
Received November 2, 2018, accepted November 22, 2018, date of publication November 29, 2018,
date of current version January 11, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2883776

Domain-RIP Analysis: A Technique for
Analyzing Mutation Stubbornness
HUAN LIN , YAWEN WANG, YUNZHAN GONG, AND DAHAI JIN
State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

Corresponding author: Yawen Wang (wangyawen@bupt.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant U1736110 and Grant 61702044.

ABSTRACT Existing mutation techniques generate vast numbers of equivalent and trivial mutants, which
do not contribute on the improvement of test quality. One possible solution, as is proposed in this paper, is to
measure the difficulty of killing a mutant and choose the stubborn (hard-to-kill) mutants in testing, which
can be used to challenge the engineers to design new tests so to enhance the testing effectiveness. This paper
introduces the domain-based reachability-infection-propagation analysis (D-RIP), a technique that can rank
the mutants according to their difficulty of being revealed and present the reason for mutants being stubborn.
More specifically, the D-RIP uses subdomain-based testing method and RIP analytical tool to measure the
difficulty degree and decide whether a mutant is stubborn. Furthermore, it generates a report that displays
the mutants that are hard-to-kill for a given testing method and presents the reasons to interpret why the test
suites fail in detecting these mutants. Using this tool, the engineers are able to choose the useful mutants for
improving test quality and obtain the guidance to design tests for detecting the stubborn mutants.

INDEX TERMS Mutation testing, subdomain-based testing, reachability-infection-propagation analysis,
stubborn mutants, fault detection.

I. INTRODUCTION
Mutation testing [1]–[3] is a fault-based technique that uses a
set of artificial faults, called mutants, to guide test process.
Each mutant is created by injecting a syntactic change in
code so to simulate the real fault in software [4]–[6]. If a
test can distinguish the behaviors of mutant from original
program, it is said that the test kills, or reveals the mutant.
The underlying idea behind mutation analysis is that: test
suites that kill more mutants tend to be of higher capability in
fault detection than those that kill the fewers [7]. Since then,
mutation testing has been widely studied and used for test
data generation [8]–[11] as well as for assessing the test suite
completeness [12]–[16].

Although powerful, the mutation testing has long suf-
fered from being inefficient. According to the prior research
[17]–[22], the most generated mutants are not useful for
mutation testing: they are either equivalent or trivial mutants.
Equivalent mutants are semantically identical with original
program, which cannot be detected by any tests [23]–[25].
The trivial mutants, however, can be revealed by almost
every test that reaches the mutated statement [21]. Any test
suites that meet some structural coverage criteria [26] are
guaranteed to detect the trivial mutants. Since mutation-
based assessment is long used after the code coverage has

been achieved by tests [12]–[16], both equivalent and trivial
mutants do not contribute on the improvement of test suite
quality.

A possible solution to improve the efficiency of muta-
tion analysis is only to use the stubborn mutants. Infor-
mally, the stubborn mutants are those that remain unkilled
(or survive) from a reasonably thorough test suite yet non-
equivalent [27]. From a perspective of testing efforts, the term
‘‘stubbornness’’ is related with the difficulty of revealing a
mutant. The more stubborn is a mutant, the more difficult it
is to find the tests to kill the mutant in a given testing method.
In this perspective, trivial mutants are the least stubborn that
any tests generated from the criteria that are weaker than
mutation-based criteria can detect them. Meanwhile, equiv-
alent mutants are the most stubborn that it is impossible to be
killed by any tests.

If we rank the mutants according to a spectrum from easy
to hard that they are detected, the mutants in both ends refer
to the least and most stubborn mutants, which are trivial and
equivalent respectively. The others, however, refer to mutants
that could survive from the test suites generated from a given
testing method with high likelihood yet non-equivalent. Such
stubborn mutants can provide the following benefits for test
suite improvement and mutation testing.

4006
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-5088-0611

H. Lin et al.: Domain-RIP Analysis: A Technique for Analyzing Mutation Stubbornness

• They could reveal the deficiency of the testing method,
especially the coverage-based testing method, which is
widely used in software practice [32]–[41].

• They can simulate the hard-to-kill faults in program and
challenge the testers to design new tests so to enhance
the test suite effectively [13].

• They are the reasons why mutation-based assessment is
more powerful than traditional coverage criterions: the
more mutants are stubborn, the more room we have for
improving the existing test suite quality.

Note that, the stubbornness depends on the testingmethod
considered in analysis, i.e. how the tests are selected from
inputs space. Clearly, for different testing methods, difficulty
for killing a mutant could be different. Although prior studies
[27]–[31] proposed many techniques to measure the mutant
stubbornness, none of them considered the relations between
mutation stubbornness and testing methods used in analysis,
making it difficult to identify the stubborn mutants precisely.
Meanwhile, none of the prior studies investigates the reasons
for the tests failing in detecting the stubborn mutants, which
provides no guidance for the testers to design new tests so to
enhance the test suite quality effectively.

To fill the research gaps, this paper introduces the domain
based reachability-infection-propagation analysis, or D-RIP.
The D-RIP is a technique that measure the difficulty of killing
a mutant based on the given testing method, and presents the
possible reasons for a mutant being stubborn.1

The technique uses survival rate to measure the difficulty
of killing a mutant. Informally, survival rate is the likelihood
that a mutant can survive from a random test suite generated
by a testing method. The greater is the survival rate, the more
difficult it is for the testing method to generate a test suite that
can detect the mutant. Knowing the survival rate, an engineer
can select the stubborn mutants to guide test improvement.

To measure the surival rate precisely, the D-RIP tech-
nique uses subdomain-based testing model [42]–[55], which
can be used to describe the formal model of the testing
method, and obtain the analytical solution to compute the
survival rate. In terms of the test model, we also identify
the selection-related reasons for the mutant being stubborn.
More specifically, the selection-related reasons explain why a
subdomain-based testing method fails in killing the mutants,
and provide guidance for enhancing test quality by improv-
ing the random test selection strategy based on the given
subdomains.

Meanwhile, D-RIP uses reachability-infection-propagation
model [56]–[60], to investigate the relations between mutant
stubbornness and the fault detection process. It can reveal at
which stages in fault detection the tests are most likely to fail
in revealing the mutant. In terms of RIPmodel, we investigate
constraint-based reasons for stubborn mutant, which identify
the key constraints for revealing a stubborn mutant and guide

1 In this paper, we use ‘‘the reason for the mutant being stubborn’’ and
‘‘reason for the test suite (generated by a testing method) failing in killing a
mutant’’ interchangeably, since they all refer to the failure of detecting fault.

the testers to apply these constraints to generate tests that are
efficient in killing the target mutants.

Finally, we implement the D-RIP technique in a prototype
tool, JCMuta.2 The JCMuta uses a dynamic-based algorithm
to compute the theoretical solution of survival rate, in which a
finite set of tests are required to simulate entire inputs space.
The tool will produce a ranked list of mutants, according to
their survival rates and generate a report that can display the
stubborn mutants and their difficulty reasons automatically.

As far as we know, D-RIP and JCMuta is the first mutation
technique that not only can measure the difficulty of killing a
mutant but also provide the guidance to generate the tests for
detecting the hard-to-kill mutant automatically. In short, this
paper makes the following contributions:
• A theoretical model to obtain the analytical solution for
computing the survival rate based on testing method.

• A classification framework and algorithm to identify the
reasons for a mutant being hard-to-kill.

• A prototype tool, JCMuta, to identify stubborn mutants
and report the reasons and guidance for killing them.

• An evaluation to validate the proposed technique.
The remainder of this paper is organized as follow.

Section II provides the formal definition of survival rate,
which is the basis to identify the stubbornmutants. Section III
introduces the analytical solution of survival rate based on
test methods and describes the selection-related reason for
a mutant being stubborn. Section IV applies the RIP model
to investigate the relations between stubbornness and fault
detection processes which reveals constraint-based reason.
Section V presents the dynamic-based implementation of
D-RIP technique. Section VI reports the empirical evalua-
tion results. The threats on the validity of the experiments,
and the limitations of the D-RIP technique are discussed
in section VII. Section VIII presents the related works on
stubborn mutants, while section IX will conclude our works
and contributions in this paper.

II. DEFINITION
In mutation testing, the stubbornness of mutant is related with
the difficulty of revealing a mutant in the testing. Usually,
the difficulty can be considered as the efforts needed to find
a test suite that detects the mutant. Since the most of test
generation techniques return the random test suite [32]–[41],
we can use the survival rate of a mutant to measure this
difficulty.

Formally, let p be the program under test, I be its inputs
space. A test is an input that can drive the program to execute.
If a test x ∈ I produces different behaviors between mutantm
and original program p, it is said that x kills m, denoted as
kill(x,m). A test suite is a subset of inputs T ⊆ I which
are selected by a testing method. Given the testing method ω,
we introduce a probability mass function Pω on 2I such that
the Pω(T) is the probability that method ω returns test suite T
as outputs. Then the likelihood that a mutant survives from

2https://github.com/dzt2/jcsa

VOLUME 7, 2019 4007

H. Lin et al.: Domain-RIP Analysis: A Technique for Analyzing Mutation Stubbornness

(not killed by) a random test suite T generated from ω is
defined as its survival rate, denoted as Sm,ω. There we have:

Sm,ω =
∑
T⊆I

Pω(T) · {
∧
x∈T

¬kill(x,m)} (1)

In the equation, the probability function Pω is introduced for
defining survival rate precisely, although it is uncomputable.
The item

∧
¬kill(x,m) = 1 iff. none of tests in T kills m,

and its expected value on Pω is the survival rate of mutant.
When Sm,ω → 0, it means the mutant m can be revealed

by almost every test suite generated from a testing method ω.
When Sm,ω → 1, it is very difficult for method ω to generate
a test that can kill the mutant. In the extreme case Sm,ω = 1,
it is impossible for ω to generate any tests to kill the mutant.
Clearly, when m is equivalent mutant, there is no input in I
that kills m and Sm,ω = 1 holds for any testing methods.

However, that Sm,ω = 1 does not imply that the mutant m
is equivalent. That’s because a testing method may not select
any tests that kill the mutant m. More formally, it means that
Pω(T) = 0 holds for any test suite that contains the tests that
can detect the mutant m.
To simplify the analysis, we introduce the notion of testing

method completeness. Formally, a test method ω is complete
iff. for any test x ∈ I , there exists a test suite T ⊆ I so that
x ∈ T and Pω(T) > 0. In other words, for a complete testing
method, any test in I might be generated in testing. In terms
of complete testing method, we have the following theorem.
Theorem 1: Given a complete testing method ω, the

mutant m is equivalent iff. its survival rate satisfies Sm,ω = 1.
Proof: First, it is clear that Sm,ω = 1 when m is

equivalent mutant. We prove that, for any of complete testing
method ω, that Sm,ω = 1 implies m being an equivalent
mutant. Let m be a non-equivalent mutant with Sm,ω = 1.
Then there is a test x in I such that x detects m. According to
the definition, there is a test suite T ⊂ I such that x ∈ T and
Pω(T) > 0. Therefore, we have Pω(T) ·

∧
¬kill(x,m) = 0,

which infers that Sm,ω <
∑
Pω(T) = 1. This conclusion con-

tradicts with the premise of Sm,ω = 1, and thus mutantmwith
Sm,ω = 1 cannot be non-equivalent and must be equivalent.
The introduction of testing completeness and theorem-1

can simplify our analysis to distinguish the equivalent and the
stubbornmutants.More specifically, the stubbornmutants are
those with survival rate close to 1, of which Sm,ω → 1, while
equivalent mutants are those with Sm,ω = 1 for any complete
testing method ω. Formally, let θ ∈ (0, 1) be a threshold used
to decide whether detecting a mutant is difficult enough. The
mutants with Sm,ω ≥ θ are considered as hard-to-kill, while
those with Sm,ω < θ are thought to be easily killed. Given a
complete testing method ω, each mutant is dropped into one
of the following categories.
• Trivial mutant: Sm,ω < θ ;
• Stubborn mutant: θ ≤ Sm,ω < 1;
• Equivalent mutant: Sm,ω = 1.

Note that, since ω is complete testing method, that Sm,ω = 1
implies that m is equivalent. Therefore, in this classification,
the condition for a mutant being stubborn is θ ≤ Sm,ω < 1.

In the following studies, we use this condition to identify the
stubborn mutants for any complete testing method ω.

III. SUBDOMAIN-BASED TESTING MODEL
A. SUBDOMAIN-BASED TESTING METHOD
The term subdomain-based testing, in its broadest sense, can
describe a very general family of testing methods. The basic
characteristic is that the program inputs space is divided into
subdomains (or domain), with testers selecting one or more
tests from each of them. The division of inputs space relies on
a set of test requirements, in which each subdomain contains
tests that can satisfy a particular requirement [51].

A test requirement can be any test objective. For example,
the statement testing requires each statement being executed
at least once. It seperates the inputs space into subdomains,
each of which contains tests that cause a particular statement
being executed. Branch testing also divides inputs space into
subdomains, of which inputs cause a specific predicate being
evaluated as true or false. Mutation testing is also subdomain
based testing method, in which each domain defines tests that
can kill a particular (non-equivalent) mutant [53].

In prior studies, the subdomains can be either overlapping
(as in the branch testing), or disjoint (as in the path testing).
If the subdomains are disjoint, we speak the testing method
of the partition testing, which is a special form of subdomain-
based testing [45]–[55]. In this paper, we do not assume that
the subdomains are disjoint because the most test methods in
practice are not partition, like branch testing [32]–[41].

In terms of the subdomain-based testing, a testing method
is a collection, denoted as ω = (p, I , SD, En), in which:
• p is the program under testing;
• I is the inputs space of the program;
• SD = {D1,D2, . . . ,Ds} defines the set of subdomains,
in which the inputs space is divided into s subsets;

• En = (n1, n2, . . . , ns) specifies the test selection strategy,
in which ni is the number of tests selected from Di.

In this model, a testing method ω will select ni random tests
from each subdomain Di in SD, which is called a subdomain
based testing method. The vector En specifies how many tests
are randomly generated from each domain, which is called a
selection vector. The vector En together with subdomains SD,
precisely describes how a test suite T is generated from a test
method ω by selecting random tests in each domain. We call
the way which generates test suites by specifying the domains
and the number of selected tests as a subdomain-based testing
selection, of which details are discussed in next subsection.

To simplify the following analysis, we further make three
assumptions for subdomain-based testing methods.
Assumption 2: The subdomains SD are complete. That is
∀x ∈ I , ∃Di ∈ SD such that x ∈ Di.
Assumption 3: For each subdomain Di ∈ SD, all of its

inputs could be selected for testing.
Assumption 4: The inputs are independently selected from

each subdomain with replacement.
The assumption-2 and assumption-3 guaranteed that, for

any test selection in which ni > 0 holds for each domain,

4008 VOLUME 7, 2019

H. Lin et al.: Domain-RIP Analysis: A Technique for Analyzing Mutation Stubbornness

the testing method ω must be complete. That’s because any
test in I might be selected from a subdomain of which ni > 0.
These two assumptions simplify the analysis to determine
whether a testing method is complete in our study.

The assumption-4 implies that a test x can be repeatedly
and independently selected from the same domain, such that
the current selection does not rely on the prior ones, which is
used to simplify the analysis to compute the survival rate.

B. SUBDOMAIN-BASED TEST SELECTION
Given a subdomain-based testing method ω with set SD and
selection vector En, we can precisely describe the subdomain-
based selection strategy by presenting the set of all possible
test suites generated by ω, denoted as T̂ω, in which we have:

T̂ω =
s∏
i=1

(Di)ni (2)

The item (Di)ni is the cartesian production Di×Di× . . .×Di
which contains ni subdomain. For ni = 0, we define D0

i = ∅

and any setD×∅ = D. The notation
∏

presents the cartesian
production of all the sets of (Di)ni . Note that, since domains
are overlapping and tests can be repeatedly selected, the test
suite T ∈ T̂ω is a multiset that may contain duplicated tests.

Note that, not all of the possible s-dimensional vectors are
feasible selection vector. The objective of subdomain-based
testing is to construct a test suite that contains at least one test
in each subdomain. Formally, it requires the test suite should
satisify the following constraint.

• Test objective: ∀Di ∈ SD, ∃x ∈ T such that x ∈ Di.

Since a subdomain refers to a test requirement, the objective
implies that the test suite should satisfy all the requirements.
We call a selection vector En as feasible when there exists
T ∈ T̂ω that satisfies this testing objective.

In terms of feasible selection, we consider three selection
strategies that have been widely used in prior analysis.

• All-n selection αn: The strategy selects n random tests
from each subdomain. This selection strategy has been
widely used as ‘standard’ selection for subdomain based
testing in prior research [42]–[55]. The selection vector
for all-n selection is (n, n, . . . , n) in which ni = n.

• Greedy selection %: This strategy selects a subdomain
of which tests are not contained in test suite, and selects
a random test from it. This process continues until test
suite contain at least one test from each subdomain. The
greedy selection simulates the random greedy algorithm
used for tests minimization, which is widely used in test
suite reduction [61]–[66]. In this selection, at most one
is selected from each domain in which ni ≤ 1. Thereby,
we also call the greedy selection as the 0-1 selection,
of which vector is like En = (1, 1, 0, . . . , 1, . . . , 0).

• Random selection γ : This strategy selects random tests
from the entire input space I until the test suite contains
tests from every subdomain. The random selection can
simulate the random testing generation, which takes

the subdomain coverage as its termination condi-
tion, which is used in coverage-based test generation
[32]–[41]. The random selection selects tests based on
the inputs space rather than the subdomains SD, whose
vector contains one number (n), which is the size of
generated tests.

There are two notable things about these subdomain-based
test selection strategies. First, the requirement that ∃x ∈ Di
for each domain does not imply that ni > 0. Consider that
two overlapping domains D1, D2 in which D1 ∩D2 6= ∅, it is
possible that a random test selected in D1 is from D1 ∩ D2
and thus covers the D2 together. As a result, even in greedy
selection, when ni = 0 holds for some domains, the objective
∀Di, ∃x ∈ Di can be met by the generated test suite.
Another notable thing is that: all-n selection is a complete

testing method. Since ni = n > 0 holds for any subdomain
in SD, according to assumption-2 and 3, for any test x in
inputs space, it is possible to be selected in test suite because
x must belong to some subdomain Di, of which ni > 0.

C. ANALYTICAL SOLUTIONS OF SURVIVAL RATE
To obtain analytical solutions for survival rate in subdomain
based test, we introduce the notion of subdomain efficiency.
Informally, given a subdomain Di in SD, the likelihood that
a mutant m is killed by a random test in Di is defined as the
subdomain’s efficiency, denoted as ei,m. The greater is ei,m,
the more efficient it is to select tests of Di in killing mutant.
Formally, let pi be a probability mass function defined

onDi, such that pi(x) returns the probability, that x is selected
from the subdomain Di. Then the efficiency of domain Di in
killing the mutant m is defined as:

ei,m =
∑
x∈Di

pi(x) · kill(x,m) (3)

The probability function pi specifies tests profile on domain.
According to assumption-3, any tests in Di may be selected
and thus that pi(x) > 0 holds for any x ∈ Di.
Usually, the probability mass function pi is uncomputable

for the most testing methods. In previous research [42]–[55],
it is assumed that pi is a uniform distribution and the tests in
subdomain are fairly selected. Let |Di| be the number of tests
in subdomain Di, and Fm be the set of tests that can kill the
mutant m in inputs space. Then efficiency is computed as:

ei,m =
|Di ∩ Fm|
|Di|

(4)

In other words, in the uniform distribution, the efficiency ei,m
is the proportion of tests that can kill mutant m in domain Di.
In the following analysis, we assume that the tests in domain
Di are fairly selected and pi is a uniform distribution.
Given the efficiency ei,m of each subdomain in SD, and

the selection vector En for testing method, the survival rate of
mutant m in the testing method ω is computed as:

Sm,ω =
∏
Di

(1− ei,m)ni (5)

VOLUME 7, 2019 4009

H. Lin et al.: Domain-RIP Analysis: A Technique for Analyzing Mutation Stubbornness

The equation (5) could be interpreted as: (1) the probability
that m survives from one test selected from subdomain Di is
1 − ei,m; (2) the probability that mutant m survives from ni
independent tests from Di is (1 − ei,m)ni ; (3) the probability
that m survives from the test suite is the production of all the
probabilities that it survives from tests in every domain.

In terms of the equation (5), we could obtain the analytical
solutions of survival rates for the three selection strategies in
section III-B. For all-n selection, of which En = (n, n, . . . , n),
the survival rate of mutant Sm,αn is:

Sm,αn =
∏
Di

(1− ei,m)n (6)

For greedy selection, let SDEn be the set of subdomains of
which ni = 1, the survival rate in this testing method is:

Sm,% =
∏

Di∈SDEn

(1− ei,m) (7)

Clearly, the survival rate in greedy selection is the production
of 1− ei,m for subdomain in which one test is selected.
Finally, random selection selects tests based on the entire

inputs space. Let em be the efficiency of input space I and n
be the number of selected tests in test suite. Then we have:

Sm,γ = (1− em)n (8)

In the analysis above, the survival rate of mutant relies on
both efficiency ei,m and the number of random tests selected
from each subdomain. The ei,m depends on how inputs space
is divided by SD. If the subdomains ‘‘well match’’ the tests
that kill the mutant, in which ei,m → 1 holds for some Di,
the mutant can be easily killed when any test is selected from
the domain, of which ni > 0. Meanwhile, for any subdomain
with ei,m > 0, when ni is large enough, ni → ∞, we have
(1−ei,m)ni → 0 and Si,m u 0. That is: if the ni is large enough
for any subdomain with non-zero efficiency ei,m, the mutant
can be revealed with high likelihood.

Clearly, there are many reasons to explain, why a mutant
is stubborn for the testing method. In following analysis,
we introduce a classification framework that classifies a stub-
born mutant into three categories, said selective, test-number
and domain stubborn, each of which refers to a particular
reason for tests failing in killing the mutant and provides
guidance to generate tests for it by improving random test
selection.

D. SELECTION-RELATED REASONS
Let’s consider the three selection strategies based on domains
in SD, called greedy selection %, all-1 selection α1, and all-n
selection αn. We further assume that n is a large number that
is large enough for test generation in αn. Then the follwing
relations hold for any mutant’s survival rate.

Sm,% ≥ Sm,α1 ≥ Sm,αn (9)

That Sm,% ≥ Sm,α1 is clear. According to the equation (7),
that ni = 1 holds for a subset SDEn of SD in the greedy

selection, but for all domains in all-1 selection α1. We have:

Sm,% =
∏
SDEn

(1− ei,m) ≥
∏
SD

(1− ei,m) = Sm,α1 (10)

Meanwhile, that Sm,α1 ≥ Sm,αn could be proved by the
following inequation.

Si,αn = (
∏
SD

(1− ei,m))n = (Sm,α1)
n
≤ Sm,α1 (11)

That is: Sm,αn is nth power of Sm,α1 and Sm,α1 ≥ Sm,αn . In
terms of the mutant survival rates in these three selection
strategies, we classify a mutant as one of following classes.
• Not-A-Stubborn (NaS): when Sm,% < θ , the mutant is
not stubborn. Since greedy selection tends to generate a
minimal test set covering the given domains [61]–[66],
mutant that is not stubborn for such test suite will not be
considered as hard-to-kill for any testing methods based
on the subdomains SD.

• Selective-Stubborn (SeS): when Sm,α1 < θ ≤ Sm,%,
the mutant is stubborn for greedy selection while not for
all-1 selection.

• Test-number-Stubborn (TnS): if Sm,αn < θ ≤ Sm,αn ,
a mutant is test-number-stubborn, which is stubborn for
all-1 selection but not for all-n selection.

• Domain-Stubborn (DoS): if θ ≤ Sm,αn < 1, a mutant is
domain-stubborn which is stubborn for all-n selection.

• Equivalent: when Sm,αn = 1, the mutant is equivalent.
That’s because all-n selection αn is a complete testing
method and mutant with Sm,αn = 1 must be equivalent
(see theorem-1 in section II).

Figure 1 describes the decision tree to classify the mutants
based on its survival rates in three test selection strategies.
In this decision tree, the mutantm is classified into one of five
categories, each of which correspond to a particular reason to
explain why testing method based on subdomains SD fails in
detecting the target mutant. For NaSmutant, any minimal test
suite that covers the domains in SD can kill the mutant with a
high likelihood, of which Sm,% < θ . Hence, the mutant is not
useful for enhancing test quality when coverage is met.

FIGURE 1. Decision tree to classify mutants for selection-related reasons.

For SeS mutants, they can survive from the minimal tests
that are generated by greedy selection with high likelihoods,

4010 VOLUME 7, 2019

H. Lin et al.: Domain-RIP Analysis: A Technique for Analyzing Mutation Stubbornness

while not for all-1 selection. The reason for SeS mutant being
stubborn is that, the tests of the potential efficient subdomain
are not selected by greedy selection. By selecting at least one
test from each domain in SD, such mutant can be easily killed
by the generated test suite, of which Sm,α1 < θ .

For TnS mutants, they are stubborn for all-1 selection, but
not for all-n selection in which n is considered large enough.
The reason for the tests of all-1 selection failing to reveal TnS
mutants is that: the number of random tests selected in each
domain is not large enough as for all-1 selection. According
to the equation (5), if ni → ∞, we have (1 − ei,m)ni → 0,
for any subdomain with ei,m > 0. In other words, once there
exists subdomain with ei,m not that close to zero, TnS mutant
can be killed by increasing the number of selected tests.

However, the n cannot be too large. From a perspective of
practice, that n→∞ implies exhaustive testing in domains.
And a upperbound for tests number n should be established
in subdomain-based test selection.

Finally, for DoS mutants, even the test suites generated by
all-n selection could hardly detect them in testing. The reason
is that the inputs space is not ‘‘well divided’’ by SD such that
the efficiency of each subdomain is extremely small, in which
ei,m u 0 holds for any Di ∈ SD. It is impossible to improve
the effectiveness of testing method by increasing the number
of random tests. Usually, the tester has to refine the current
SD by involving additional constraints [8], or turns to create
another set SD′ that is more efficient in killing the mutant.

Table 1 shows the reason and the guidance for each mutant
class. It can be found that, except the DoS mutants, both the
SeS and TnS mutants can be killed by enhancing the random
test selection in existing subdomain in SD. Since the reasons
for the mutants being stubborn are related with test selection
strategy used, we call them selection-related reasons. These
reasons provide the guidance to improve test quality by using
the stronger selection strategy in the given subdomains, from
the greedy selection to all-n selection.

TABLE 1. Selection-related reasons and their guidance for improving the
subdomain-based random testing selection methods.

Meanwhile, the selection-related reasons do not answer the
question of how to find a test for killing a DoS mutant. Since
refining the subdomains requires understanding the program
structure and constraints [8], the black-box based analysis in
this section is not enough. In next section, we would consider

how to identify the root reasons for the mutant being stubborn
from a perspective of fault detection, and provide guidance to
identify the key constraint for killing a DoS mutant.

IV. REACHABILITY-INFECTION-PROPAGATION
This section first reviews reachability-infection-propagation
(RIP) model and defines key constraint. It then uses the RIP
model to investigate the constraint-based reason for a mutant
being stubborn and identify the key constraint for killing it.

A. FAULT DETECTION MODEL
The RIP model [56]–[60] divides the fault detection process
into three successive stages, said reach, infect and propagate.
Each stage refers to a constraint that the tests need to satisfy,
shown as follows.
• CR: The test x reaches the mutated statement lm.
• CI : The test causes data state errors in execution.
• CP: The data state errors propagate to outputs.
From a perspective of constraint-based testing [8], the RIP

model defines three constraints that a test needs to satisfy for
revealing the mutant m. Specifically, the constraint CR holds
iff. the statement where m seeded, denoted as lm, is executed
by the test; the constraint CI is satisfied by the test when the
program states (mappings between variables and values) are
different from original program after the mutated point lm is
executed; the constraint CP holds when the errors in program
state influence on and change the final outputs. Formally, for
mutant being killed, the following condition needs to be met.

CR ∧ CI ∧ CP (12)

In [8], these constraints are used to generate the test data for
detecting the mutant. Note that, in weak mutation testing [70]
a mutant is determined as killed when it causes difference in
program data state and propagation constraint is not needed.
The condition for killing a mutantm in weak mutation testing
context is shown as following:

CR ∧ CI (13)

Since the constraints refer to three stages in fault detection,
we also call them RIP constraints in following analysis.
From a perspective of test sets, each of the RIP constraints

refers to a set of tests, including:
• Reach-set Rm: The set of tests that execute the mutated
statement, which satisfy the constraint CR.

• Infect-set Im: The set of tests that cause data state errors
in faulty point, which satisfy constraints CR ∧ CI .

• Propagate-set Pm: The set of tests in which data state
errors propagate to outputs, satisfying CR ∧ CI ∧ CP.

Since the test can cause data state errors only after the faulty
statement is executed, there we have Im ⊆ Rm. Meanwhile,
the error propagation occurs, only after data state errors are
caused, in which we have Pm ⊆ Im.

Pm ⊆ Im ⊆ Rm ⊆ I (14)

In terms of tests sets Rm, Im and Pm, the fault detection can
be viewed as a screening process, in which less and less tests

VOLUME 7, 2019 4011

H. Lin et al.: Domain-RIP Analysis: A Technique for Analyzing Mutation Stubbornness

pass thorough the three successive stages, shown in figure 2.
In figure 2, the tests in Di are used to kill the mutant. Its tests
are first filtered by the constraint CR, which outputs Di ∩ Rm
as the tests that can execute the mutated statement in Di. The
tests are further filtered by condition CI , which is satisfied
by tests in Di ∩ Im. Finally, the tests in Di ∩ Im are filtered by
constraint CP, which produces Di ∩ Pm as outputs.

FIGURE 2. RIP process model for screening tests.

Note that, the propagation-set Pm is the set of tests that kill
mutant m, which is the Fm in equation (4) in section III-C.

In this screening process model, we can identify the three
pass rates for each stage in fault detection. They are:
• Reachability-rate Ri,m: The probability that a random
test in Di satisfies the constraint CR, denoted as Ri,m.

Ri,m =
|Di ∩ Rm|
|Di|

(15)

• Infection-rate Ii,m: The probability that a random test
that passes through the CR can pass the constraint CI ,
denoted as Ii,m, which is computed as:

Ii,m =
|Di ∩ Im|
|Di ∩ Rm|

(16)

If the denominator Di ∩ Rm is empty, the infection-rate
is defined as zero, where Ii,m = 0 for Di ∩ Rm = ∅.

• Propagation-rate Pi,m: The probability that a random
test passing thorough CR and CI can meet the condi-
tion CP, denoted as Pi,m. Then we have:

Pi,m =
|Di ∩ Pm|
|Di ∩ Im|

(17)

Similarly, we define Pi,m = 0 for Di ∩ Im = ∅.

Each of the three probabilities refers to a RIP constraint and
its corresponding fault detection stage. We call the probabil-
ities as RIP probabilities. Since the outputs Di ∩ Pm refers
to the tests that can reveal the mutant in Di, there we have:

Ri,m · Ii,m · Pi,m =
|Di ∩ Pm|
|Di|

= ei,m (18)

The equation (18) reveals that, the subdomain efficiency is
the production of the RIP probabilities. Meanwhile, in terms
of process model in figure 2, it can be found that: if any pass
rate in the three conditional branches is close with zero, then
we have ei,m u 0. This provides us a way to investigate the
degree in how much a mutant is revealed by the tests in Di,
of which difficulty reasons will be discussed in following.

B. KEY CONSTRAINT IN SUBDOMAIN
In constraint-based test generation [8], test constraint is a set
of conditions that need to be met by the tests. The solution of
constraint C is a test that can satisfy the conditions in C . For
example, in RIP model, the solution of constraint CR is a test
that can cause the mutated statement being executed.

Formally, given a subdomain Di and constraint C . Unlike
the random test generation [45], in which any tests in Di can
be fairly generated, the constraint-based test generation only
selects tests in Di that can satisfy the constraint C . We define
the probability that tests generated based on C for killing the
m as constraint-based domain efficiency, denoted as ei,m,C .

ei,m,C =
|Di,C ∩ Pm|
|Di,C |

(19)

in whichDi,C is the set of tests that can satisfyC in domainDi
and Pm be the set of tests that kill the mutant m. If none of
tests in Di can satisfy C , in which Di,C = ∅, we define its
efficiency ei,m,C = 0. Clearly, when ei,m = 0, none of tests
in Di can kill the mutant, and thus ei,m,C = 0 holds for any
constraint C in this subdomain.
The subdomain efficiency ei,m, as defined in section III-C,

represents the efficiency of random testing in killing mutants,
while ei,m,C is the efficiency of constraint-based testing.
If ei,m,C > ei,m, we say that constraint C improves efficiency
in killingmutant than random testing. If ei,m,C � ei,m, we say
C dramatically increase the quality of generated tests and is
the key constraint ofDi for killingmutantm, denoted asKi,m.
Formally, givenDi andm, a constraint C is defined as the key
constraint when ei,m and ei,m,C satisfy:

0 < ei,m < α and ei,m,C > 1− β (20)

in which α and β are two small values, that are close with 0.
With the key constraint used in testing, the probability that a
generated test kills the mutant is increased from α (close to 0)
to 1 − β (close with 1). Note that, for any subdomains with
0 < ei,m < α, theremust be the key constraints for it. That’s
because CR ∧ CI ∧ CP is a key constraint for any inefficient
subdomains. When three RIP constraints are used in testing,
the generated tests are guaranteed to kill mutant m, of which
ei,m,C = 1. Ki,m may be not unique for given Di and m.

C. KEY CONSTRAINTS IN RIP MODEL
Let’s consider the constraint-based testing in RIP model [56].
In the three RIP constraints, said CR, CI , CP, if any is used
to guide the test generation in subdomain Di, then only tests
that can satisfy the constraint will be selected in testing. As a
result, the test is guaranteed to pass thorough the stage which
the constraint refers to. Let’s consider eight compositions of
RIP constraints and their efficiency, shown in table 2.

Table 2 presents the constraint C used for test generation,
its effect on pass-rates of each stage in fault detection and the
efficiency of generated test in killing mutant based on C .

In the first row, the constraint ‘true’ means no constraint is
used in test generation and a random test selection is used to
generate tests, of which ei,m,C = ei,m.

4012 VOLUME 7, 2019

H. Lin et al.: Domain-RIP Analysis: A Technique for Analyzing Mutation Stubbornness

TABLE 2. Constraint-based testing and its effects on subdomain
efficiency.

For C = CR,CI and CP, only one of the RIP constraint is
used to generate tests, which are guaranteed to pass thorough
the corresponding stage in fault detection, of which pass rate
satisfies Ri,m = 1, Ii,m = 1 and Pi,m = 1, respectively. The
constraint-based efficiency ei,m,C is computed by substituting
the corresponding pass-rate for 1 in equation (18).

Similarly, when two of RIP constraints are used in testing,
the generated tests are guaranteed to pass thorough the stages
in fault detection that refer to the constraints. For example,
in C = CR∧CI , the generated tests are guaranteed to weakly
kill the mutant, and CP is the only condition these tests need
to meet for killing the mutant. The efficiency for CR ∧ CI is
Pi,m, which is the pass-rate in error propagation stage.
Finally, when all of the RIP constraints are used to generate

tests, in which C = CR ∧ CI ∧ CP, the generated tests are
guaranteed to pass thorough all stages in fault detection, and
kill the mutant m. The efficiency for CR ∧ CI ∧ CP is 100%.

Table 2 provides us a way to identify the key constraint for
domains based on the computed ei,m,C in the third column.
For example, if Ri,m > 1 − β, it implies that CI ∧ CP is the
key constraint because its efficiency ei,m,C = Ri,m.
The algorithm-1 is used to determine the key constraint for

subdomain based on RIP probabilities. The first if-condition
validates, whether ei,m = 0; if so, none of tests in Di can kill
the mutant and no key constraint exists for the subdomain.
In second condition, ei,m ≥ α, it investigates whether the Di
is inefficient enough. As is defined in section IV-B, ei,m < α

is premise of using key constraint, sinceKi,m can dramatically
increase ei,m,C , only when the ei,m is inefficient enough.
The algorithm will compute the ei,m,C for each of the eight
constraints in table 2 and return the corresponding Ki,m. The
condition ei,m,C > 1 − β is used to decide that ei,m,C ≈ 1,
where α, β are close to 0, as is defined in section IV-B.

The key constraint provided by this algorithm can be used
to guide test generation for killing a domain-stubborn mutant.
More specifically, given a domain-stubborn mutant, it selects
the subdomain with maximal efficiency in killing the mutant,
of which 0 < ei,m < α where α = 1 − n

√
θ . That’s because,

based on equation (5), Sm,αn > θ implies (1 − ei,m)n > θ ,
which infers ei,m < 1− n

√
θ holds for any subdomain in SD.

Since n is a large number (see definition in section III-D),
we have n

√
θ → 1 when n→∞. As a result, let α = 1− n

√
θ ,

we have α → 0. Given the inefficient domain Di with
ei,m < α, the algorithm is performed to identify the key
constraints for the domain, which is further used to guide test
generation for killing the domain-stubborn mutant.

Algorithm 1 Simplest Key Constraint Identification
1: function getKeyConstraint(Ri,m, Ii,m, Pi,m, α, β)
2: if Ri,m · Ii,m · Pi,m = 0 then
3: return false; F No key constraint exists
4: else if Ri,m · Ii,m · Pi,m ≥ α then
5: return true; F Constraint is not needed
6: else if Ri,m · Ii,m > 1− β then
7: return CP;
8: else if Ri,m · Pi,m > 1− β then
9: return CI ;
10: else if Ii,m · Pi,m > 1− β then
11: return CP;
12: else if Ri,m > 1− β then
13: return CI ∧ CP;
14: else if Ii,m > 1− β then
15: return CR ∧ CP;
16: else if Pi,m > 1− β then
17: return CR ∧ CI ;
18: else
19: return CR ∧ CI ∧ CP;
20: end if
21: end function

D. CONSTRAINT-BASED REASONS
The key constraint introduced in section IV-B and IV-C can
be used to explain, at which stage in fault detection, the tests
are most likely to fail in satisfying the constraint, and killing
a domain-stubborn mutant. For example, if Ki,m = CI , it is
implied that Ri,mPi,m u 1 (see algorithm-1). In other words,
both Ri,m and Pi,m are close to 1. Meanwhile, the premise of
Ri,m · Ii,m · Pi,m < α, where α→ 0, implies that Ii,m is close
to 0. Therefore, for domain with Ki,m = CI , the tests of Di
are very likely to fail in the stage of infection while can easily
pass thorough the reaching and propagation stages.

The following lists seven reasons to interpret, why the tests
of a subdomain fail to detect a domain-stubborn mutant.

Hard-to-Reach (HR). When Ki,m = CR, that mutant m
is hard-to-reach, in which constraint CR is difficult to be
met by tests in Di. That’s because, Ki,m = CR implies that
Ii,m and Pi,m are close to 1 while Ri,m ≈ 0.

Hard-to-Infect (HI). If Ki,m = CI , we say that mutant is
hard-to-infect, since it is difficult for tests in Di to pass the
stage of infection, in which Ii,m ≈ 0 and Ri,m · Pi,m ≈ 1.

Hard-to-Propagate (HP). When Ki,m = CP, the mutant is
hard-to-propagate, in which tests of Di can pass thorough the
reachability and infection stages (Ri,m · Ii,m ≈ 1), while it is
difficult for state errors to propagate (Pi,m ≈ 0).

Hard-to-Reach-Infect (HRI). When Ki,m = CR ∧ CI ,
we say a mutant is hard to reach and infect. According to the
algorithm-1, it implies that Pi,m u 1, while Ri,m · Ii,m ≈ 0.
In other words, it is difficult for tests in Di to reach the faulty
statement and cause data state errors (satisfying CR ∧ CI).

Hard-to-Reach-Propagate (HRP). In this case, we have
Ki,m = CR ∧ CP, which implies that tests of Di can easily

VOLUME 7, 2019 4013

H. Lin et al.: Domain-RIP Analysis: A Technique for Analyzing Mutation Stubbornness

satisfy the constraint CI , of which Ii,m u 1, while difficult to
meet the CR and CP, where Ri,m · Pi,m ≈ 0.
Hard-to-Infect-Propagate (HIP). If Ki,m = CI ∧ CP,

a mutant is said hard to infect and propagate. The cause for
test failing in detecting such mutant is that the tests of Di are
very likely to reach the faulty statement (Ri,m u 1) but fail to
pass the infection and propagation stage (Ii,m · Pi,m ≈ 0).
Hard-to-Reach-Infect-Propagate (HRIP). In this case,

Ki,m = CR ∧ CI ∧ CP. In other words, the RIP probabilities
are all close to 0, in which Ri,m, Ii,m,Pi,m < 1 − β (see the
algorithm-1). It reveals that it is difficult for the tests in Di
to pass any of the three stages in fault detection. For a tester
to design a test that can kill this mutant, the three constraints
need to be conquered.

Clearly, each of these reasons correspond to a unique key
constraint in table 2, and can be used to explain why the tests
of a subdomain fail to detect a domain-stubborn mutant, with
high likelihoods, of which 0 < ei,m < α. Meanwhile, as is
defined in section IV-B, the key constraint Ki,m can be used
to guide the test generation and improve the test suite quality.
For the domain-stubborn mutant, the constraint-based reason
can reveal at which stage in fault detection, said reach, infect
and propagate, the tests in subdomains are most likely to fail
in passing thorough; and key constraints provide guidance for
test design to kill the domain-stubborn mutant.

Finally, for the subdomain of which ei,m = 0, the mutant
is unkillable and no key constraints exist. In this case, there
are three reasons for the mutant being unkillable.
• Unable-to-reach (UR): None of tests in Di can execute
the mutated statement, where Ri,m = 0.

• Unable-to-infect (UI): None of tests in Di causes the
data state error in program, where Ii,m = 0.

• Unable-to-propagate (UP): None of tests in Di causes
the error propagation in testing, and Pi,m = 0.

For an unkillable mutant, these reasons reveal at which stage
in fault detection the tests must fail in detecting the mutant.

V. DYNAMIC-BASED IMPLEMENTATION
The analysis to estimate survival rate and identify the reason
for mutant being stubborn requires an implementation of our
theoretical framework in section III. This section introduces
a dynamic-based technique to implement the D-RIP model,
which need to conquer the following undecidable problems.
• Subdomain division: How to divide the program inputs
into subdomains based on given test coverage criteria?

• Tests classification: How to classify tests to reachabil-
ity, infection and propagation set defined in section IV?

We implement the dynamic-based technique in a prototype
tool JCMuta, which can automatically identify subdomains
for three coverage criterions: statement, branch and MC/DC
coverage criteria, estimate the survival rate of the mutant for
random, all-n and greedy selection, and report the reasons for
mutants being stubborn. The idea of the dynamic technique
is to use a finite and comprehensive test suite to simulate the
entire inputs space and transform the analytical solution of
ei,m and Sm,ω to the case that I is the finite set of tests.

The following of this section will present the details of the
technique and answer how the problems above are solved by
the dynamic-based implementation.

A. SUBDOMAIN DIVISION
Informally, the purpose of subdomain division is to divide the
inputs space into subdomains based on the test requirements
provided by the given test adequacy criteria. Formally, let I
be program inputs space and R be the set of test requirements
defined by test coverage criteria C . The test requirement can
be any test objective, such as a statement being executed. The
tests that can satisfy a requirement are defined as its domain.
The output of subdomain division is a multiset of the inputs
space, denoted as SD = {D1, . . . ,Ds}, such that for each ri
in R, there is a unique subdomain Dk ∈ SD, so that Dk is the
domain of the requirement ri.

Usually, it is impossible to create a complete subdomain,
because the inputs in domain can be infinite, i.e. |Di| → ∞.
In static analysis, the subdomain is usually represented by the
constraints that the tests need to satisfy to meet requirement,
such as the path constraint for causing a statement or branch
being executed [32]–[41]. However, it is impractical to obtain
test constraint for each requirement, especially for programs
with complicated logics.

In this paper, we develop a dynamic-based implementation
to construct the subdomains approximately. It uses a finite set
of tests T to simulate the (infinite) inputs space I . In this way,
a subdomain can be created by clustering the inputs of T that
can satisfy a specific requirement ri.
Algorithm-2 presents how inputs space T are divided into

subdomains based on test requirements R provided by a test
coverage criteriaC . The algorithm first constructs domain for
each ri ∈ R, and then eliminates the duplicated subdomains
from SD, in which Di = Dj. Finally, SD without duplicated
subdomains are returned as a division of the inputs space.

Algorithm 2 Subdomain Division Algorithm
Input: R – set of test requirements
Input: T – finite set of inputs space
Output: SD – subdomains based on R
1: function DivideDomains(R, T)
2: SD = {};
3: for ri in R do
4: Di = {}; SD = SD+ {Di};
5: for t in T do F Cluster tests based on ri
6: if t satisfies ri then
7: Di = Di + {t};
8: end if
9: end for
10: end for
11: F Eliminate duplicated domains Di = Dj from SD
12: SD = eliminateDuplicatedDomains(SD);
13: return SD;
14: end function

4014 VOLUME 7, 2019

H. Lin et al.: Domain-RIP Analysis: A Technique for Analyzing Mutation Stubbornness

FIGURE 3. Example of three versions of syntactic mutations. The function
assert_equals(a,b) returns a as output when a = b, or throws
exception to stderr when a 6= b. The function trap() will terminate the
program immediately once it is called in the execution.

Note that, the tests set used to simulate inputs space should
be reasonably thorough such that for each feasible ri ∈ R,
at least one input in its domain should be selected. Mean-
while, for two non-equivalent domains Di 6= Dj, at least one
test inDi−Dj andDj−Di are needed. IfDi−Dj 6= ∅ and none
of tests in Di − Dj are contained in T , then algorithm-2 will
considerDi−Dj as empty and obtain finite subdomainsD′i,D

′
j

and D′i ⊆ D′j, which may distort the results of the subdomain
division.

B. MUTATION-DIRECTED TEST CLASSIFICATION
According to the RIP analysis in section IV, to estimate
the domain efficiency ei,m, reachability-rate, infection-rate
and propagation-rate, we need to identify the reach-set Rm,
the infect-set Im and propagate-setPm in finite inputs space T .
To identify the three test sets, we introduce three mutation

models for a mutant, said coverage-mutation, weak-mutation
and strong-mutation [70]. It means that, a mutant m could be
translated into three versions of mutated code. The coverage
mutation is killed once the mutated statement is executed by
the test. The weak mutation is killed once the test causes the
data state errors in execution. Strong mutation corresponds to
the original version of mutated program seeded by m.
Figure 3 presents the three versions of syntactic mutations

for the same mutant ‘‘x!=y’’ in predicate ‘‘x>y’’. In strong
mutation, the predicate is directly mutated as x!=y. In weak
mutation, an assertion is introduced to determine whether the
value of x 6= y equals with x > y. If not, the program throws
an exception and terminates the execution immediately. For
coveragemutation, the function call ‘‘trap()’’ immediately
terminates once it is executed in testing. Obviously, the tests
that detect the coverage, weak and strong mutation of a
mutant refer to the Rm, Im, Pm, respectively.
With the aids of coverage and weak mutation, the JCMuta

is able to optimize the mutation testing. The idea is to use the
relation Pm ⊆ Im ⊆ Rm in RIP model: the tests that cannot
kill the coverage mutation of a mutant (x /∈ Rm) will not kill

its weak mutation (x /∈ Im), which do not need to be used to
be executed against the weak mutation. Meanwhile, the tests
that do not detect the weak mutation cannot detect the strong
mutation, which will not be used in strong mutation testing.

Figure 4 presents the procedure: the JCMuta first executes
all the tests against coverage mutation of m, and obtain Rm;
it then executes only the tests in Rm against weak mutation to
obtain the Im; finally, the tests in Im are executed against the
strong mutation to obtain the set Pm. As a result, the times of
execution is smaller than that of exhaustive testing, of which
time complexity is O(|M | × |T |).

FIGURE 4. Flow graph for JCMuta in mutation testing and analysis.

C. PROTOTYPE TOOL
We implemented the dynamic-based technique for the D-RIP
analysis in a prototype tool, named JCMuta. The JCMuta is
a Java-implemented mutation system for testing the ANSI-C
programs. It integrates all the 78 C mutation operator classes
in [68] to generate various mutants and their coverage, weak
and strong mutation programs automatically. It also supports
the subdomain division based on finite tests T for statement,
branch and MC/DC coverage criteria [26].

The tool only requires users to provide the source code of
program for generating mutants and a finite set T to simulate
the inputs space in analysis. Figure 4 presents a flow graph to
describe how JCMuta is performed in mutation testing.

In figure 4, the mutants setM and requirements R are first
generated. For each mutant m, its coverage, weak and strong
mutation are successively executed against the tests to obtain
sets Rm, Im, Pm. For each requirement ri, its instrumented
program is executed against the T to verify of which tests
can satisfy the requirement and obtain subdomainDi. Finally,
the Di,Rm, Im,Pm are used to estimate ei,m and survival rate
by the D-RIP analysis. The outputs of JCMuta contain:

• A ranked list of the mutants from trivial to stubborn and
finally to the unkilled mutants.

• The efficiency ei,m for each mutant and subdomain, and
its survival rates in greedy, all-n and random selection.

VOLUME 7, 2019 4015

H. Lin et al.: Domain-RIP Analysis: A Technique for Analyzing Mutation Stubbornness

TABLE 3. Subject programs, complexity, subdomains, mutants, tests and description.

• The set of stubborn mutants and report on the cause for
each of them being hard-to-kill in testing.

Note that, in dynamic-based technique, the survival rates
of unkilled mutants satisfy Sm,ω ≡ 1, which does not
imply that the mutant is equivalent. However, when the
test set T is mutation-adequate, for all-n selection that
Sm,αn = 1 in dynamic-based technique implies that m is
equivalent.

Unfortunately, it is undecidable to determine whether the
unkilled mutant is equivalent until a careful proof and tedious
analysis are performed. The JCMuta will assume the unkilled
mutants are equivalent, until the users complement the tests
that can reveal the unkilled mutants into test set T .

VI. EXPERIMENTAL EVALUATION
This section uses the techniques introduced in
section III and IV to compute the survival rates of
96,000 mutants with a set of widely used programs and
identify the reason for stubborn mutants being hard-to-kill
in testing. We have three goals in the empirical study. They
are:
• Examine the distribution of Sm,ω in different coverage
criteria (statement, branch and MC/DC coverage), and
different test selection strategies (greedy, all-1, random).

• Estimate prevalence of stubborn mutants for thresholds
θ = 0.5, 0.75, 0.9, respectively.

• Highlight the possible reasons that test methods stud-
ied, said statement, branch and MC/DC testing, fail
in killing the identified stubborn mutants in our
experiment.

The following of the section presents the subject programs
used in experiment, and the results corresponding to each of
the research questions above.

A. SUBJECTS
Table 3 presents the details about the subject programs used
in the evaluation, including the program name, line of code,
the number of blocks, branches and conditions, the number
of subdomains identified by algorithm-2 in statement (stmt),
branch (brch) and MC/DC (mcdc) test criteria, the number
of generated mutants, the proportion of the mutants killed by
tests and the number of tests in T , which are used to simulate
the inputs space and compute the survival rates based on the
dynamic-based technique in Section V.

The first twelve subjects from bubble_sort to prime_factor
are trivial programs that have been studied in prior research
on mutation stubbornness [27]. Among them, the max_path,
hero_triangle and prime_factor come from the Rosetta Code3

with one prime factorization program and two algorithms for
searching problems. These trivial subjects provide the simple
functionalities and input data structure that are easy-to-read.
In the experiment, we perform the approximately exhaustive
testing for each of these trivial programs which involves large
number of test inputs. The highly exhaustive testing achieves
the mutation-adequate objectives, and guarantees that all the
non-equivalent mutants are killed in trivial programs.

The following seven subjects from print_tokens to tot_info
are part of the Siemens Suite (available at SIR,4) which are
widely used as a standard benchmark in research of software
testing. They come with existing test suites. In the study,
we used all of the test inputs provided by the benchmark
in test suite. Since the original test suites are not branch-
coverage, we further apply the random test generation to
enhance tests until the multiple condition coverage is met.

3http://rosettacode.org/
4https://sir.unl.edu/content/sir.php

4016 VOLUME 7, 2019

H. Lin et al.: Domain-RIP Analysis: A Technique for Analyzing Mutation Stubbornness

In total, more than 80% of mutants in Siemens Suite subjects
are killed.

Finally, the subjects calendar, md4 and md5 are three real
world utilities which provide practical applications. Calendar
is used to print calendar, while md4 and md5 are the famous
algorithms for message-digest in network communications.
The code of md4, md5 come from IETF tools5 and github.6

We applied the random testing to generate thousands of tests
which kill about 89% of mutants in these subjects. However,
we are not sure whether the unkilled mutants are equiva-
lent or extremely stubborn in testing. In the following anal-
ysis, we only consider stubborn mutants within the mutants
killed by the tests in the study.

The programs used in the study are not very complicated:
the line of code is less than 1000. The reason we consider
the trivial and medium programs in empirical evaluation is
that, with the increase of program complexity, the number of
inputs and subdomains will explosively grow up, making it
expensive to estimate the survival rates precisely, threatening
the validity of our computation results.

In the study, we use the JCMuta tool to generate mutants
of each subject program, and execute them to obtain the
survival rate and stubbornness reasons. JCMuta implements
the 78 C mutation operator classes in [68]. In total, more than
96,000 mutants are generated and 80,503 of them (83.4%)
are killed by tests, which are used to investigate mutant
stubbornness.

B. DISTRIBUTION OF SURVIVAL RATE
Figure 5 presents the overall distributions of survival rates
in all-1 selection under statement, branch, MC/DC coverage.
From this figure, it is observed that more than 70,000 mutants
are extremely trivial, of which Sm,ω = 0 for three coverage
criteria. On the other hand, there are 16,050 unkilled mutants
in the study, accounting for 16.63% of all generated mutants.
As a result, the remaining 10,000 mutants are neither unkilled
nor extremely trivial, with 0 < Sm,α1 < 1, within which we
identify the stubborn mutants in our study.

FIGURE 5. Overall distribution of survival rate in three coverage criteria
(all-1 selection).

Figure 6 shows the detailed distribution of the survival rate
for greedy, all-1 and random selection in the three coverage
criteria. The survival rates of 15,000 mutants are presented.
In this figure, the red lines refer to the survival rate computed

5https://tools.ietf.org/
6https://github.com/pod32g/MD5

based on subdomains of statement testing; the blue and black
lines correspond to the branch and MC/DC testing. For each
coverage criteria, the dashed line represents survival rates for
greedy selection, while solid line and dash-dotted line refer
to the survival rates computed in all-1 and random selection.

From the figure 6, it can be observed that, for almost every
mutant in study, given the subdomains of a coverage criteria,
its survival rates in all-1 selection (α1), greedy selection (%),
and random selection (γ) satisfy the following inequalities.

Sm,% ≥ Sm,α1 ≥ Sm,γ (21)

The relation Sm,% ≥ Sm,α1 has been proved in section III-D.
Let’s consider Sm,α1 ≥ Sm,γ , which is explained as follows:
all-1 selection directly selects tests from each subdomain and
achieve full-coverage on SD; while random selection selects
tests from entire inputs space until full-coverage is met. As a
result, random selection tends to select more than one tests in
each subdomain and is more powerful than all-1 selection.

Another interesting finding in figure 6 is that: given a test
selection strategy, survival rates in branch testing are slightly
smaller than statement testing, while those in MC/DC testing
is much smaller than branch testing. In other words, it reveals
that the probability that tests kill a mutant in branch coverage
is close with that in statement coverage for the subjects in our
study. We are not sure whether this finding can hold for other
programs, since the prior research [50] concludes that branch
testing is much more effective than statement testing in fault
detection. The further research may be needed to investigate
the generalization of the findings in figure 6.

C. PREVALENCE OF STUBBORN MUTANTS
Figure 7 shows the proportion of stubborn mutants identified
based on Sm,ω ≥ θ , in which θ = 0.5, 0.75, 0.9. The three
thresholds identify mutants with a high likelihood to survive
from each testing method in the study.

From the figure 7, it can be found that, the prevalence of
stubborn mutants relies on the testing methods. For example,
the weakest test strategy, greedy selection based on statement
coverage, identifies 5.4% to 2.5% of generated mutants as
hard-to-kill. Meanwhile, for strongest test method in study,
the random selection under MC/DC coverage, only 0.1% to
0.6% of mutants are identified as stubborn. In all-1 selection,
the prevalence of stubborn mutants is 2.3%, 2.1% and 1.3%
in statement, branch and MC/DC coverage, where θ = 0.75.
In branch testing, it ranges from 2.3% to 0.4% for θ = 0.90.

In total, the proportion of stubborn mutants ranges from
0.1% to 5.4%, accounting for very small number of mutants.
In other words, in mutation testing, the prevalence of mutants
that are useful for improving test quality in mutation testing
is small, and even smaller than those of trivial mutants (78%)
and the equivalent (or unkilled) mutants (16%).

D. REASONS FOR STUBBORN MUTANTS
In the experiment, we used all-n selection, of which n = 32,
to identify the domain-stubborn mutants, whose Sm,αn ≥ θ .
Meanwhile, we assigned α = β = 10−6 to the arguments in

VOLUME 7, 2019 4017

H. Lin et al.: Domain-RIP Analysis: A Technique for Analyzing Mutation Stubbornness

FIGURE 6. Detailed distribution of survival rates in all-1, greedy and random selection
(69000 ≤ x ≤ 84000).

FIGURE 7. The proportion of stubborn mutants in greedy, all-1 and random selection (θ = 0.5,0.75,0.9).

FIGURE 8. The proportion of stubborn mutants in each selection-related reason.

the algorithm-1, which is used to identify the key constraints,
and the constraint-based reasons to explain why the test suite
generated in statement, branch and MC/DC testing can fail to
detect the domain-stubborn mutants in our study.

Figure 8 shows the proportion of mutants referring to each
of selection-related reasons in stubborn mutants identified by
greedy selection. The value in parenthesis is the threshold θ .
From this figure, we can find that, the contributions made by
each reason vary across different testing method. In statement
and branch test, selective-stubborn and test-number stubborn
are the main reasons for test suite failing in killing the mutant.
In MC/DC testing, domain-stubborn is the main reason for
stubborn mutants (36% ∼ 42%). The reason may be that the
test suite in MC/DC testing can reveal the more selective and
test number stubborn mutants in statement and branch testing
but less domain-stubborn mutants. The reason might be that:
more tests are created for predicate with multiple conditions

inMC/DC coverage; as a result, the test-number and selective
stubborn mutants in branch testing can be killed with higher
likelihood by test suite that meets the MC/DC coverage.

Meanwhile, the contribution made by each reason can vary
across the threshold θ . For the statement and branch testing,
with the increase of θ , the proportions of selective-stubborn
mutants decreases, while increased is test-number-stubborn.
In MC/DC testing, the proportions of the domain-stubborn
ones increase with the increase of threshold. It implies that,
for extremely hard-to-kill mutant (θ = 0.9), its main reason
is that number of tests is not large enough in branch testing,
while in MC/DC testing, such mutant is extremely stubborn
because the subdomains are not well divided.

From figure 8, it is concluded that: in statement and branch
testing, many mutants are not killed because the tests number
is not large enough; while in MC/DC testing, the number of
tests for each predicate is increased by covering its conditions

4018 VOLUME 7, 2019

H. Lin et al.: Domain-RIP Analysis: A Technique for Analyzing Mutation Stubbornness

and the most mutants that survive from MC/DC tests refer to
the reason that the subdomains are inefficient in killing them.

Table 4 further shows the proportions of domain-stubborn
and unkilled mutants in each constraint-based reason.

TABLE 4. Constraint-based reason for domain-stubborn (θ = 0.75) and
unkilled mutants.

From this figure, it is observed that, only three of the seven
constraint-based reasons in section IV contribute on domain
stubborn mutants. In three reasons, hard-to-reach is the main
reason for subdomain being inefficient, which refers to 68%
of domain-stubborn mutant. Hard-to-propagate is the second
major reason, referring to 27% of stubborn mutants. Finally,
only 3% ∼ 6% of stubborn mutants are hard-to-infect.

The observation above provides the guidance for testers to
improve test quality: for killing a domain-stubborn mutant,
the testers need to be focused on the constraint of either
CR or CP, since the reasons for most domain-stubborn
mutants either refers to hard-to-reach or hard-to-propagate,
of which key constraint is reaching statement or error propa-
gation.

Meanwhile, table 4 shows the proportions of unkilled
mutants in each constraint-based reason. Unable-to-
propagate is the major reason for a mutant being unkilled
in our study, which contributes on 53% of unkilled mutants.
The unable-to-reach is the second main reason which refers
to 28% of the unkilled mutants, while unable-to-infect con-
tributes on 19% of unkilled mutants in the study.

Note the difference between the unkilled and the stubborn
mutants. The key constraint for mutant being unkilled is the
error propagation CP while it is the CR for mutant being
hard-to-kill in our study. For both the unkilled and stubborn
mutant, the least number of them are hard (unable) to infect,
which survive from tests that fail in infecting program state.

VII. DISCUSSION
This section will discuss the threats on validity of our empiri-
cal study in section VI and the limitation of D-RIP technique.

A. CONSTRUCT VALIDITY
These threats regard the used measure, i.e. survival rate and
threshold θ . The survival rate provides the quantiative way to
measure the difficulty of killing mutant. However, threshold
θ can divide this difficulty degree in two levels (hard-to-
kill or trivial). For two mutants with Sm,ω around θ , their dif-
ficulty of being killed is close, but one classified as stubborn,
while another as the trivial. Therefore, θ -based classification
might be sensitive to θ in identifying stubborn mutants.

In empirical study, we consider θ = 0.5, 0.75, 0.9. From
figure 7, it is found that the prevalence of stubborn mutants

is sensitive to θ . For example, in greedy selection of branch
testing, the proportions of stubborn mutants range from 5.2%
to 2.3%. Almost the half stubborn mutants in θ = 0.5 are not
stubborn for θ = 0.9. The sensitivity threats on identification
of stubborn mutants. The θ -based classification needs to be
improved in future works. In the study, we are interested in
the proportion of stubborn mutant since our research pur-
pose is to verify whether the stubborn mutants can reduce
the costs of the mutation testing. In the study, no matter
which θ is, the proportion of the stubborn mutants is trivial
(0.1% ∼ 5.4%), which confirms our expectation.

B. INTERNAL VALIDITY
These threats refer to the extend to which the findings in
our study is warrantied. In evaluation, we use the dynamic-
based technique to compute survival rate, which depends
on a finite set of tests to simulate the entire inputs space.
As a result, we are not sure whether the unkilled mutants
are equivalent, or stubborn mutants. The ignorance of these
potential stubborn mutants may bring errors in estimat-
ing the prevalence and the contribution of each reason in
section VI-C and VI-D. On the other hands, the dynamic
algorithm in section V-A identifies the subdomains based on
finite set T . If T is not adequate to cover all the requirements,
then SD are not correctly divided.

In order to reduce the errors, we manually check unkilled
mutants for all the trivial mutants and the schedule(2), tcas
in Siemens Suite. We further added large numbers of random
tests to Siemens Suite subjects and other subjects to achieve
multiple condition coverage (stronger than MC/DC).

C. EXTERNAL VALIDITY
The programs used in our study are basically the trivial and
medium, of which code line is less than 1000. Therefore,
the results in section VI could only provide guidance to
improve the test quality in these subjects. More real-world
programs are needed to confirm the generalizability of the
results.

D. LIMITATION OF D-RIP TECHNIQUE
The domain-based RIP method provides a theoretical model
to explain the survival rate and the reason for a mutant being
hard-to-kill. However, the theoretical solutions in section III
are usually unknown. The dynamic-based implementation in
section V can estimate the solutions by using large number
of tests. However, this method is not practical for engineers
who want to know the stubbornness of mutants before tests
have been developed and provided.

Meanwhile, to estimate the survival rate theoretically is an
undecidable problem, since it requires determining on which
tests in a subdomain can kill the mutant. In this paper, we only
use the dynamic-based technique to validate whether D-RIP
is effective in measuring difficulty of killing mutant, and
can be used to optimize mutation testing. Further research is
needed to make the technique more practical.

VOLUME 7, 2019 4019

H. Lin et al.: Domain-RIP Analysis: A Technique for Analyzing Mutation Stubbornness

VIII. RELATED WORKS
The stubbornness problems have been studied in a variety of
research contexts. Weyuker [51] and Hamlet [54] observed
that the fault detection probability can be used to measure the
effectiveness of testing methods. Their formal analysis based
on subdomain testing is then widely used to compare the test
effectiveness between the partition testing and random testing
[42]–[50]. The early study is focused on using fault detection
probability to measure test quality, rather than considering it
as a metric to measure the utility of mutants.

Until 2015, Namin et al. [29] first consider the probability
for mutants being revealed could be used to rank the mutants
and identify the useful mutants for analysis. In their study,
they use the similarity between program representations to
predict the exposability of mutants. However, the study does
not consider that a mutant’s survival rate can vary across the
testing methods. As a result, the survival rates are estimated
based on the entire inputs space, without considering how the
tests are selected from each subdomain in testing practice.

Yao et al. [27] further propose the notion of the stubborn
mutants. It is realized that the stubborn mutants are different
from equivalent mutants, which can be potentially useful for
guiding test process. In their study, the stubborn mutants are
identified as those remain unkilled from a branch-coverage
test suite while are non-equivalent. The mutation operators
that are efficient in producing the stubbornmutants are further
identified. However, the stubborn mutants defined in this way
strongly depend on the test suite used in study, and no reasons
for tests failing in killing these mutants are reported, making
it difficult to guide the testers to design tests that can reveal
these hard-to-kill faults effectively.

Just et al. [28] further developed a syntactic-pattern based
technique to predict the stubbornness of mutants. In the study,
the survival rate is measured based on the proportion of test
suites that can detect the target mutants in random sampling.
However, the proportion does not reveal any factors that can
influence on stubbornness, making it difficult to understand
the reasons for mutant being stubborn and provide guidance
to design tests that detect the stubborn mutants.

In conclusion, the lack of such theoretical foundation and
model for understanding mutation stubbornness, and relating
it with testing methods and fault detection process, makes the
prior research tend to identify the mutants stubborn for the
specific research contexts, fails in interpreting the reasons for
the difficulty of killing the mutants, and providing guidance
to improve the test suite quality effectively.

IX. CONCLUSIONS
The mutation stubbornness problem has focused attention in
recent studies [27]–[31], which is used to select hard-to-kill
yet non-equivalent mutants (called stubborn), and guide the
test improvement after structural coverage has been achieved
by test suite. However, fews of these works provide a solid
foundation for estimating the stubbornness, neither do they
investigate the possible reasons to explain, why tests fail in
killing a stubborn mutant, making it difficult to give engineer

useful suggestion about how to design tests for detecting the
hard-to-kill faults and improve test quality effectively.

This paper proposes domain-based RIP technique, which
measures the survival rate of each mutant based on the given
testing method and presents the possible reasons to interpret
why the tests fail in killing the mutants, which can be used to
guide the test generation and enhance testing effectiveness.

The D-RIP uses the subdomain-based testing to obtain the
analytical solutions of survival rates, in which we investigate
the survival rates of mutants in three classical domain-based
test selection strategies, including the all-n selection, greedy
selection and random selection. Based on the analytical solu-
tion of survival rate, we identify the selective-stubborn, test-
number-stubborn, domain-stubborn as three mutants classes,
each of which refers to the reason for a mutant being stubborn
and provides guidance for testers to design tests that detect
them by improving the random test selection strategies.

The D-RIP also uses RIP analytical tool to investigate the
relations between difficulty of revealing mutants and the fault
detection process. It reveals at which stage the test is likely
to fail in revealing faults and the key constraints for killing a
mutant. In the analysis, we discuss constraint-based reasons
for domain being inefficient in killing mutant, which provide
guidance for testers to identify the key constraints to design
tests for killing the domain-stubborn mutants.

We further develop a dynamic-based implementation for
D-RIP technique and integrate it to prototype tool, JCMuta.
The tool can automatically compute survival rate of a mutant
based on different testing methods, and generate a report
that displays the reasons to explain why killing the mutant
is hard, which provide guidance for improving the test suites
quality.

Although dynamic-based implementation is not useful for
a practical engineer, who want to know the stubborn mutants
before the tests are developed, it is useful for researchers who
want to investigate the reasons for mutant being hard-to-kill.
It is also useful for the testers who need the key constraints to
generate tests for killing the stubborn mutants and improving
the test suite quality effectively.

With the aids of D-RIP and JCMuta, an empirical study
is performed to evaluate our proposed method. In the study,
we measure the survival rates of 96,000 mutants from 22 sub-
ject programs. The results show that only 0.1% – 5.4% of
mutants are stubborn. It is also found that the contributions
made by each reason for mutant being stubborn are uneven:
the selective and test number stubborn are the major reasons
for mutants being stubborn in statement and branch testing,
while it is domain-stubborn for MC/DC tests in our study.

Meanwhile, the empirical results also reveal that, the hard-
to-reach and hard-to-propagate are main reasons for a mutant
being domain-stubborn, while unable-to-propagate is the
major reason for a mutant being unkilled in the study. The
results imply that the reachability and error propagation
are the key constraints for detecting stubborn mutants and
determining on whether a mutant is equivalent for programs
in our study.

4020 VOLUME 7, 2019

H. Lin et al.: Domain-RIP Analysis: A Technique for Analyzing Mutation Stubbornness

To our knowledge, D-RIP is the first mutation technique to
relate stubbornness with the testing methods and present the
possible reasons for mutant being hard-to-kill. However, it is
undecidable to determine the theoretical survival rate of each
mutant and the dynamic-based implementation requires vast
numbers of tests to estimate the survival rate precisely, which
is not useful for practical engineers who want to identify the
stubborn mutants before tests are developed.

The future work might involve predicting the survival rate
and identifying stubborn mutants without using test data. It is
possible to be achieved by using the syntactic pattern of a
mutant and machine learning technique to predict whether a
mutant is stubborn, as in [28]. Another future work refers to
investigating whether the stubbornness reasons can improve
the efficiency of tests design in killing the stubborn mutants.
Further experiments are required to address these issues.

REFERENCES

[1] Y. Jia and M. Harman, ‘‘An analysis and survey of the development of
mutation testing,’’ IEEE Trans. Softw. Eng., vol. 37, no. 5, pp. 649–678,
Sep./Oct. 2011.

[2] T. A. Budd, ‘‘Mutation analysis of program test data,’’ Ph.D. dissertation,
Dept. Comput. Sci., Yale Univ., New Haven, CT, USA, 1981.

[3] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, ‘‘Hints on test data
selection: Help for the practicing programmer,’’ Computer, vol. 11, no. 4,
pp. 34–41, Apr. 1978, doi: 10.1109/C-M.1978.218136.

[4] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
‘‘Are mutants a valid substitute for real faults in software testing?’’ in
Proc. 22nd ACM SIGSOFT Int. Symp. Found. Softw. Eng. (FSE), 2014,
pp. 654–665, doi: 10.1145/2635868.2635929.

[5] J. H. Andrews, L. C. Briand, and Y. Labiche, ‘‘Is mutation an appro-
priate tool for testing experiments?’’ in Proc. 27th Int. Conf. Softw.
Eng. (ICSE), Saint Louis, MO, USA, 2005, pp. 402–411, doi: 10.1109/
ICSE.2005.1553583.

[6] M. Daran and P. Thévenod-Fosse, ‘‘Software error analysis: A real
case study involving real faults and mutations,’’ in Proc. ISSTA, 1996,
pp. 158–171.

[7] M. Papadakis, D. Shin, S. Yoo, and D.-H. Bae, ‘‘Are mutation scores
correlated with real fault detection? A large scale empirical study on the
relationship between mutants and real faults,’’ in Proc. 40th Int. Conf.
Softw. Eng. (ICSE), 2018, pp. 537–548, doi: 10.1145/3180155.3180183.

[8] R. A. DeMilli and A. J. Offutt, ‘‘Constraint-based automatic test data gen-
eration,’’ IEEE Trans. Softw. Eng., vol. 17, no. 9, pp. 900–910, Sep. 1991,
doi: 10.1109/32.92910.

[9] M. Harman, Y. Jia, and W. B. Langdon, ‘‘Strong higher order mutation-
based test data generation,’’ in Proc. 19th ACM SIGSOFT Symp. 13th Eur.
Conf. Found. Softw. Eng. (ESEC/FSE), 2011, pp. 212–222, doi: 10.1145/
2025113.2025144.

[10] L. Zhang, T. Xie, L. Zhang, N. Tillmann, J. de Halleux, and H. Mei,
‘‘Test generation via dynamic symbolic execution for mutation test-
ing,’’ in Proc. IEEE Int. Conf. Softw. Maintenance, Timisoara, Romania,
Sep. 2010, pp. 1–10, doi: 10.1109/ICSM.2010.5609672.

[11] M. Papadakis and N. Malevris, ‘‘Automatic mutation test case generation
via dynamic symbolic execution,’’ in Proc. IEEE 21st Int. Symp. Softw.
Rel. Eng., San Jose, CA, USA, Nov. 2010, pp. 121–130, doi: 10.1109/
ISSRE.2010.38.

[12] R. Baker and I. Habli, ‘‘An empirical evaluation of mutation testing
for improving the test quality of safety-critical software,’’ IEEE
Trans. Softw. Eng., vol. 39, no. 6, pp. 787–805, Jun. 2013, doi:
10.1109/TSE.2012.56.

[13] B. H. Smith and L. Williams, ‘‘On guiding the augmentation of an auto-
mated test suite via mutation analysis,’’ Empirical Softw. Eng., vol. 14,
no. 3, pp. 341–369, Jun. 2009, doi: 10.1007/s10664-008-9083-7.

[14] A. J. Offutt, J. Pan, K. Tewary, and T. Zhang, ‘‘An experimental evaluation
of data flow and mutation testing,’’ Softw., Pract. Exper., vol. 26, no. 2,
pp. 165–176, Feb. 1996.

[15] P. G. Frankl, S. N. Weiss, and C. Hu, ‘‘All-uses vs mutation testing:
An experimental comparison of effectiveness,’’ J. Syst. Softw., vol. 38,
no. 3, pp. 235–253, 1997.

[16] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, ‘‘Using
mutation analysis for assessing and comparing testing coverage crite-
ria,’’ IEEE Trans. Softw. Eng., vol. 32, no. 8, pp. 608–624, Aug. 2006,
doi: 10.1109/TSE.2006.83.

[17] G. Kaminski, P. Ammann, and J. Offutt, ‘‘Better predicate testing,’’ in
Proc. 6th Int. Workshop Automat. Softw. Test (AST), 2011, pp. 57–63,
doi: 10.1145/1982595.1982608.

[18] P. Ammann, M. E. Delamaro, and J. Offutt, ‘‘Establishing theoretical
minimal sets of mutants,’’ in Proc. IEEE 7th Int. Conf. Softw. Test.,
Verification Validation, Cleveland, OH, USA, Mar. 2014, pp. 21–30,
doi: 10.1109/ICST.2014.13.

[19] B. Kurtz, P. Ammann, M. E. Delamaro, J. Offutt, and L. Deng,
‘‘Mutant subsumption graphs,’’ in Proc. IEEE 7th Int. Conf. Softw. Test.,
Verification Validation Workshops, Cleveland, OH, USA, Mar. 2014,
pp. 176–185, doi: 10.1109/ICSTW.2014.20.

[20] B. Kurtz, P. Ammann, and J. Offutt, ‘‘Static analysis of mutant
subsumption,’’ in Proc. IEEE 8th Int. Conf. Softw. Test., Verifica-
tion Validation Workshops (ICSTW), Graz, Austria, 2015, pp. 1–10,
doi: 10.1109/ICSTW.2015.7107454.

[21] B. Kurtz, P. Ammann, J. Offutt, and M. Kurtz, ‘‘Are we there yet? How
redundant and equivalent mutants affect determination of test complete-
ness,’’ in Proc. IEEE 9th Int. Conf. Softw. Test., Verification Valida-
tion Workshops (ICSTW), Chicago, IL, USA, Apr. 2016, pp. 142–151,
doi: 10.1109/ICSTW.2016.41.

[22] M. Papadakis, C. Henard, M. Harman, Y. Jia, and Y. Le Traon, ‘‘Threats
to the validity of mutation-based test assessment,’’ in Proc. 25th Int.
Symp. Softw. Test. Anal. (ISSTA), 2016, pp. 354–365, doi: 10.1145/
2931037.2931040.

[23] T. A. Budd andD. Angluin, ‘‘Two notions of correctness and their relation
to testing,’’ Acta Inform., vol. 18, pp. 31–45, Mar. 1982.

[24] L. Madeyski, W. Orzeszyna, R. Torkar, and M. Jozala, ‘‘Overcoming
the equivalent mutant problem: A systematic literature review and a
comparative experiment of second order mutation,’’ IEEE Trans. Softw.
Eng., vol. 40, no. 1, pp. 23–42, Jan. 2014, doi: 10.1109/TSE.2013.44.

[25] D. Schuler and A. Zeller, ‘‘Covering and uncovering equivalent
mutants,’’ Softw. Test. Verification Rel., vol. 23, pp. 353–374, Aug. 2013,
doi: 10.1002/stvr.1473.

[26] H. Zhu, P. A. V. Hall, and H. R. John, ‘‘Software unit test coverage and
adequacy,’’ ACM Comput. Surv., vol. 29, no. 4, pp. 366–427, Dec. 1997,
doi: 10.1145/267580.267590.

[27] X. Yao, M. Harman, and Y. Jia, ‘‘A study of equivalent and stub-
born mutation operators using human analysis of equivalence,’’ in Proc.
36th Int. Conf. Softw. Eng. (ICSE), 2014, pp. 919–930, doi: 10.1145/
2568225.2568265.

[28] R. Just, B. Kurtz, and P. Ammann, ‘‘Inferring mutant utility from program
context,’’ in Proc. 26th ACM SIGSOFT Int. Symp. Softw. Test. Anal.
(ISSTA), 2017, pp. 284–294, doi: 10.1145/3092703.3092732.

[29] A. S. Namin, X. Xue, O. Rosas, and P. Sharma, ‘‘MuRanker: A mutant
ranking tool,’’ Softw. Test. Verification Rel., vol. 25, pp. 572–604,
Aug. 2015, doi: 10.1002/stvr.1542.

[30] W. Visser, ‘‘What makes killing a mutant hard,’’ in Proc. 31st
IEEE/ACM Int. Conf. Automat. Softw. Eng. (ASE), 2016, pp. 39–44,
doi: 10.1145/2970276.2970345.

[31] B. Lindstrom, J. Offutt, L. Gonzalez-Hernandez, and S. F. Andler,
‘‘Identifying useful mutants to test time properties,’’ in Proc. IEEE Int.
Conf. Softw. Test., Verification Validation Workshops (ICSTW), Västeräs,
Sweden, Apr. 2018, pp. 69–76, doi: 10.1109/ICSTW.2018.00030.

[32] P. Godefroid, N. Klarlund, and K. Sen, ‘‘DART: Directed automated
random testing,’’ in Proc. ACM SIGPLAN Conf. Program. Lang. Design
Implement. (PLDI), 2005, pp. 213–223, doi: 10.1145/1065010.1065036.

[33] C. Cadar et al., ‘‘Symbolic execution for software testing in practice:
Preliminary assessment,’’ in Proc. 33rd Int. Conf. Softw. Eng. (ICSE),
2011, pp. 1066–1071, doi: 10.1145/1985793.1985995.

[34] N. Alshahwan and M. Harman, ‘‘State aware test case regeneration for
improving Web application test suite coverage and fault detection,’’ in
Proc. Int. Symp. Softw. Test. Anal. (ISSTA), 2012, pp. 45–55, doi: 10.1145/
2338965.2336759.

[35] Q. Yang, J. J. Li, and D. M. Weiss, ‘‘A survey of coverage-based test-
ing tools,’’ in Proc. Int. Workshop Automat. Softw. Test (AST), 2006,
pp. 99–103, doi: 10.1145/1138929.1138949.

VOLUME 7, 2019 4021

http://dx.doi.org/10.1109/C-M.1978.218136
http://dx.doi.org/10.1145/2635868.2635929
http://dx.doi.org/10.1109/ICSE.2005.1553583
http://dx.doi.org/10.1109/ICSE.2005.1553583
http://dx.doi.org/10.1145/3180155.3180183
http://dx.doi.org/10.1109/32.92910
http://dx.doi.org/10.1145/2025113.2025144
http://dx.doi.org/10.1145/2025113.2025144
http://dx.doi.org/10.1109/ICSM.2010.5609672
http://dx.doi.org/10.1109/ISSRE.2010.38
http://dx.doi.org/10.1109/ISSRE.2010.38
http://dx.doi.org/10.1109/TSE.2012.56
http://dx.doi.org/10.1007/s10664-008-9083-7
http://dx.doi.org/10.1109/TSE.2006.83
http://dx.doi.org/10.1145/1982595.1982608
http://dx.doi.org/10.1109/ICST.2014.13
http://dx.doi.org/10.1109/ICSTW.2014.20
http://dx.doi.org/10.1109/ICSTW.2015.7107454
http://dx.doi.org/10.1109/ICSTW.2016.41
http://dx.doi.org/10.1145/2931037.2931040
http://dx.doi.org/10.1145/2931037.2931040
http://dx.doi.org/10.1109/TSE.2013.44
http://dx.doi.org/10.1002/stvr.1473
http://dx.doi.org/10.1145/267580.267590
http://dx.doi.org/10.1145/2568225.2568265
http://dx.doi.org/10.1145/2568225.2568265
http://dx.doi.org/10.1145/3092703.3092732
http://dx.doi.org/10.1002/stvr.1542
http://dx.doi.org/10.1145/2970276.2970345
http://dx.doi.org/10.1109/ICSTW.2018.00030
http://dx.doi.org/10.1145/1065010.1065036
http://dx.doi.org/10.1145/1985793.1985995
http://dx.doi.org/10.1145/2338965.2336759
http://dx.doi.org/10.1145/2338965.2336759
http://dx.doi.org/10.1145/1138929.1138949

H. Lin et al.: Domain-RIP Analysis: A Technique for Analyzing Mutation Stubbornness

[36] K. Lakhotia, M. Harman, and H. Gross, ‘‘AUSTIN: An open source tool
for search based software testing of C programs,’’ Inf. Softw. Technol.,
vol. 55, no. 1, pp. 112–125, Jan. 2013, doi: 10.1016/j.infsof.2012.03.009.

[37] J. Malburg and G. Fraser, ‘‘Combining search-based and constraint-based
testing,’’ in Proc. 26th IEEE/ACM Int. Conf. Automat. Softw. Eng. (ASE),
Nov. 2011, pp. 436–439, doi: 10.1109/ASE.2011.6100092.

[38] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi,
‘‘A survey of symbolic execution techniques,’’ ACM Comput. Surv.,
vol. 51, no. 3, May 2018, Art. no. 50, doi: 10.1145/3182657.

[39] R. Majumdar and K. Sen, ‘‘Hybrid concolic testing,’’ in Proc. 29th
Int. Conf. Softw. Eng. (ICSE), May 2007, pp. 416–426, doi: 10.1109/
ICSE.2007.41.

[40] S. J. Galler and B. K. Aichernig, ‘‘Survey on test data generation
tools,’’ Int. J. Softw. Tools Technol. Transf., vol. 16, no. 6, pp. 727–751,
Nov. 2014, doi: 10.1007/s10009-013-0272-3.

[41] P. McMinn, ‘‘Search-based software test data generation: A survey,’’
Softw. Test. Verification Rel., vol. 14, no. 2, pp. 105–156, 2004,
doi: 10.1002/stvr.294.

[42] A. Ganjali. (2009). A requirements-based partition testing framework
using particle swarm optimization technique. UWSpace. [Online]. Avail-
able: http://hdl.handle.net/10012/4242

[43] J. Mayer and C. Schneckenburger, ‘‘An empirical analysis and com-
parison of random testing techniques,’’ in Proc. ACM/IEEE Int. Symp.
Empirical Softw. Eng. (ISESE), New York, NY, USA, 2006, pp. 105–114,
doi: 10.1145/1159733.1159751.

[44] S. Morasca and S. Serra-Capizzano, ‘‘On the analytical comparison
of testing techniques,’’ SIGSOFT Softw. Eng. Notes, vol. 29, no. 4,
pp. 154–164, Jul. 2004, doi: 10.1145/1013886.1007533.

[45] W. J. Gutjahr, ‘‘Partition testing vs. random testing: The influence of
uncertainty,’’ IEEE Trans. Softw. Eng., vol. 25, no. 5, pp. 661–674,
Sep. 1999, doi: 10.1109/32.815325.

[46] N. Simeon, ‘‘On random and partition testing,’’ in Proc. ACM SIGSOFT
Int. Symp. Softw. Test. Anal. (ISSTA), W. Tracz, Ed. New York, NY, USA:
ACM, 1998, pp. 42–48, doi: 10.1145/271771.271785.

[47] F. T. Chan, T. Y. Chen, I. K. Mak, and Y. T. Yu, ‘‘Proportional sampling
strategy: Guidelines for software testing practitioners,’’ Inf. Softw. Tech-
nol., vol. 38, no. 12, pp. 775–782, 1996.

[48] T. Y. Chen and Y. T. Yu, ‘‘On the expected number of failures detected by
subdomain testing and random testing,’’ IEEE Trans. Softw. Eng., vol. 22,
no. 2, pp. 109–119, Feb. 1996, doi: 10.1109/32.485221.

[49] T. Y. Chen and Y. T. Yu, ‘‘On the relationship between partition and
random testing,’’ IEEE Trans. Softw. Eng., vol. 20, no. 12, pp. 977–980,
Dec. 1994, doi: 10.1109/32.368132.

[50] P. G. Frankl and E. J. Weyuker, ‘‘Provable improvements on branch
testing,’’ IEEE Trans. Softw. Eng., vol. 19, no. 10, pp. 962–975, Oct. 1993,
doi: 10.1109/32.245738.

[51] E. J.Weyuker, ‘‘Canwemeasure software testing effectiveness?’’ inProc.
1st Int. Softw. Metrics Symp., Baltimore, MD, USA, 1993, pp. 100–107,
doi: 10.1109/METRIC.1993.263796.

[52] P. G. Frankl and E. J. Weyuker, ‘‘A formal analysis of the fault-detecting
ability of testing methods,’’ IEEE Trans. Softw. Eng., vol. 19, no. 3,
pp. 202–213, Mar. 1993, doi: 10.1109/32.221133.

[53] E. J. Weyuker and B. Jeng, ‘‘Analyzing partition testing strategies,’’
IEEE Trans. Softw. Eng., vol. 17, no. 7, pp. 703–711, Jul. 1991,
doi: 10.1109/32.83906.

[54] R. Hamlet, ‘‘Theoretical comparison of testing methods,’’ in Proc.
ACM SIGSOFT 3rd Symp. Softw. Test., Anal., Verification (TAV3),
R. A. Kemmerer, Ed. New York, NY, USA: ACM, 1989, pp. 28–37,
doi: 10.1145/75308.75313.

[55] J. W. Duran and S. C. Ntafos, ‘‘An evaluation of random testing,’’
IEEE Trans. Softw. Eng., vol. SE-10, no. 4, pp. 438–444, Jul. 1984,
doi: 10.1109/TSE.1984.5010257.

[56] P. Ammann and J. Offutt, Introduction to Software Testing, 1st ed.
New York, NY, USA: Cambridge Univ. Press, 2008.

[57] A. J. Offutt and J. H. Hayes, ‘‘A semantic model of program faults,’’ in
Proc. ACM SIGSOFT Int. Symp. Softw. Test. Anal. (ISSTA), S. J. Zeil
and W. Tracz, Eds. New York, NY, USA: ACM, 1996, pp. 195–200,
doi: 10.1145/229000.226317.

[58] L. J. Morell, ‘‘A theory of fault-based testing,’’ IEEE Trans. Softw. Eng.,
vol. 16, no. 8, pp. 844–857, Aug. 1990, doi: 10.1109/32.57623.

[59] J. M. Voas, ‘‘PIE: A dynamic failure-based technique,’’ IEEE Trans.
Softw. Eng., vol. 18, no. 8, pp. 717–727, Aug. 1992.

[60] B. Korel, ‘‘PELAS-program error-locating assistant system,’’ IEEE
Trans. Softw. Eng., vol. SE-14, no. 9, pp. 1253–1260, Sep. 1988.

[61] J. A. Jones and M. J. Harrold, ‘‘Test-suite reduction and prioritization for
modified condition/decision coverage,’’ IEEE Trans. Softw. Eng., vol. 29,
no. 3, pp. 195–209, Mar. 2003, doi: 10.1109/TSE.2003.1183927.

[62] Y. Yu, J. A. Jones, andM. J. Harrold, ‘‘An empirical study of the effects of
test-suite reduction on fault localization,’’ in Proc. 30th Int. Conf. Softw.
Eng. (ICSE), 2008, pp. 201–210, doi: 10.1145/1368088.1368116.

[63] D. Jeffrey andN.Gupta, ‘‘Test suite reductionwith selective redundancy,’’
in Proc. 21st IEEE Int. Conf. Softw. Maintenance (ICSM), Sep. 2005,
pp. 549–558, doi: 10.1109/ICSM.2005.88.

[64] M. J. Harrold, R. Gupta, andM. L. Soffa, ‘‘A methodology for controlling
the size of a test suite,’’ ACM Trans. Softw. Eng. Method, vol. 2, no. 3,
pp. 270–285, 1993, doi: 10.1145/152388.152391.

[65] G. Fraser and F. Wotawa, ‘‘Redundancy based test-suite reduction,’’
in Proc. 10th Int. Conf. Fundam. Approaches Softw. Eng. (FASE),
M. B. Dwyer andA. Lopes, Eds. Berlin, Germany: Springer-Verlag, 2007,
pp. 291–305.

[66] X.-Y. Ma, Z.-F. He, B.-K. Sheng, and C.-Q. Ye, ‘‘A genetic algorithm for
test-suite reduction,’’ in Proc. IEEE Int. Conf. Syst., Man Cybern., vol. 1,
Oct. 2005, pp. 133–139, doi: 10.1109/ICSMC.2005.1571134.

[67] H. Do, S. Elbaum, and G. Rothermel, ‘‘Supporting controlled experimen-
tation with testing techniques: An infrastructure and its potential impact,’’
Empirical Softw. Eng., vol. 10, no. 4, pp. 405–435, Oct. 2005.

[68] H. Agrawal et al., ‘‘Design of mutant operators for the C programming
language,’’ Dept. Comput. Sci., Purdue Univ., West Lafayette, IN, USA,
Tech. Rep., Mar. 1989.

[69] M. E. Delamaro and J. C. Maldonado, ‘‘Proteum/IM 2.0: An integrated
mutation testing environment,’’ in Mutation Testing for the New Cen-
tury (International Series on Advances in Database Systems), vol. 24,
W. E. Wong, Ed. Norwell, MA, USA: Kluwer, 2001, pp. 91–101.

[70] W. E. Howden, ‘‘Weak mutation testing and completeness of test sets,’’
IEEE Trans. Softw. Eng., vol. SE-8, no. 4, pp. 371–379, Jul. 1982,
doi: 10.1109/TSE.1982.235571.

HUAN LIN was born in Xinjiang, China, in 1989.
He received the B.S. degree in electrical engi-
neering from Center South University, Changsha,
Hunan, China, in 2012, and the M.S. degree in
software engineering from the School of Com-
puter Science and Engineering, Beijing University
of Aeronautics and Astronautics, Beijing, China,
in 2015. He is currently pursuing the Ph.D. degree
with the State Key Laboratory of Networking and
Switching Technology, Beijing University of Posts

and Telecommunications. His research interests include program analysis
and mutation testing.

YAWEN WANG was born in Shaanxi, China,
in 1983. She received the Ph.D. degree in com-
munication and information system from the
Beijing University of Posts and Telecommunica-
tions, Beijing, in 2010. She is currently an Asso-
ciate Professor with the State Key Laboratory of
Networking and Switching Technology, Beijing
University of Posts and Telecommunications. Her
research interests include static analysis and auto-
matic software testing. She is a member of CCF.

4022 VOLUME 7, 2019

http://dx.doi.org/10.1016/j.infsof.2012.03.009
http://dx.doi.org/10.1109/ASE.2011.6100092
http://dx.doi.org/10.1145/3182657
http://dx.doi.org/10.1109/ICSE.2007.41
http://dx.doi.org/10.1109/ICSE.2007.41
http://dx.doi.org/10.1007/s10009-013-0272-3
http://dx.doi.org/10.1002/stvr.294
http://dx.doi.org/10.1145/1159733.1159751
http://dx.doi.org/10.1145/1013886.1007533
http://dx.doi.org/10.1109/32.815325
http://dx.doi.org/10.1145/271771.271785
http://dx.doi.org/10.1109/32.485221
http://dx.doi.org/10.1109/32.368132
http://dx.doi.org/10.1109/32.245738
http://dx.doi.org/10.1109/METRIC.1993.263796
http://dx.doi.org/10.1109/32.221133
http://dx.doi.org/10.1109/32.83906
http://dx.doi.org/10.1145/75308.75313
http://dx.doi.org/10.1109/TSE.1984.5010257
http://dx.doi.org/10.1145/229000.226317
http://dx.doi.org/10.1109/32.57623
http://dx.doi.org/10.1109/TSE.2003.1183927
http://dx.doi.org/10.1145/1368088.1368116
http://dx.doi.org/10.1109/ICSM.2005.88
http://dx.doi.org/10.1145/152388.152391
http://dx.doi.org/10.1109/ICSMC.2005.1571134
http://dx.doi.org/10.1109/TSE.1982.235571

H. Lin et al.: Domain-RIP Analysis: A Technique for Analyzing Mutation Stubbornness

YUNZHAN GONG was born in Shandong, China,
in 1962. He received the master’s degree in com-
puter from the National University of Defense
Technology in 1986, and the Ph.D. degree in com-
puter from the Institute of Computing Technology,
Chinese Academy of Sciences, in 1991. From
1995 to 2006, he was a Professor with the Armored
Engineering Institute of the PLA. He has been
a Professor with the Research Institute of Net-
working Technology, Beijing University of Posts

and Telecommunications, since 2006. His current research interests include
software testing and software reliability. He received the China Engineering
Science Realistic Award, the Chinese Academy of Natural Sciences Award,
and the Military Progress Prize in Science and Technology.

DAHAI JIN was born in Liaoning, China, in 1974.
He received the master’s and Ph.D. degrees in
information security from the Armored Engineer-
ing Institute of the PLA in 2002 and 2006, respec-
tively. In 2008, he was a Post-Doctoral Fellowwith
the Beijing University of Posts and Telecommuni-
cations, where he has been an Associate Professor
since 2010. His current research interests include
software testing and static analysis.

VOLUME 7, 2019 4023

	INTRODUCTION
	DEFINITION
	SUBDOMAIN-BASED TESTING MODEL
	SUBDOMAIN-BASED TESTING METHOD
	SUBDOMAIN-BASED TEST SELECTION
	ANALYTICAL SOLUTIONS OF SURVIVAL RATE
	SELECTION-RELATED REASONS

	REACHABILITY-INFECTION-PROPAGATION
	FAULT DETECTION MODEL
	KEY CONSTRAINT IN SUBDOMAIN
	KEY CONSTRAINTS IN RIP MODEL
	CONSTRAINT-BASED REASONS

	DYNAMIC-BASED IMPLEMENTATION
	SUBDOMAIN DIVISION
	MUTATION-DIRECTED TEST CLASSIFICATION
	PROTOTYPE TOOL

	EXPERIMENTAL EVALUATION
	SUBJECTS
	DISTRIBUTION OF SURVIVAL RATE
	PREVALENCE OF STUBBORN MUTANTS
	REASONS FOR STUBBORN MUTANTS

	DISCUSSION
	CONSTRUCT VALIDITY
	INTERNAL VALIDITY
	EXTERNAL VALIDITY
	LIMITATION OF D-RIP TECHNIQUE

	RELATED WORKS
	CONCLUSIONS
	REFERENCES
	Biographies
	HUAN LIN
	YAWEN WANG
	YUNZHAN GONG
	DAHAI JIN

