Cloud Service Providers
FEI HU1, QINGCHUN LIU1, JIAHONG WU 2, AND JIANGUO YAO 2, (Senior Member, IEEE)
1Science and Technology on Avionics Integration Laboratory, Shanghai 200233, China
2School of Software, Shanghai Jiao Tong University, Shanghai 200240, China

Corresponding author: Jianguo Yao (jianguo.yao@sjtu.edu.cn)

The work of J. Wu was supported in part by the National Key Research and Development Program of China under Grant
2018YFB1003603, in part by the Medical Cross-Fund of SJTU under Grant YG2015MS47, in part by the Program for NSFC under Grant
61772339, and in part by the Shanghai Rising-Star Program under Grant 16QA1402200.

ABSTRACT Geo-distributed interactive service is a type of Internet cloud service. Since data centers
belonging to multiple cloud service providers (CSPs) can provide lower resource provision cost for these
services, we try to overcome the two challenges in selecting the data centers from multi-CSPs for our
cost optimization. First, as the resource prices vary across data centers, scheduling data centers and geo-
distributed interactive services have a tremendous consequence for optimizing the cost. Second, the resource
demand is uncertain, and the geo-distributed interactive service needs enough resources to meet the quality-
of-service constraint. A regularized stochastic decomposition algorithm, namely, two-dimension resource
provision (2DRP), is proposed for solving the two-stage stochastic linear programming problems. In stage
one, users express tail latency constraints for each geo-distributed interactive service, letting 2DRP choose
the lowest price-per-instance data center group and determine the right amount of resources. In stage two,
2DRP estimates the impact of the request rate and the amount of resources on tail latency and uses the
decomposition technique to adjust the resource provision plan to handle the demand uncertainty.We evaluate
2DRP over a set of workload scenarios on real clouds by reproducing the Internet request with data center
workload traces, and the results show the availability of our algorithm for cost minimization geo-distributed
interactive services with multi-CSPs.

INDEX TERMS Cloud computing, cost minimization, geo-distributed interactive service, tail latency.

I. INTRODUCTION
These days, companies and organizations in diverse indus-
tries have adopted MapReduce-based systems for interac-
tive service [1]. Important new workloads in the form of
geo-distributed interactive service have emerged, which fea-
ture geographically distributed and latency-sensitive. For
instance, scalable geo-distributed interactive service on data
sets has become the main concern for several teams at
Google [2]. Some of them aim at creating business intelli-
gence for marketing which have features ranging from simple
Internet Cloud Services (such as Google Analytics Real-time)
to more advanced types, such as Insights for the Google
Advertisers.

Apart from the Google, the flexible and cost-effective
Cloud infrastructure becomes significant for Cloud consumers
like common companies and organizations to handle
the problems of the growing number of data volumes,
latency-sensitive characteristic and resource provision cost

minimization [3], [4]. Besides, there are some other require-
ments. Cloud consumer requires less stringent latency
constraint so as to save resource provision cost [5]; Cloud
consumers prefer the lower price data centers although these
data centers belong to multi-CSPs; resource demand depends
on the service request rate. These requirements determine
the Cloud infrastructure must have the capability to provide
optimized distribution and resource provision plan for the
geo-distributed interactive services, multiple Cloud Service
Providers (multi-CSPs), diverse resource price policies and
changing resource demand.

These works [6]–[8] have made encouraging progress
in optimizing the resource provision cost. However, multi-
CSPs environment and diverse resource pricing policies,
even for single geo-distributed interactive service, result
in non-convex optimization and no efficient solution for
the distributions and resource provision planning. Existing
researches [9], [10] require working with specified service
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profiles and making assumptions about which interactive
service will be distributed to where, but both factors are more
dynamic than expected. Resource prices differ from multi-
CSPs and shift constantly, which causes the assumptions
about the distribution can become ineffective in months. So,
interactive service must switch to data center group with the
lower price in regular interval to maintain that the resource
provision cost is minimized. Also, the Internet request rates
of interactive service change dynamically, and the allocated
resource must meet the resource demand under different
request rates [11], [12]. A comprehensive cost model and a
credible tail latency model are necessary for adjusting the
resource provision plan.

To summarize, our objective is to minimize the resource
provision cost for geo-distributed interactive service with
multi-CSPs. There are two challenges that we have to con-
sider. The resource provision cost varies widely with diverse
resource price policies, and the geo-distributed interactive
service needs to meet the Quality of Service (QoS) con-
straints with changing resource demand. Besides, CSPs do
not provide a centralized view of semantic-rich interaction
service distribution. The ideal algorithm needs to decide
where to place the interactive service’s workloads, how many
resources are needed to meet the QoS constraint. We over-
come the two challenges by optimizing the distribution and
resource provision planning. The key intuition is by balancing
the price, the number of resources and the tail latency. The
distribution and the resource provisioning can respectively
be formulated as a master problem and finite scenario sub-
problems by modeling the uncertain resource price and the
uncertain resource demand with Stochastic Programming.
To that end, we can greedily distribute the geo-distributed
interactive service to low price data centers and iteratively
adjust the resource provision plan. Our contributions in this
paper include:

1) We construct several optimization functions to work out
the distribution and the resource provision planning strat-
egy. The resource provision cost comprises the reservation
resource and the on-demand resource for multi-CSPs. Impor-
tantly, we achieve complex distribution and resource pro-
vision planning by modeling tail latency constraint of the
geo-distributed interactive service with high-percentile Ser-
vice Level Agreement (SLA).

2) We novelly propose an algorithm, namely Two-
dimension Resource Provision (2DRP). With resource price
uncertainty, 2DRP distributes the Internet requests to the
lowest resource price data center group with Stochastic
Programming technique in every distribution decision period
coarse-grained. With resource demand uncertainty, 2DRP
estimates the resource demand through historical execution
of the geo-distributed interactive service’s Internet requests;
then it uses decomposition technique to develop fixed opti-
mized resource provision plan in every provision planning
period in target data center group fine-grained.

3) Under a variety of settings, we conduct extensive
simulation-based experiments using multi-CSPs, real Clouds

and Google data center workload traces. The result turns out
that the resource provision cost of geo-distributed interactive
services is reduced up to 24% compared with the On-demand
based infrastructure, and up to 10% compared with both
the Reservation based infrastructure and the OCRP infras-
tructure. Besides, with 2DRP, the geo-distributed interactive
services can meet the high-percentile SLA tail latency con-
straint.

II. BACKGROUND AND MOTIVATION
In this section, we provide necessary background for
the motivation and challenges behind minimizing geo-
distribution interactive service cost with multi-CSPs.

A. GEO-DISTRIBUTED INTERACTIVE SERVICE
Geo-distributed interactive service, such as Mapreduce Inter-
active Analysis (MIA) and web search, is a type of Internet
Cloud Service that provides end-users business decisions
or plentiful contents. In MIA, analyzing the data gathered
across data center regions is a critical workload. Geo-
distributed interactive service for the real-time data analytics
can provide up-to-the-minute information about an enter-
prise’s customers and present it so that better and quicker
business decisions can be made - - perhaps even within the
time span of a customer interaction. Also, in a data ware-
house context, geo-distributed interactive service supports
unpredictable ad hoc queries against large data sets [13].
Examples include querying user logs to make advertisement
decisions. Since the data analysts and operators use results of
these analytics queries for real-time decision, these services
are latency-sensitive. To ensure high performance for geo-
distributed interactive service, Internet requests of these inter-
active services need to be distributed to data center groups
and utilize enough data center resources to accomplish the
running of data center workloads in collaborative.

B. CLOUD PRICING OF MULTI-CSPS
Google Compute Engine (GCE), Amazon AWS and
Microsoft Azure globally deployed a certain number of data
centers, which are organized as several data center regions
for business purpose. These CSPs provide diverse resource
price policies for different Internet Cloud Services [14]–[16].
For data centers deployed in different locations, GCE and
Azure provide different compute capacity VM instances with
different unit resource prices (e.g., Google North America:
2 VCPU, 4G RAM, 250G SSD, $1.424/hour; Azure North
America: 2 VCPU, 4G RAM, 250G SSD, $1.324/hour)
[14], [16]. With the On-demand VM instances, the cloud
consumer pays the compute capacity by the hour with no
long-term commitments or upfront payments. The cloud
consumer can increase or decrease the compute capacity
depending on the demands and only pays the specified hourly
rate for the VM instances that used [15]. Besides, AWS not
only provides On-demand VM instances similar to GCE
and Azure but also allows the cloud consumer to use the
convertible reserved VM instances. A cloud consumer can set
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typical configurationVM instances for one year or three years
andmake the upfront payment, and then charged a discounted
hourly rate for the duration of the reserved VM instance term
(approximately 50%) [15].

C. DATA CONSISTENCY
Naturally, applications running in the data center can pro-
duce the corresponding raw data (such as user access
records or shipping information). With the Facebook data
center as an example of this tremendous data growth, one has
to just look at the fact that while today they load between
10-15TB of compressed data every day, just six months
back this number was in the 5-6TB range [17]. Significantly,
the geo-distributed interactive service requires the corre-
sponding raw data from different data centers. Needless to
say, such a rapid growth places very strong scalability require-
ments on the data processing infrastructure. For instance,
MIA needs dozens of VM instances to finish the execution
of the data center workload [18]. However, the resource
prices are different from data centers, even though these data
centers belong to the same CSP. The good news is the raw
data is replicated among the data centers in the same region
with the aim of providing high availability. Internet requests
for the geo-distributed interactive service can be distributed
to the data centers with low resource price to reduce the
resource provision cost.

Our work focuses on minimizing the resource provi-
sion cost of geo-distributed interactive service. A poten-
tial approach would be to distribute the interactive service
to the lowest price data center group and make the maxi-
mum resource provision for the changing demand. However,
the resource price and demand can be highly heterogeneous,
and the distributions could be dramatically inefficient. If the
cloud consumer sets the maximum resource in everymoment,
the resources are always overprovisioned. In so far, it is
possible to achieve good performance and truthful resource
provision with the consideration of price uncertainty and
demand uncertainty.

III. AN OVERVIEW OF THE 2DRP FRAMEWORK
A. RESOURCE PROVISION STRATEGIES
2DRP considers both of the Reservation resource and the
On-demand resource. Hence, there are three resource pro-
vision situations: reservation only, on-demand only and the
hybrid. These situations present in different times with dif-
ferent events as stipulated in the agreements: If data center
provides the reservation resource and the cloud consumer
prefers the reservation resource for long term service deploy-
ment, the cloud consumer takes action of making reservation
contract and paying up-front at first. After the service online,
the resource price and the resource demand are profited,
2DRP then allocates resources with the resource provision
plan in advance and the reserved resources can be uti-
lized. Without knowing the actual demand. As a result,
the resources could be observed either overprovisioned

or underprovisioned. If the actual demand exceeds the maxi-
mum reserved resource limitation of the reservation contracts,
QoS cannot be guaranteed. If data center provides the on-
demand resource, 2DRP can pay for additional resources
to achieve the QoS requirement, and then the hybrid stage
(reservation and on-demand) starts. If data center only pro-
vides the on-demand resource or the cloud consumer prefers
the on-demand resource for short term application deploy-
ment, then 2DRP dynamically provides the on-demand
resource.

B. WORKLOAD DISTRIBUTION
2DRP is easy to understand. The Internet requests from the
traffic source represent a list of executable data center work-
loads. At first, 2DRP makes optimized workload distribution
decisions by choosing the lowest price data center, and with
these decisions, the Internet requests will be distributed to
the target data center group. Before workloads executed in
this data center group, 2DRP develops resource provision
plan with estimated resource demand. Then resources are
allocated to workloads according to the resource provision
plan, and the resources are provided as the data center
VM instances. Figure 1 shows a simple case, Internet requests
distribute to low price data center B rather than data centerA.
Workloads will run in the target data center group with proper
resources. Especially, after finishing the Internet request,
traces of latency and resource utilization send back to the
workload dispatcher for the next resource provision planning.

We list the three main components of 2DRP as below:
Traffic source: Let S denote set of traffic sources for

m geo-distributed interactive services. Traffic source sends
Internet requests to access geo-distributed interactive service,
and I denotes set of data center workloads for each service.

Data center: Let J denote set of data centers in every
region. Each data center provides a pool of resources to
the Cloud consumers. Let 8 denote all the resource types.
Resource types can be computing power, memory, disk, and
WAN network for data transmission [19]–[22].

Time slot: Workload distribution decisions are made at
the beginning of every decision period T , namely WDD
(Workload Distribution Decision) time slot. Due to the time-
varying feature of the Internet request rates, 2DRP needs to
periodically change the resource provision plan after every
billing period t , namely RPP (Resource Provision Planning)
time slot. Importantly, t ∈ t1, t2, . . . , tn; ∀t ∈ T .

IV. PROBLEM FORMULATION
A. DATA CENTER GROUP
Assume R regions provide data center computing resources
for the running of geo-distributed interactive services.
In every region, there are P cloud service providers and
provider i has deployed DCi (i ∈ P) data centers for Internet
Cloud Services. Let Jr denote the number of data centers in
region r (r ∈ R). Then, we can calculate all the available data
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FIGURE 1. Workload distribution of 2DRP: Internet requests are distributed to low resource price data centers.

centers in region r with equation

Jr =
∑

i∈P
DCi. (1)

We concern about m geo-distributed interactive services,
and each one contains more than |R| data center workloads.
Traffic source of geo-distributed interactive service sends
Internet requests to n (n ≥ |R|) data centers, which we call the
target data center group. These data centers are gathered from
different regions, which means each region needs to provide
at least one data center to accomplish the running of geo-
distributed interactive service. So, let G denote all the possi-
ble data center groups provided byR data center regions.With
the Combinatorial Mathematical Theory, we can calculate all
data center groups as

G =
∏

r∈R
Jr = J1 × J2 × . . .× J|R|. (2)

In this paper, the theory of the data center group is feasible,
since the raw data are replicated among data centers in the
same region. Ordinarily, the replication of raw data among
data centers aims at providing high reliability and availability.
If data centers do not replicate the raw data, we consider each
un-replicated data center as an independent region.

B. COST MODEL
When cloud consumer made reservation contract k for work-
load i, the up-front of making reservation contract for typical
VM instance is charged by a fixed one-time fee. Let biφ
denote the amount of resources of resource type φ (φ ∈ 8)
required by the typical VM instance. Let cUjφk denote the unit
price (e.g., up-front for the reservation) of data center j for
resource type φ subscribed to reservation contract k . The up-
front, denote as pUijk , is the prepaid expenses for provisioning
every resource type

pUijk =
∑

φ∈8
biφcUjφk . (3)

After the Internet Cloud Service online, the cloud con-
sumer is charged with discounted hourly price for the running
of the reserved VM instance, and we call it the expanding
cost. Let cRjφkt denote the hourly price of data center j for
resource type φ with reservation contract k when running the
reservedVM instance during t . Let pRijkt , defined as the similar
way of (3), denote the expanding cost for running the reserved
VM instance.

Let cOjφt denote the hourly price of the on-demand resource
of data center j for resource type φ during t . Also, the on-
demand price can be changed by CPS; it is uncertain to the
consumer when the resource is on-demand. Let pOijt , defined
as the similar way of (3), denote the on-demand cost of
running the on-demandVM instance. Especially, given traffic
source i, data center j, the expanding cost of any reserved
resource is cheaper than the on-demand resource.

Different from the data center computing resource,
the WAN network resource is charged according to the
amount of network package transferred per month. When
the data transmission exceeds the maximum amount of traf-
fic that introduced in the network price policy, the WAN
network resource will be charged at a different unit price.
Let Kn denote the relationship between the amount of data
transferred and the unit price. For example, data trans-
fer out from Amazon EC2 to Internet: Kn = {‘‘First
1 GB’’:‘‘$0.000/GB’’,‘‘Up to 10 TB’’:‘‘$0.090/GB’’,‘‘Next
40 TB’’:‘‘$0.085/GB’’,‘‘Next 100 TB’’:‘‘$0.070/GB’’,‘‘Next
350 TB’’:‘‘$0.050/GB’’, · · · }. Hence, let pNijk denote the unit
price of WAN network traffic of data center j for workload i
in k (k ∈ Kn) situation.
If we distribute geo-distributed interactive service to data

center group, we must allocate a sufficient number of typical
VM instances for the running of workloads (e.g., 16core
CPU, 64G memory and 500G SSD per VM instance × 10).
We have provided a novel method to calculate the unit price
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of adaptable VM instance and WAN network resource. Then,
we can calculate the resource provision cost according to the
occupancy of the total amount of the typical VM instances
and the WAN network traffic. We use Formulation (4) to
calculate the resource provision cost of geo-distributed inter-
active services.

S∑
s

I∑
i

Jg∑
j

Xij(
K∑
k

xUijkp
U
ijk +

Tn∑
t

Kn∑
k

xNijktp
N
ijkt + C

Y ). (4)

Note that s (s ∈ S) denotes traffic source, i (i ∈ I ) denotes
workload for traffic source s. Simply each workload needs
to distribute to one data center. j (j ∈ Jg) denotes the data
center belongs to group g (g ∈ G). xUijk denotes the number
of reserved VM instances for workload i in data center j
with reservation contract k . xNijk denotes the total amount
of WAN network package transferred per month related to
corresponding network utilization situation k (k ∈ Kn) in
each network resource billing period t . Note that t ∈ Tn, while
Tn can be 12months in one year. Xij denotes a binary variable:
it equals to 1 if workload i distributed to data center j, and
0 otherwise.

The resource provision cost includes three parts: up-front
of reserved xUijk VM instances; the expenses of WAN network
traffic; the expenses of running reserved VM instance and
on-demand VM instance in every billing period t . The third
part is denoted as CY , which can be changed dynamically.
If the running of reserved VM instances xRijkt cannot meet the
tail latency requirements (xUijk = xRijkt < actual demand),
we need extra xOijt VM instances to reach it. The dynamic
resource provision cost is shown as

CY
=

T∑
t

(
K∑
k

xRijktp
R
ijkt + x

O
ijtp

O
ijt ). (5)

C. LATENCY MODEL
Workloads running in the data center has processing latency
and WAN network package transmission latency [23]. This
work [24] provides an extensible network-aware QoS pre-
diction model to estimate the latency of Internet Cloud Ser-
vice. Since the processing latency is related to the size of
raw data and the amount of allocated data center resources,
the mapping function and latency CDFs for historical Internet
requests can be applied to predict the processing latency.
Since the processing latency is usually in little change for the
typical size of raw data and a certain amount of computing
resources, especially forMIA services, the processing latency
can be predicted by mapping functions with the workload
traces. However, the interference of workload execution has
a great impact on the processing latency. It can be eliminated
by the latency CDFs. Let lCij (t) denote the data processing
latency. The data transmission latency is positively related
to the size of intermediate data being transmitted. Hence,
the WAN network latency can be obtained as the similar way
of the data processing latency. Let lNij (t) denote the WAN
network transmission latency.

For different types of data center workload, comput-
ing latency and network package transmission latency vary
widely. For some Internet Cloud Services, computing latency
is the main contribution to the service latency when for
other Internet Cloud Services, network transmission latency
is the main contribution to service latency. So, we use (6) to
calculate the fixed latency lij(t).

lij(t) = lCij (t)+ l
N
ij (t). (6)

Each Internet request has a corresponding latency con-
straint. We independently consider every Internet request and
believe if all Internet requests meet the latency constraint,
then the geo-distributed interactive service can satisfy the
QoS requirements. Let LCij (t) denote the processing latency
threshold. Let LNij (t) denote WAN network latency thresh-
old. Let L(t) denote the fixed latency threshold for Internet
requests of m geo-distributed interactive services sent to n
(n = |Jg|) data centers.

L(t)= LCij (t)+ L
N
ij (t)

=


LC11 + L

N
11 LC12 + L

N
12 . . . LC1n + L

N
1n

LC21 + L
N
21 LC22 + L

N
22 . . . LC2n + L

N
2n

...
...

. . .
...

LCm1 + L
N
m1 LCm2 + L

N
m2 . . . LCmn + L

N
mn

. (7)

Formulation (6) and (7) used for latency estimation are
based on high-level workload execution which does not con-
sider the interaction of workloads within the same data center.
We will struggle this limitation in Section V.

D. FORMULATION
Combining the cost model and latency model, we can formu-
late the minimizing resource provision cost problem as the
following optimization function.

Minimize
S∑
s

I∑
i

Jg∑
j

Xij[
K∑
k

xUijkp
U
ijk +

Tn∑
t

Kn∑
k

xNijktp
N
ijkt

+

T∑
t

(
K∑
k

xRijktp
R
ijkt + x

O
ijtp

O
ijt )]. (8)

Subject to
Jg∑
j

Xij = 1 ∀s ∈ S, ∀i ∈ I , (8a)

lij(t) ≥ Lij(t) ∀Lij(t) ∈ L(t), ∀i ∈ I ,

∀j ∈ Jg, ∀t ∈ T , (8b)
S∑
s

I∑
i

Xijbiφ(
K∑
k

xRijkt + x
O
ijt ) ≤ ajφt ∀j ∈ Jg,

∀φ ∈ 8, ∀t ∈ T , (8c)

xRijkt ≤ x
U
ijk ∀i ∈ I , ∀j ∈ Jg, ∀k ∈ K , ∀t ∈ T ,

(8d)

xUijk ∈ N
∗
∀i ∈ I , ∀j ∈ Jg, ∀k ∈ K , (8e)
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xRijkt ∈ N
∗
∀i ∈ I , ∀j ∈ Jg, ∀k ∈ K , ∀t ∈ T ,

(8f)

xOijt ∈ N
∗
∀i ∈ I , ∀j ∈ Jg, ∀t ∈ T , (8g)

xNijkt ∈ N
∗
∀i ∈ I , ∀j ∈ Jg, ∀k ∈ Kn, ∀t ∈ Tn.

(8h)

Constraint (8a) indicates that each workload must be dis-
tributed to one data center. Jg denotes a set of data cen-
ters of the group g. Constraint (8b) indicates that latency
of Internet requests must not exceed the latency thresh-
old. Constraint (8c) indicates that the allocated data center
resource must not exceed the maximum resource limitation
for all resource types. ajφt denotes the maximum resource
of data center j for resource type φ during RPP time
slot t . Constraint (8d) indicates that the running reserved
VM instances must not exceed the limitation of maximum
reserved VM instances. Constraint (8e), (8f), (8g), (8h)
together indicate that variables of the number of VM instance
and the usage of WAN network traffic take the values from a
set of non-negative integer numbers.

V. DESIGN
We have provided an optimization function for workload
distribution and resource provision planning. However, with
Formulations (6) and (7), the latency estimation are based
on high-level workload execution, and the latency predic-
tion error is unbounded. Accurate estimation of the latency
for each Internet request is in high cost which results in
the latency model are infeasible. So we change to concern
about the probability of Internet requests not exceed the
latency threshold and design an SLA fixed tail latency model.
We only need to measure whether the Internet requests meet
the latency constraints when the geo-distributed interactive
service is finished, rather than estimate the latency for every
future Internet request.

A. HIGH-PERCENTILE SLA TAIL LATENCY
There is no simple closed-form method to compute the tail
latency of geo-distributed interactive services. We have stud-
ied some global load balancing approaches [25], [26], which
can estimate the tail latency of Internet request separately.
However, quantifying accurate tail latency of each interactive
service is difficult, especially the dynamic configuration of
data center resources and time-varying feature of the request
rates greatly affect the tail latency. Also, the shared data
center resource causes interference [27].
This work [28] presents a data-driven approach to stati-

cally estimate the latency for each network route from traffic
sources to data centers and redistributes the workloads to
lower electricity price data center. In this case, we use high-
percentile tail latency for Internet requests as SLA [29].
For example, if we set x as the high-percentile SLA tail
latency constraint, then the probability of Internet request
not exceeding the latency threshold must not less than x%.
Otherwise, the tail latency of these Internet requests cannot

be guaranteed. The high-percentile SLA tail latency provides
a new way to let the geo-distributed interactive services sat-
isfy the QoS requirement.

B. TAIL LATENCY PROFILING
We focus on making probability tail latency estimation that
can adapt to the optimization function shown as (8). In our
design, we at first use the probabilistic method to estimate
the probability distribution of processing latency and WAN
network transmission latency. We then use the convolution
function to integrate them. The estimation of probability tail
latency is made by using the Internet request’s traces because
traces of Internet requests will send back to the workload
dispatcher after finishing the execution of Internet request.
These traces include the information of latency and resource
utilization situation for each Internet request.
Consider one traffic source s sends � Internet requests to

data center j to accomplish the execution of workload i during
time slot t . We define the method of estimating the high-
percentile SLA tail latency as following definitions.
Definition 1 (Probability Latency): The probability of

Internet request does not exceed the workload processing
latency threshold and WAN network transmission latency
threshold are denoted as f Cij (t) and f

N
ij (t), respectively. Note

that operation [lCij (t) ≥ L
C
ij (t)] represents a statistical method,

andwhen lCij (t) ≥ L
C
ij (t), the result is 1, otherwise 0. The same

to the operation [lNij (t) ≥ L
N
ij (t)].

f Cij (t) =

∑
w∈�[l

C
ij (t) ≥ L

C
ij (t)]w

|�|
, (9)

f Nij (t) =

∑
w∈�[l

N
ij (t) ≥ L

N
ij (t)]w

|�|
. (10)

Remark 1: According to the law of large numbers (LLN),
the average of the latency obtained from a large number of
latency traces should be close to the expected value. The
latency estimation will tend to becomemore accurate as more
traces are considered in the estimation.
Definition 2 (Fixed Probability Latency): The profiled

latency of each Internet request for workload i in data center
j is denoted as

fij(t) = f Cij (t) ∗ f
N
ij (t), (11)

where the operator ‘‘∗’’ represents a convolution method.
Remark 2: Contributions of latency for Internet request

include two parts: a) The data center processing latency. b)
The WAN network package transmission latency. Convolu-
tion function mathematically produces a third function, that
is typically viewed as the superposition of the computing
latency and network latency.
Definition 3 (Probability Tail Latency): Internet requests

from traffic source are sent simultaneously to data centers
within its group, the probability tail latency for Internet
requests from traffic source should be averaged across the
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data center group and be expressed as

Fsg(t) =

∑[I ,Jg]
[i,j] uij(t)fij(t)∑[I ,Jg]

[i,j] uij(t)
, (12)

where Fsg(t) denotes the probability tail latency for Internet
requests from traffic source s sent to data center group g, and
we use Fsg(t) to emphasize that the probability tail latency
estimation is a function of our workload distribution decision
and resource provision planning.

With Formulation (9)-(12), we can get the probability tail
latency of Internet requests sent to each data center group.
Then, we change the latency constraint to the high-percentile
SLA tail latency constraint, which is denoted as PrSLA.

Fsg(t) ≥ PrSLA (13)

Besides, previously established knowledge [30] provides
high-percentile SLA tail latency modeling in multi-tenant
environments. P95 (PrSLA = 0.95) is good enough in the
situation of reality, since 5% probability of Internet request
exceeds the latency threshold have little effects on the user
experience and can be ignored by the end users. 2DRP can
set different values as the high-percentile SLA tail latency
constraint according to the needs of different QoS require-
ments. Also, we only focus on the high-level execution of
geo-distributed interactive service, because we believe that
the workloads are successfully executed when all Internet
requests are expected to complete. We can ignore the details
of their connections and only focus on the Internet requests
from traffic sources sent to data center groups since existing
Cloud computing framework already provides features so that
we do not need to highly concern about these details.

C. PRICE UNCERTAINTY AND DEMAND UNCERTAINTY
The unit price of data center resource is dynamic, and
resource demand of geo-distributed interactive service will
dynamically change following Internet request rates. To adapt
to this situation, we utilize Stochastic Programming to handle
the uncertainty situation for solving the problem of resource
provision cost minimization. Stochastic Programming takes
a set of uncertainty parameters (called scenarios), described
by a probability distribution into account. So, we can use this
feature to solve the problem. Let3t denote the set of price and
demand scenarios in every RPP time slot t . For all scenarios
during WDD time slot T , set 3 is defined as the Cartesian
product of 31,32, . . . , 3|T |.

3 =
∏

t∈T
3t = 31 ×32 × . . .×3|T |. (14)

We know that the probability distribution of 3 has finite
support (e.g., set 3 has a finite number of scenarios with
respective probabilitiesPλ ∈ [0, 1]). λ is a composite variable
defined as λ = (λ1, λ2, . . . , λ|T |) ∈ 3. In this paper,
uncertain price and uncertain demand are considered as sce-
narios in 3 whose probability distribution is assumed to be
available.

Given a probability distribution of all scenarios, we can
reformulate the expanding reservation cost and on-
demand cost, the original version is defined as (5), as
Formulation (15).

CY
=

T∑
t

3∑
λ

Pλ(
K∑
k

xRijktλp
R
ijktλ + x

O
ijtλp

O
ijtλ). (15)

With the high-percentile SLA tail latency model and
Stochastic Programming technique, the optimization function
shown in (8) can be reformulated as (16). Pλ denotes the
probability of scenario λ. To solve this optimization function,
probability distributions of both price and demand must be
available.

Minimize
S∑
s

I∑
i

Jg∑
j

Xij[
K∑
k

xUijkp
U
ijk +

Tn∑
t

Kn∑
k

xNijktp
N
ijkt

+

T∑
t

3∑
λ

Pλ(
K∑
k

xRijktλp
R
ijktλ+x

O
ijtλp

O
ijtλ)]. (16)

Subject to
Jg∑
j

Xij = 1 ∀s ∈ S, ∀i ∈ I , ∀λ ∈ 3, (16a)

Fsg(t) ≥ PrSLA ∀s ∈ S, ∀i ∈ I , ∀j ∈ Jg,

∀g ∈ G, ∀t ∈ T , (16b)
S∑
s

I∑
i

Xijbiφ(
K∑
k

xRijktλ + x
O
ijtλ) ≤ ajφt

∀j ∈ Jg, ∀φ ∈ 8, ∀t ∈ T , ∀λ ∈ 3, (16c)

xRijktλ ≤ x
U
ijk ∀i ∈ I , ∀j ∈ Jg, ∀k ∈ K ,

∀t ∈ T , ∀λ ∈ 3, (16d)

xRijktλ ∈ N
∗
∀i ∈ I , ∀j ∈ Jg, ∀k ∈ K ,

∀t ∈ T , ∀λ ∈ 3, (16e)

xOijtλ ∈ N
∗
∀i ∈ I , ∀j ∈ Jg, ∀t ∈ T , ∀λ ∈ 3.

(16f)

Note that xRijktλ denotes the reserved VM instances, and
xOijtλ denotes the on-demand VM instances under the uncer-
tainty parameter of price and demand with scenario λ. Con-
straint (16b) indicates that the probability tail latency of
each geo-distributed interactive service distributed to target
data center group g must meet the high-percentile SLA tail
latency constraint. Other constraints are defined as the similar
way of the constraints for optimization function (8) but with
price and demand uncertainty scenario characteristics, which
means that these constraints should be met in any scenario.

D. TWO-DIMENSIONAL RESOURCE
PROVISION DECISIONS
When the number of data centers and the request rate for geo-
distributed interactive service keep in low, the above solution
works well. With the increasing number of data centers in
every region, the optional data center groups become huge,
and tail latency estimations for all the scenarios become the
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bottleneck. We split the original optimization function into
two-stage optimization functions to handle the price uncer-
tainty and demand uncertainty. The workload distribution
decision maker takes some action for making workload dis-
tribution and developing primary resource provision plan at
first, after which a random event occurs affecting the outcome
of the primary resource provision plan. An improved recourse
provision plan can then be developed in next RPP time slot
that compensates for any bad effects that might have been
experienced as a result of the workload distribution and the
primary resource provision plan.

1) DECISION MATRIX
We know that the resource provision of every data center does
not affect each other. Hence, we can ignore the data center
capacity and calculate resource provision cost by developing
the primary optimized resource provision plan parallelly in
regions. Compared with developing the resource provision
plan for all data center group and all workloads with con-
sideration of data center capacity, this method can save 99%
computing time. After that, we select data centers with the
lowest resource provision cost in every region and reconstruct
as the data center group with the consideration of data center
capacity. In the original optimization functions (8) and (16),
we concern about the data center group Jg. We now con-
cern about the set of data centers J in every region. At the
beginning of WDD time slot T , we use the Formulation (17)
to obtain the workload distribution that covers all possible
data center in every region and calculate its corresponding
resource provision cost. In particular, the cost will be used for
making workload distribution decision. For example, there
are β candidate data centers for workload i in the region r ;
then we can get β resource provision cost as weight values
for workload distribution decision. We distributed workload
i to the data center which holds the lowest value.

Minimize Cij(s) =
K∑
k

xUijkp
U
ijk +

Tn∑
t

Kn∑
k

xNijktp
N
ijkt

+

T∑
t

3∑
λ

Pλ(
K∑
k

xRijktλp
R
ijktλ + x

O
ijtλp

O
ijtλ). (17)

Subject to Fsg(t) ≥ PrSLA ∀s ∈ S, ∀i ∈ I , ∀j ∈ J ,

∀g ∈ G, ∀t ∈ T , (17a)

xRijktλ ≤ x
U
ijk ∀i ∈ I , ∀j ∈ J , ∀k ∈ K ,

∀t ∈ T , ∀λ ∈ 3. (17b)

Note that Cij(s) denotes the optimized resource provision
cost for workload i distributed to data center j. J denotes set
of data centers belong to the same region which is different
from Jg when Jg is defined as Formulation (2).
In general, we separately calculate the resource provision

cost of every geo-distributed interactive service workload
in possible data centers. Cij(s) denotes the resource provi-
sion cost for workload i, which belongs to geo-distributed
interactive service s, distributed to data center j. For all

geo-distributed interactive services, we useC as weight value
matrix for theworkload distribution decision.With theweight
value matrix, we greedily choose the lowest cost data center.

2) WORKLOAD DISTRIBUTION DECISION AND RESOURCE
PROVISION PLANNING
To solve the optimization function (17), we can obtain the pri-
mary resource provision plan and its corresponding resource
provision cost in a set of candidate data centers for each
interactive service workload. Then we use decision variable
matrix X to choose data centers from the candidate data
centers to construct the target data center group. 2DRP is
divided into two stages for solving this complex problem.
The stage-one of 2DRP for workload distribution decision is
by resolving the master problem shown in (18). In stage-two,
2DRP resolves set of scenario subproblems, shown as (19a),
to develop the resource provision plan for every workload in
target data center group.

Master problem

Minimize
S∑
s

I∑
i

J∑
j

XijCij(s). (18)

Subject to
J∑
j

Xij = 1 ∀s ∈ S, ∀i ∈ I , ∀λ ∈ 3, (18a)

S∑
s

I∑
i

J∑
j

Xijbiφ(
K∑
k

xRijktλ + x
O
ijtλ) ≤ ajφt

∀j ∈ J , ∀φ ∈ 8, ∀t ∈ T , ∀λ ∈ 3. (18b)

Scenario subproblems

31∑
λ

PλC1λ
i′j′t1

32∑
λ

PλC1λ
i′j′t2 . . .

3|T |∑
λ

PλC1λ
i′j′|T |

31∑
λ

PλC2λ
i′j′t1

32∑
λ

PλC2λ
i′j′t2 . . .

3|T |∑
λ

PλC2λ
i′j′|T |

...
...

. . .
...

31∑
λ

PλCwλ
i′j′t1

32∑
λ

PλCwλ
i′j′t2

. . .

3|T |∑
λ

PλCwλ
i′j′|T |

, (19)

Cwλ
i′j′t = Xi′j′ (

K∑
k

xRi′j′ktλp
R
i′j′ktλ + x

O
i′j′tλp

O
i′j′tλ), (19a)

Xi′j′ ∈ Xij, Xi′j′ = 1. (19b)

In the master problem, constraints (18a) and (18b) indi-
cate that workloads should be assigned to lowest cost data
center but only if it needs to meet the capacity of the data
center with the primary resource provision plan of all the
workloads. In the scenario subproblems, the column elements
in the matrix represent the optimization functions of all the
workloads (w = n × m) in specified RPP time slot t . The
row elements represent the optimization function of the spec-
ified workload during WDD time slot T . (19aa) and (19ab)
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Algorithm 1 Pseudo-Code for 2DRP, Stage One
Input: Traffic source:S; Region:R; SLA Tail latency

constraint:PrSLA; WDD time slot T .
Output: Distribution matrix:X .
Step 1: Generate 3 (3t ∈ 3) independent samples each
of size N, i.e., (31

t , . . . , 3
N
t ) for t ∈ 1, 2, . . . , |T |.

Step 2: Formulate the high-percentile SLA tail latency
model and the master problem with 3 samples.
Step 3: Solve the master problem with MathProg and
GLPK. Let C denote the incumbent solution of the
master problem.
d ← size(R); Note that If d = 3, there are three data
center regions, e.g. US, EU and Asia.
C[m][d][n]← 0;
For (s, i, j) to (#, #, #) for all collections (S, I , J ) do
CU
sij←

∑
k∈K

pUijkx
U
ijk ;

CN
sij←

∑
t∈Tn

∑
k∈Kn

xNijktp
N
ijkt ;

CY
sij←

∑
t∈T

∑
λ∈3

Pλ(
∑
k∈K

xRijktλp
R
ijktλ + x

O
ijtλp

O
ijtλ);

C[s][i][j]← Min {CU
sij + C

N
sij + C

Y
sij};

end
Step 4: Initialize the workload distribution decision
matrix with the corresponding optimal objective value
and LP.
X [m][d][n]← 0;
Min X · C ;

together indicate that 2DRP only develops the resource provi-
sion plan for the target data center group and ignores the other
groups. These subproblems are independent of each other so
can be solved in parallel.

Benders decomposition algorithm can be applied to solve
the master problem and scenario subproblems. The formal
description of stage-one is presented in Algorithm 1. The
optimized resource provision cost for each data center will
be calculated. Variable C[m][d][n] denotes the optimized
resource provision cost for the workload distributed to can-
didate data centers. Note that m represents the number of
geo-distributed interactive services, d denotes the number of
regions, n denotes the number of data centers belongs to the
same region. Then, the workload distribution decision vari-
able X [m][d][n] can be obtained by selecting the lowest cost
data center with weight matrix C[m][d][n]. We can decide
whether to develop a resource reservation plan in data center
j for workload i, which is reflected by the value of xUijk . The
formal description of stage-two is presented in Algorithm 2.
With estimated probability tail latency, we only calculate
the dynamic cost CY

sij for the selected data center group and
update the resource provision plan. The plan can be retrieved
by the variables xRijkt and x

O
ijt .

In particular, we use GLPK to solve the master prob-
lem (18), then we can find the optimized workload distri-
bution in the beginning of WDD time slot T . We distribute

Algorithm 2 Pseudo-Code for 2DRP, Stage Two
Input: Distribution matrix: X ; RPP time slot: t .
Output: Resource provision plan: x.
Step 1: Generate 3t independent samples with the
corresponding workload traces with the same RPP time
slot t .
Step 2: Bind the workload and target data center with
workload distribution decision matrix X .
(i′, j′)← {(i, j)|Xij=1};
Step 3: Formulate the high-percentile SLA tail latency
model and the scenario subproblems in time slot t with
Formulation (19a). Let C denote the incumbent solution
of scenario subproblems.
Cwλ
i′j′t ← Xi′j′ (

∑
k∈K

xRi′j′ktλp
R
i′j′ktλ + x

O
i′j′tλp

O
i′j′tλ);

Step 4: Solve the scenario subproblems with MathProg
and GLPK formulated in Step 2. Let x denote the
optimized resource provision plan.
For w to # for all the workloads do
Min

∑
λ∈3t

PλCwλ
i′j′t ;

end

the workload to target data center and the workload will
reside in target data center during T . The resource demand of
workload may dynamically change in every RPP time slot t .
So, we use (19a) to update resources provision plan for each
workload after every RPP time slot t .

3) SYSTEM OVERVIEW
The dispatcher shown in Figure 2 is the core module of 2DRP.
It is responsible for the workload distribution decision and
resource provision planning. Inputs of the dispatcher include
Price and S. The parameter Price includes three parts: the
VM instance types, reservation contracts and the unit price
of the resource. S represents the Internet requests for geo-
distributed interactive services. With these inputs, the dis-
patcher can generate the optimized resource provision plan
and distributed the Internet requests to the target data center
group.

FIGURE 2. Dispatcher architecture.

In the first scheduling, we manually set target data cen-
ter group and develop resource provision plan under the
expected QoS requirements for geo-distributed interactive
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FIGURE 3. Location distribution information of data centers for multi-CSPs.

TABLE 1. Price policy of common VM instances for AWS, Azure and GCE in Western US data centers.

service. In next WDD time slot, the data center group and
plan are under the historical records of resource utilization
and probability tail latency. The latency profiler that showed
in Figure 2 is responsible for the estimation of probability
tail latency. We firstly record 24 × D historical execution
information in 2DRP. Each record includes the information:
allocated computing resource, WAN network traffic and the
latency for Internet request. With probability distribution
of these records, the estimated resource demand can be
obtained through probability theory. For example, the latency
gaps between estimation and actual can be eliminated by
adding or reducing a fixed amount of resources. The num-
bers of historical records D can be set to a different value
in different estimation precision requirements since more
records can increase prediction accuracy, but the performance
will decrease. Especially, 2DRP takes the historical execution
records as D scenarios to find optimized workload distribu-
tion and develop resource provision plan.

VI. EVALUATION
After investigating resource price policies for several CSPs,
we evaluated 2DRP using simulations by replaying Internet
requests for geo-distributed interactive services that were col-
lected from a large production Google data center workload
traces. The main results are listed as follows.

1) By comparing across a set of alternatives, 2DRP
achieves up to 24% of the optimized welfare compared with
On-demand based infrastructure, and up to 10% compared

with both Reservation based infrastructure and the OCRP
infrastructure.

2) With 2DRP, more than 97% of Internet requests for geo-
distributed interactive services can meet the high-percentile
SLA tail latency constraint.

3) We demonstrate that the data center groups selected by
2DRP adapt to load variations and that 2DRP is robust to
variations in network and request characteristics.

A. METHODOLOGY
1) MULTI-CLOUDS
We conducted some trace-driven experiments on data cen-
ters of real-world CSPs including Amazon AWS, Microsoft
Azure and GCE. Data centers owned by these CSPs are
geography distributed in different locations. Figure 3 shows
the general location information of several common data
centers and CSPs. Data centers are mainly structured in three
regions: Region-US, Region-Euro and Region-Asia. In every
region, different CSPs provide more than one resource pro-
vision policy. For example, AWS provides one year and
three years reservation resource or the on-demand resource,
while Azure and GCE only provide the on-demand resource.
The unit price of the resource is different from data centers.
We investigated the unit price of VM instance of three CSPs
mentioned above. We list part of the price information of
typical VM instances for data centers located in the Western
US as Table 1. Details about the resource provision policy and
price information are shown in [14]–[16].
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FIGURE 4. Google 24h data center workload traces. (a) Region-US; (b) Region-Euro; (c) Region-Asia.

2) REAL-WORLD GEO-DISTRIBUTED INTERACTIVE SERVICE
We take the Google data center workload traces as the
basic trace-driven experimental data to replay the Internet
requests for geo-distributed interactive services. We mainly
concern about the following type of geo-distributed interac-
tive service: Real-time Data Analysis, Big Query and Web
Search. Each type of interactive service includes several
workloads, denoted as job in the traces, which are distributed
to one or more data centers in different regions. They are
latency sensitive and take nomore than a few seconds to com-
plete. Google records CPU usage, memory usage and disk
usage for Internet requests. Each Internet request represents
one task , and one job contains several tasks in the workload
traces. It reflects that one workload requires several Internet
requests to complete. We use the traces of resource utilization
and request rate for the corresponding workload to predict the
primary resource demand. The requests rate of three types
of geo-distributed interactive service is shown in Figure 4.
After the geo-distributed interactive service online, traces
of resource utilization and corresponding latency will be
increased. Then in the upcoming WDD time slot, the work-
load distribution and resources allocation will become more
accurate.

3) SOLVER
We built 2DRP with AMPL linear programs modeling lan-
guage and resolve the optimization functions using the GLPK
solver.

4) BASELINE
We configured 2DRP with PrSLA = 0.95, t = 1h and T =
24h in the basic experiment. We can obtain the workload dis-
tributions X , resource provision plan x and the corresponding
resource provision costC . To illustrate our design is efficient,
we compared 2DRP with:

1) OCRP
In the aim of making an optimized resource provision deci-

sion, OCRP takes into account the demand uncertainty from
cloud consumer and price uncertainty from CSPs to adjust
the tradeoff between reservation and on-demand resources.
The resource provision decision is achieved by formulating

a cost minimization problem with multistage recourse, which
solves by benders decomposition and sample average approx-
imation. Compared with 2DRP, OCRP estimates resource
requirements for workloads coarse-grained and does not con-
cern about the tail latency constraint.

2) Reservation based
Compared to the on-demand VM instance, CSPs pro-

vide a significant discount for the reserved VM instances.
Cloud consumer must make reservation contract to reserve
VM instance in data center group. The geo-distributed inter-
active service can use the reserved VM instances during the
reservation term. With the All Upfront option, the cloud
consumer pays for the entire reserved instance term with
one upfront payment. Also, when reserved VM instances
are assigned to a specified availability zone, they provide
a capacity reservation, giving the geo-distributed interactive
service additional confidence to launch VM instances when
need them to provide better QoS.

3) On-demand based
With the on-demand VM instances, cloud consumers pay

for the compute capacity hourly with no long-term com-
mitments or upfront payments. The compute capacity can
increase or decrease depending on the constraint of the high-
percentile SLA tail latency and only pay the specified hourly
rate for the VM instances the data center workload used.

B. THE OPTIMIZATION RESULTS
1) DEMAND UNCERTAINTY AND CONVERGENCE ANALYSIS
Google data center workload traces are the execution records
of Internet requests. We have carried on a thorough study of
the workload traces. We found that Internet request for the
same geo-distributed interactive service is periodic, so we
counted the Internet request for the same jobid in a day.
After that, we can get the total relevant data center resource
utilization and WAN network traffic. The primary estimation
of resource demand is based on Poisson distribution. For each
Internet request, we generate up to 1000 demand estimations.
Each possible resource requirement corresponds to a speci-
fied probability Pλ. Figure 5 (a)-(d) shows the complex and
diverse of resource requirement estimation of geo-distributed
interactive service.
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FIGURE 5. Uncertain resource demand and performance. (a) VCPU; (b) memory; (c) disk; (d) network utilization; (e) resource provision cost; (f) offset
of the cost.

After generating estimated resource demand for more than
10000 Internet requests. We configure the 2DRP with the
current data center price of CSPs mentioned above and solve
the two-stage problem with GLPK. We can get the optimized
workload distribution and resource provision plan for all
geo-distributed interactive services. The convergence perfor-
mance is shown as Figure 5 (e) and (f). Through limited
iterations, three type of geo-distributed interactive services
(Real-time Data Analysis, Big Query and Web Search) can
be distributed to the lowest cost data center group and can
obtain the optimized resource provision plan.

2) RESOURCE PROVISION COST AND PERFORMANCE
The characteristics of 2DRP determine the features of work-
load distribution: (1) If the workload is assigned to one
data center and make reservation contract, the workload will
reside in the data center at the reservation term. In every
RPP time slot, 2DRP allocates a number of running reserved
VM instances to workloads, and on-demand VM instances if
needed, for reaching Internet request’s high-percentile SLA
tail latency constraint. (2) If the workload is assigned to
one data center at the beginning of WDD time slot, and the
resource provision plan is on-demand based, 2DRP allocates
a number of running on-demand VM instances to workloads,
no reserved VM instance, for meeting the high-percentile
SLA tail latency constraint. Workload will reside in that data
center during WDD time slot iff 2DRP finds another lower
cost data center in next WDD time slot because there is
no reservation contract restriction. Of course, if workloads
scheduling to other data center can reduce more cost, then
2DRP can break restriction of the reservation contract.

To better calculate the resource provision cost, we restrict
the deployment time of geo-distributed interactive services
as three years. Hence, we calculate the resource provision
cost totally in three years. The resource provision cost of
geo-distributed interactive services under several distribution
strategies are shown in Figure 6. In every region, we can know
that 2DRP performs better than other workload distribution
infrastructure and can save resource provision cost in varying
degrees.

The geo-distributed interactive service needs data centers
of every region to complete the latency sensitive service.
So we sum the resource provision cost in all regions. The
total cost is shown in Table 2. With 2DRP, we can save
more than 9% resource provision cost compared with the
OCRP infrastructure and save up to 10% compared with
Reservation based infrastructure. 2DRP can save up to 24%
compared with On-demand based infrastructure. Reservation
based is more cost-effective than On-demand based, because
if deployment time of geo-distributed interactive service
is long enough and the resource price is relatively stable,
the more the reserved VM instances allocate to interactive
service workload, the less the resource provision cost.

TABLE 2. Resource provision cost for different solutions.
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FIGURE 6. Comparison of resource provision cost for three types of geo-distributed interactive service. (a) Real-time Data Analysis; (b) Big Query;
(c) Web Search.

3) THE HIGH-PERCENTILE SLA TAIL LATENCY CONSTRAINT
One important feature of 2DRP is that Internet requests
for geo-distributed interactive service can meet the high-
percentile SLA tail latency constraint. The high-percentile
SLA tail latency enables 2DRP to minimize the resource
provision cost while fulfilling the QoS requirement of Cloud
consumer. We use P95 as the basic configuration to per-
form 2DRP in the basic experiment. Mapping function for
probability distribution and latency CDFs is used to estimate
the probability of Internet request met the latency constraint,
whether the Internet request exceeds the latency threshold
in operation. Figure 7 shows the high-percentile tail latency
satisfaction condition for 10000+ Internet requests for three
types of geo-distributed interactive services. We can know
that more than 97% of Internet requests canmeet the P95 con-
straint. We can ensure that the tail latency of geo-distributed
interactive service has a great probability not exceeding the
latency threshold and can satisfy the QoS requirement.

FIGURE 7. CDF for probability tail latency.

C. SLA TAIL LATENCY CONSTRAINT
Naturally, the less stringent the high-percentile SLA tail
latency of data center group can provide, the more resource
provision cost can be saved. Higher resource provision cost
can ensure higher percentile of tail latency because it is diffi-
cult to provide better QoS at low cost in business. We primi-
tively believe that low price of data center resources weaken

the probability tail latency while higher resource price can
provide better QoS.

To configure the value of PrSLA and evaluate the high-
percentile SLA tail latency model of 2DRP, we primarily take
the benefit of P95 as the high-percentile SLA tail latency
constraint. The value of PrSLA reflects the QoS satisfaction
levels. If we set a bigger value of PrSLA, the customer is
satisfied, but the resource provision cost of geo-distributed
interactive service increase. If we set a lower value of PrSLA,
the resource provision cost is maintained a low level, but QoS
cannot be guaranteed which is reflected in the decrease of
the probability tail latency. We change the value of PrSLA and
perform 2DRP to evaluate how the value of PrSLA influences
resource provision cost.

We take the value of PrSLA as 0.90, 0.95 and 0.98 to con-
figure 2DRP. Figure 8(a) shows the relationship between the
high-percentile SLA tail latency constraint and the resource
provision cost. The resource provision cost is decreased if
the geo-distributed interactive service has loosed tail latency
constraints. Data center resources with a higher price can
provide better QoS and at last improve the high-percentile tail
latency. In contrast, if we choose the data center group with
lower resource price, we must realize the unexpected risk of
not meeting the expected high-percentile SLA tail latency.

We use the 0.95 (P95) as the criterion of workload distribu-
tion and resource provision planning in the evaluation. It bal-
ances the cost minimizing and QoS requirement. The cost
keeps at minimum while the tail latency can meet the high-
percentile SLA tail latency constraint. However, if customers
can tolerance bad QoS to save memory or willing to spend
more money to gain better QoS, 2DRP can be configured to
distinct these requirements. The value of PrSLA compromises
the probability tail latency and resource provision cost.

D. SENSITIVITY ANALYSIS
1) LATENCY PREDICTION ERROR
We now consider the relationship between latency prediction
error and the high-percentile SLA tail latency constraint; the
result is shown in Figure 8(b). Latency prediction error is
decreased with loose PrSLA. The reason is that if Internet
requests can fulfill the PrSLA = 0.95 tail latency constraint,
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FIGURE 8. Cost comparisons and latency prediction error. (a) cost comparisons; (b) latency prediction error; (c) added resource provision cost.

it can satisfy the PrSLA = 0.90 tail latency constraint as
well. The tail latency prediction becomes accuracy when
the PrSLA keeps in low level. With higher prediction error
ratio, the added cost for selecting the wrong data center is
increased. Figure 8(c) shows the increased resource provision
cost due to more stringent PrSLA. We can realize that the error
prediction of latency increases slowly as the PrSLA increases,
but reflects a noticeable increase in resource provision cost.
The reason is that the reservation resources reduce and on-
demand resources with more interference growth rapidly,
the increased error tail latency prediction becomes more
pronounced.

2) INTERFERENCE
We expect to allocate data center resources with the lowest
price to interactive service workloads as many as possible.
However, since it does not take data center capacity and
interference into consideration, a data center may become
overloaded and hence may not meet the high-percentile SLA
tail latency constraint. The data center utilization can influ-
ence the performance of geo-distributed interactive services.
If the data center utilization keeps at low, the error ratio
of the probability tail latency estimation can tolerate. Oth-
erwise, the error ratio will increase and as a result reduces
the precision of workload distribution and resource provision
planning. It finally causes the added resource provision cost.
Hence, 2DRP attempts to distribute workloads to data centers
with low resource price and the data center under possible
low utilization. If the data center has many pre-running work-
loads, then the interference may enlarge the error ratio of the
tail latency prediction.

VII. RELATED WORK
Zhao et al. [8] proposed an online algorithm for distribut-
ing the workload to lowest cost data center. They achieve
the distribution with VM migration. Because the running
time of workloads is longer than the pre-scheduling ser-
vice time, with precise workload arrival prediction, work-
loads can complete the execution within the deadline.
Altmann and Kashef [31] proposed COMBSPO to minimize
the resource provision cost in federated hybrid clouds. With

VM migrations technology, it can compute the deployment
cost of services and the data transmission cost in public
clouds. However, both methods do not consider the cost of
VM migration which is the main contribution to the resource
provision cost. Quasar [32] is a cluster management system
that performs coordinated resource allocation and assignment
for distributed analytics frameworks and web-serving appli-
cations. Quasar achieves the resource allocation by using the
big data analysis tools to analyze the impact of allocation
(scale-up and scale-out), resource type (heterogeneity), and
interference on workload’s performance. However, Quasar
only concerns about the single data center, while 2DRP con-
cerns about multiple CSPs.

Lucas-Simarro et al. [33] proposed a cloud broker archi-
tecture to minimize the resource provision cost. This archi-
tecture is based on a prediction model in dynamic pricing
scenarios. They concern about the performance of workloads
with minimum data center resources. Xiao et al. [34] pro-
posed a concept of ‘‘skewness’’ to measure the unevenness
of the servers in data center. Applications running in the data
center have different states, which result in dynamic resource
requirements. With dynamic resource, Cloud can provide
minimum resources to support the cluster service. However,
both methods may not be able to meet the QoS requirement
of Cloud consumers, and the workload performance cannot
ensure the Internet Cloud Service met the QoS requirements
because tail latency not only relates to the processing effi-
ciency of data center resources but also the WAN network
condition.

OCRP [6] is an efficient resource provision algorithm that
obtained by formulating and solving optimization function
with multistage recourses. OCRP applies the SAA approach
to address the problem of a large set of workloads, which
can effectively save the total resource provision cost. How-
ever, OCRP does not consider QoS requirement of Cloud
consumers and does not design for geo-distributed interactive
service. Greenberg et al. [35] detailed the contribution of
the performance of data center computing resources and the
infrastructure of WAN network to the resource provision
cost. They addressed the problem of how to improve the
efficiency of the data center resources to reduce resource
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provision cost. However, they do not concern about dynamic
pricing strategy of data center resource. Gu et al. [7] primarily
studied an optimization function to save over resource pro-
vision cost for workloads deployed in geo-distributed data
centers. They take advantage of 2-D Markov chain to drive
the average workload completion time in closed-form and
develop resource provision plan. However, the cost model is
complicated and not easy to apply to real-world data centers.
Furthermore, these approaches [36], [37] focus on the costs of
Get/Put operation of data sets and the network packet trans-
mission which do not apply to the geo-distributed interactive
service workloads.

VIII. CONCLUSION
This work aims to minimize the resource provision cost
of geo-distributed interactive services with multi-CSPs.
We have made a contribution to developing a dynamic cost
model and a high-percentile SLA tail latency model. With
the cost model and the latency model, we design 2DRP
with the Stochastic Programming and the decomposition
technique to distribute the workloads to data center group,
and the geo-distributed interactive service needs minimum
resource provision cost to meet the high-percentile SLA tail
latency constraint. At first, 2DRP makes workload distribu-
tion decision and develops primary resource provision plan
with uncertain resource price. Recourse provision plan can
then be adjusted to compensate for any bad effects that might
have been experienced with uncertain resource demand. The
performance evaluation of 2DRP is conducted with several
studies and simulations. Internet requests of geo-distributed
interactive services can meet the high-percentile SLA tail
latency constraint by using the real Clouds belonging to
multi-CSPs and under variety resource provision policies.
Compared with other optimization methods, 2DRP can save
up to 10% of the resource provision cost compared with the
OCRP infrastructure, the reservation based infrastructure and
up to 24% compared with the on-demand based infrastruc-
ture.
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