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ABSTRACT Nowadays, real-time scheduling is one of the key issues in cyber–physical system. In real
production, dispatching rules are frequently used to react to disruptions. However, the man-made rules have
strong problem relevance, and the quality of results depends on the problem itself. The motivation of this
paper is to generate effective scheduling policies (SPs) through off-line learning and to implement the evolved
SPs online for fast application. Thus, the dynamic scheduling effectiveness can be achieved, and it will save
the cost of expertise and facilitate large-scale applications. Three types of hyper-heuristic methods were
proposed in this paper for coevolution of the machine assignment rules and job sequencing rules to solve
the multi-objective dynamic flexible job shop scheduling problem, including the multi-objective cooperative
coevolution genetic programming with two sub-populations, the multi-objective genetic programming with
two sub-trees, and the multi-objective genetic expression programming with two chromosomes. Both
the training and testing results demonstrate that the CCGP-NSGAII method is more competitive than
other evolutionary approaches. To investigate the generalization performance of the evolved SPs, the non-
dominated SPs were applied to both the training and testing scenarios to compare with the 320 types of
man-made SPs. The results reveal that the evolved SPs can discover more useful heuristics and behave more
competitive than the man-made SPs in more complex scheduling scenarios. It also demonstrates that the
evolved SPs have a strong generalization performance to be reused in new unobserved scheduling scenarios.

INDEX TERMS Scheduling, flexible job shop, hyper-heuristic, multi-objective, genetic programming.

NOMENCLATURE
MO-DFJSP multi-objective dynamic flexible job shop

scheduling problem
MAR machine assignment rule
JSR job sequencing rule
SP scheduling policy
GEP genetic expression programming
CCGP cooperative coevolution genetic

programming with two sub-populations
TTGP genetic programming with single population

that a GP individual contains two sub-trees
NSGAII nondominated sorting genetic algorithm II
SPEA2 strength Pareto evolutionary algorithm 2

I. INTRODUCTION
With the development of information and communication
technologies, many different kinds of sensors, automatic
robots and data acquisition systems are installed in the shop
floor [1]. Moreover, many new manufacturing concepts have
been proposed in recent years including cyber-physical sys-
tems (CPS), intelligent manufacturing and cloud manufac-
turing [2]. These manufacturing concepts aim to increase
factory productivity and efficient utilization of resources in
real time. The increasing use of sensors, robots, and net-
worked machines has resulted in continuous generation of
real time data. This situation poses a major challenge to the
current scheduling system because dynamic changes in the
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shop floor require real-time responses [3]. Thus, real-time
scheduling for dynamic manufacturing environments is one
of the key issues in CPS production management [4].

The scheduling problem presented in this study arises in a
real-world aeronautical manufacturing plant [5]. In this prob-
lem, there are several copies of the critical machines in the
shop floor to increase production capacity. Thus, an operation
can be processed on more than one machine and each of
which has the same function. Therefore, it is similar to the
flexible job shop scheduling problem [6].

In real production, scheduler need to react quickly to dis-
ruptions, using on-line scheduling by dispatching rules [7].
Such search-based techniques, which are time-consuming
and tailored to the specific problem, are not applicable in
dynamic or uncertain conditions and cannot react quickly
to changing system requirements (i.e. new order arrivals,
resource failures, cancellations of already handled jobs or
changes in lot size). The dispatching rules which were made
by experts are often used in the practical scheduling. This
approach does not aim to generate (near) optimal schedules,
but to generate those in acceptable quality and in a small
amount of time. However, the solution quality generated by
the man-made rules need to be further improved and the
generalization performance also need to be enhanced to adapt
to more complex scenarios.

The dynamic characteristics must be considered in this
study because it is the essence of dynamic scheduling.
We think that the dynamic characteristic of this problem
includes two aspects. On the one hand, the dynamic character-
istic of the MO-DFJSP considered in this study is new order
arrivals. This is because jobs usually arrive over time and
cannot be predicted before their arrivals. On the other hand,
the dynamic characteristic of the MO-DFJSP is the dynamic
factor during the solution process. The online computation
time of the evolved rules generated by hyper-heuristics is
similar to that of the heuristic methods. Although the training
time for the MO-DFJSP is about a few hours, the training
process can be carried out offline. For the practical scheduling
problems of different enterprises, training process can be
carried out when the workers get off work, and the rules
obtained by training can be applied quickly online. This is
also the motivation of this study. The authors want to develop
a training system that can automatically evolve heuristics
and replace the rules designed by experts to achieve better
scheduling results. It will save the cost of expertise and
facilitate large-scale applications.

To the best of our knowledge, there is no literature reported
on the hyper-heuristic coevolution of MAR and JSR for the
MO-DFJSP. In addition, the spirit of divide and conquer helps
to reduce the complexity of the problem. Therefore, this study
divides MO-DFJSP into two sub-problems: job sequencing
and machine allocation. The proposed cooperative coevo-
lution method evolves two kinds of rules simultaneously,
so as to achieve the goal of co-optimization, search for more
problem-related features, and improve the quality of evolved
SPs. Therefore, we focus on the hyper-heuristic coevolution

of the evolved SPs which can be applied to unseen scenar-
ios by combining various small heuristic components. Four
algorithms including multi-objective evolutionary algorithm,
cooperative coevolution, genetic programming and genetic
expression programming are integrated for heuristic gener-
ation to fabricate new SPs [8].

The motivation of this study is to generate effective SPs
through off-line learning and to implement the evolved SPs
online for fast application. In addition, the authors want to
evolve a set of SPs with good generalization performance to
be applied in practice, rather than find the optimal solution
for the MO-DFJSP. Compared to the previous studies, our
contributions are four aspects as follows.
1) Three types of methods (MO-CCGP, MO-TTGP and

MO-GEP) are proposed to achieve effective machine
selection and job sequencing decision making in the
MO-DFJSP.

2) Five collaboration methods are appropriately designed
to enhance the search space and quality of solutions.

3) An unsupervised learning framework is achieved to
automatically evolve heuristics and replace the rules
designed by experts.

4) Three Pareto dominance indicators between the evolved
SPs and the 320 combinations of benchmark rule are
defined, and the influence of the six experimental factors
are investigated to explore the relationship between the
parameters and the results.

The remainder of the paper is organized as follows.
Section II provides a review of recent studies on automated
design of heuristics for different types of production schedul-
ing problems. The problem description of the MO-DFSJP is
presented in Section III. In Section IV, the proposed algorithm
is illustrated in detail, and the multi-objective performance
measures for the algorithm are also provided. Section V
presents and discusses the results of the empirical experi-
ments. In Section VI, the generalization performance of the
evolved SPs is validated by comparing with the benchmark
SPs in new unobserved scenarios. Finally, conclusions and
directions for future research are drawn in Section VII.

II. LITERATURE REVIEW
There has been a lot of research on shop scheduling, numer-
ous techniques can be divided into the following types:
heuristic, meta-heuristic, hyper-heuristic and artificial intel-
ligence [9]. Heuristics named dispatching rules are fre-
quently used in practice due to their ease of implementation,
satisfactory performance, low computational requirement,
and flexibility to incorporate domain knowledge [10], [11].
A dispatching rule is used to assign a priority index to each
job waiting in the queue, and the job with the highest priority
is selected for processing on the machine. In the case of
machine selection, a priority index is assigned to each of
the suitable machines which are capable of processing the
needed operation. The machine with the highest priority is
selected for processing the operation. The major drawbacks
of dispatching rules include the performance of rules depend
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on the state of the system and none of rules is superior to all
others for all possible states [12].

Meta-heuristics are able to perform quite well and carry
more knowledge of the problem domain, such as the ant
colony optimization [13], artificial bee colony [14], artificial
immune system [15], evolutionary algorithms [16], particle
swarm optimization [17], tabu search [18] and variable neigh-
borhood search [19]. Even if meta-heuristics have signifi-
cantly attracted a lot of attentions from researchers, they still
have two disadvantages: the first is that researchers have
to design a problem-specific algorithm for each practical
scheduling problem. That means they can only be used for
the problem for which they have been developed. The sec-
ond drawback is that most meta-heuristics are too time-
consuming and cannot react quickly to changing system
requirements in real-time scheduling [20].

In the context of solving various types of shop schedul-
ing problems, many machine learning approaches have been
applied on this subject [21]. These methods include evo-
lutionary learning [22], gaussian processes [23], imitation
learning [24], data mining [25], reinforcement learning [26],
artificial neural-networks [27], fuzzy logic [28], ensemble
learning [29], and artificial immune networks [30]. However,
most of them belong to the category of supervised learning.
Hence, training cases need to be carefully designed because
they have a great impact on the test performance in supervised
learning.

In recent years, the concept of hyper-heuristic has been
proposed to solve the combinatorial optimization prob-
lems [31]. This approach has attracted attentions of many
researchers in the field of operation research [32]. It refers
to high-level iterative techniques, which guide a subordi-
nate heuristic by using intelligent concepts to explore the
search space of heuristics [33]. A hyper-heuristic algo-
rithm strives to find near-optimal heuristics for the problem
addressed in the search space of heuristics rather than in the
search space of solutions [34]. There are many studies that
using GP based hyper-heuristic to evolve dispatching rules
for many production environments covering single machine
scheduling, parallel machine scheduling, job shop scheduling
and flexible job shop scheduling. Nguyen et al. [35] has
reviewed the application of genetic programming (GP) in
production scheduling and gave a unified algorithm design
framework.

For solving the single machine scheduling problem,
Giger and Uzsoy [36] developed a GP algorithm to auto-
matically discover effective dispatching policies for batch
processor scheduling. Nie et al. [37] proposed a gene
expression programming-based scheduling rules construc-
tor (GEPSRC) to automatically construct effective dispatch-
ing rules for single machine scheduling with job release
dates. Jakobović and Marasović [38] addressed the problems
in single machine and job shop scheduling environments,
combined with several real-world properties including job
weights, dynamic job arrivals, precedence constraints and
sequence dependent setup times.

For solving the parallel machine scheduling problem,
Ðurasević et al. [39] proposed several different GP methods
for evolving priority functions, like dimensionally aware GP,
GP with iterative dispatching rules and GEP. He [40] also
investigated four different ensemble learning approaches
to improve the performance of GP for evolving dispatch-
ing rules, including simple ensemble combination, BagGP,
BoostGP, and cooperative coevolution.

For solving the job shop scheduling problem,
Nguyen et al. [41] proposed a new hybrid genetic pro-
gramming algorithm for dynamic job shop scheduling based
on a new representation, a new local search heuristic, and
efficient fitness evaluators. Results show that the newmethod
is effective regarding the quality of evolved rules which
are significantly smaller and contain more relevant attribute.
Nguyen et al. [42] also proposed a hyper-heuristic method
based on genetic programming to solve the multi-objective
job shop scheduling problem. Pickardt et al. [43] proposed a
two-stage approach for the semiconductor factory scheduling
problem. GP was used to evolve the job sequencing rules,
which would be grouped into candidate collections with stan-
dard rules from which good rules would be selected by evo-
lutionary computation (EA) and arranged for corresponding
machines. Zhang and Roy [44] proposed a semantics-based
dispatching rule selection approach for job shop scheduling.

For solving the flexible job shop scheduling problem,
Tay and Ho [45] proposed a GP method to generate dis-
patching rules to solve the multi-objective FJSP. The disad-
vantage of this study is that the least waiting time (LWT)
is used as the benchmark machine assignment rule to find
a suitable machine to process an operation. However, only
one machine assignment rule is not enough for the deeply
research of MO-DFJSP. Nie et al. [46] used gene expression
programming (GEP) to generate reactive scheduling policies.
The encoded chromosome in GEP consists of two parts for
two sub-problems, i.e., the job routing problem and the job
sequencing problem. In the GEP-based approach, two deci-
sion rules are encoded into a chromosome, which make them
evolve simultaneously. However, three measure criteria are
separately optimized in this paper. Zhang et al. [47] devel-
oped an efficient Gene Expression Programming (eGEP)
algorithm for generating rules automatically to achieve effec-
tive machine selection, job sequencing, and machine off-on
decision making. The single objective function is to minimize
the total energy consumption. However, only the dispatching
rules are evolved in this study and the interaction effect
between the dispatching rules and the machine assignment
rules is neglected in this research. Yska et al. [48] proposed a
cooperative coevolution framework to co-evolve the routing
and sequencing rules together using for FJSP. Yska et al. [49]
focus on feature construction to improve the effectiveness and
efficiency of GPHH. Zhang et al. [50] proposed to evolve
routing and sequencing rules based on GP with multi-tree
representation. Zhang et al. [51] proposed two different kinds
of strategies of surrogates for GP to automatically design
dispatching rules for DFJSP. However, three objectives were
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optimized separately in these four studies, which is a sin-
gle objective optimization problem. In addition, the fittest
selection is used as the collaboration scheme in the CCGP.
It should be noted that although each situation is solved
optimally, this does not always lead to an optimal overall
solution.

To conclude, hyper-heuristic coevolution of MAR and JSR
for the MO-DFJSP, which is a more general problem, has not
been analysed in prior studies. Therefore, our study serves as
the first attempt to solve this problem.

III. PROBLEM DESCRIPTION
A. PROBLEM FORMULATION
The MO-DFJSP involves two subproblems: assign each
operation to an appropriate machine (machine assign-
ment); sequence the operations on each machine (operation
sequence). Job shop scheduling problem has been proven to
be NP-hard [52]. FJSP as an extended problem, is also be
a NP-hard problem [53]. The MO-DFJSP with functionally
related machines is formulated as follows.
Indices:
i, h: index of jobs, i, h ∈ {0, 1, 2, . . . , n}
j, l: index of operations in a given job, j, l ∈ {0, 1, 2, . . . , k}
k, g: index of machines, k, g ∈ {0, 1, 2, . . . ,m}
Parameters:
n: number of jobs
m: number of machines
ni: total number of operations of job Ji
oi,j: the jth operation of job Ji
pi,j,k : processing time of operation oi,j on machine mk
pi,j: the mean processing time per operation is defined as

pi,j =
∑cm(oi,j)

k=1 pi,j,k
cm(oi,j)

, where cm(oi,j) denotes the number of
candidate machines that can process the operation oi,j
Mi,j: set of available machines for the operation oi,j of

job Ji. If Mi,j ⊂ M for at least one operation, it is a
partial flexibility FJSP (P-FJSP); while Mi,j = M for each
operation, it is a total flexibility FJSP (T-FJSP). According
to Kacem et al. [54], for the same number of machines
and jobs, a P-FJSP is more difficult to solve than a T-FJSP.
Hence, all experiments designed in this study are based on
the simulation model of a P-FJSP to test the generalization
performance of the evolved SPs.
wi: the weight of job Ji
ri: the release time of job Ji
di: the due date of Ji is defined as di = ri + c ·

∑ni
j=1 pi,j

c: the tightness factor of the due time di of job Ji
Ci: the completion time of job Ji
Fi: the flow time of job Ji is defined as Fi = Ci − ri
Ti: the tardiness of job Ji is defined as Ti =

max {0,Ci − di}
Ug: the utilization of shop floor
tav: the average interval time between the jobs arrived at

the shop floor is defined as tav =
pi,j·num(oi,j)

m·Ug
, where num(oi,j)

denotes the average operation number of jobs

Decision Variables:

xi,j,k =

{
1, if machine k is selected for operation oi,j
0, otherwise

ci,j,k = completion time of operation oi,j on machine mk
Three objective functions are simultaneously minimized:

minWTmean = 1/n ·
∑n

i=1
wi · Ti (1)

Tmax = max{Ti| i = 1, . . . , n} (2)

Fmean = 1/n ·
∑n

i=1
Fi (3)

and the constraints are

s.t. xi,j,k ∈ {0, 1} , ∀i, j, k (4)

ci,j,k > 0, ∀i, j, k (5)

ci,j,k − ci,j−1,g ≥ pi,j,k · xi,j,k ,

∀i; j ∈ {2, 3, . . . , ni} ; ∀k; ∀g (6)∑
k∈Mi,j

xi,j,k = 1, ∀i, j, k (7)

ci,j,k − ch,l,k ≥ pi,j,k · xi,j,k · xh,l,k , ∀i, j, k, h, l (8)

Mi,j ⊂ M , ∀i, j (9)

Equations (1)-(3) are used to minimize the mean weighted
tardiness (WTmean), maximum tardiness (Tmax) and mean
flow time (Fmean), respectively. Equations (4) and (5) are vari-
able restrictions. Equation (6) ensures the operation prece-
dence constraint. Equation (7) states that only one machine
could be selected from Mij for one operation. Equation (8)
ensures that two operations are not overlapping if both of
them are assigned on the same machine. Equation (9) indi-
cates that Mij for each operation comes from the given
machine set M.

For the sake of understanding, a simple instance of
MO-DFJSP is showed in Table 1, which is to execute three
jobs on three machines. Each cell of the table denotes the pro-
cessing time of the operation on the corresponding machine.
The two numbers (x, y) in column ‘Job’ mean that the release
time of job Ji is ‘x’, and the due time is ‘y’. The symbol ‘‘–’’
means that the machine cannot process the corresponding
operation. It should be noted that the release time of each job
is different from each other, and the tightness factor of each
job is set to 2 in this example.

TABLE 1. An instance of the MO-DFJSP.
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B. SIMULATION MODEL
In this study, a dynamic flexible job shop simulation model is
employed to evaluate the quality of the scheduling policies.
Below is the simulation assumption:
• Each machine is continuously available for production,
i.e., no machine breakdowns.

• There is no restriction on queue length at any machine,
i.e., buffer unlimited.

• There is no travel time between machines. Jobs are
available for processing on a machine immediately after
completing processing its previous operation.

• The machine setup time for two consecutive jobs is
included in the processing time.

• Job arrivals follow Poisson process.
• Weights of jobs are assigned based on the 4:2:1 rule
according to Pinedo’s study [55], which showed that
20% of the orders are particularly important, 60% are
generally average important and 20% are less important.

• For the distribution of the number of operations,
the missing setting is used to indicate that the number
of operations will follow a discrete uniform distribution
from 1 to the number of machines. Meanwhile, the full
setting indicates that each job will have its number of
operations equal to the number of machines in the shop.

• The process times of an operation on a machine follow
two types of distributions in the testing scenario, one
follows discrete uniform distribution U[1, 99] and the
other follows normal distribution N(120, 20).

• An operation of a job can be processed on a subset of
machines. The optional device number setting denotes
the number of machines could be selected for each
operation, which implies that how many machines are
available to process the operation in the shop. Two set-
tings are used in the testing scenario, one setting follows
discrete uniform distribution U[1, 2], the other setting
follows discrete uniform distribution U[1, 4].

As shown in Table 2, we applied a design of experiments
(DOE) approach to design both the training and testing sce-
narios. The full factorial design is adopted in this case. In the
DOE, three factors with two levels are used to construct
23 = 8 scenarios in the training set. Six factors with two
levels are used to construct 26 = 64 test scenarios in the test
set. The discrete event simulation model of the MO-DFJSP
is used to evaluate fitness of the evolved SPs. The simulation

TABLE 2. Parameter settings of the training and testing scenarios.

runs for a sufficiently long period after the shop reaches the
steady state. In each simulation replication, we begin with an
empty shop. The interval from the beginning of the simulation
until the arrival of the 500th job is considered as the warm-up
time, and the statistics from the 500th job to the next com-
pleted 2500 jobs will be used to calculate the simulation
performance.

IV. ALGORITHM DESIGN
The scheduling policy is evolved by three methods.
The first approach employs the cooperative coevolution
genetic programming with two multi-objective approaches
(CCGP-NSGAII/ CCGP-SPEA2) to evolve two decision
rules in two separate populations. In the second approach,
only one population with two multi-objective approaches
is used to evolve two decision rules in two sub-trees
(TTGP-NSGAII/ TTGP-SPEA2). The third approach
employs the multi-objective genetic expression programming
with two chromosomes (MO-GEP). Because the experiment
found that MO-GEP performs more efficient than MOGP,
whichmeans that the running time ofMO-GEP is shorter than
that ofMOGP under the same number of function evaluations
(NFEs). To make a relative fair comparison, GEP-NSGAII is
divided into two methods: one is the GEP-N-NSGAII which
runs for the same NFEs as the GP-based algorithms, the other
is GEP-T-NSGAII which runs for the similar computational
time as the GP-based algorithms.

A. FRAMEWORK
As shown in Figure 1, the framework of the automated heuris-
tic design approach contains two parts: the hyper-heuristic
based policies generation and the simulation-based fitness
evaluation. A scheduling policy (SP) which is used in the
MO-DFJSP includes two decision rules: a JSR and a MAR.
Firstly, when a new job arrival or an operation is completed,
the MAR calculates the priority index of each candidate
machine and selects the machine with the highest priority to
be arranged. And then, when a machine becomes idle, the job
sequencing rule calculates the priority index of each waiting
operation in its queue and determines the operation with the
highest priority to be processed next.

In the evolution stage, GP [56] and GEP [57] is employed
as the learning mechanism to evolve SPs for the MO-DFJSP.
Three types ofmethods are employed in this stage. In the eval-
uation stage, two individuals from two separate populations in
MO-CCGP (two sub-trees from an individual in MO-TTGP,
two chromosomes from an individual in MO-GEP) are col-
laborated to formulate a complete SP, which is decoded into
the JSR and MAR, and then they are applied to the relevant
decision points in the discrete-event simulation model. When
the simulation finished, the results are collected and returned
to assign fitness to the individual for GP evolution.

B. CHROMOSOME REPRESENTATION
GP is a special kind of evolution algorithm that is charac-
terized by its ability to evolve individuals of variable lengths,
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FIGURE 1. Framework of the hyper-heuristic based policies generation and the simulation-based fitness evaluation.

where solution candidates are encoded as tree structures [35].
GEP is a successor of GA and GP. GEP uses fixed length,
linear strings of chromosomes to represent expression trees of
different shapes and sizes, which makes GEP more versatile
than GP [57]. In this study, GP and GEP is employed to mine
more efficient SPs by establishing the corresponding relation
between the mathematical expressions and the individuals.

1) ENCODING OF INDIVIDUALS
In the MO-CCGP methods, there are two sub-populations
which denotes two types of decision rules. Each CCGP
individual is represented by a tree form of various lengths,
and each individual can only be encoded in one type of
rules. There is only one population in MO-TTGP, and each
individual contains two types of trees for the two decision
rules. In theMO-GEPmethods, each GEP individual consists
of two chromosomes for the two decision rules, and each
chromosome is represented by a fixed length string of genes.
Different from other evolution algorithms, typical applica-
tions of GP/GEP are the automatic creation of mathematical
formulas or computer programs for solving a specific task.
Therefore, it is rather obvious to use GP/GEP for the genera-
tion of composite SPs.

There are two types of symbol sets used to construct a GP
tree: function set and terminal set. The function set consists
of basic operators (+, −, ×, /, max, min). The function ‘/’
is the protected division, which returns 1 if the denominator
is 0. Based on the literature, we carefully design the terminal
set for two decision rules which are presented in Table 3 and
Table 4, respectively. The selection of suitable terminals is
generally problem-specific.

TABLE 3. Terminal set for JSR.

Figure 2 shows an example of the encoding of a job
sequencing rule(2PT+WINQ+NPT) as a GP tree struc-
ture and a GEP chromosome representation. According to

TABLE 4. Terminal set for MAR.
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FIGURE 2. GP Tree and GEP chromosome representation of an
exemplary JSR.

the Krava language which is designed by Ferreira [57],
the lengths of head and tail in Figure 2 are 10 and 11 respec-
tively. It is calculated by the equation t= h(n−1)+1, where
h and t are the lengths of the head and the tail of each part
respectively, n is the maximum number of arguments for all
the operators in functions set. The sequence of symbols is
translated into a GEP expression tree. Then, the GP/GEP tree
structure is decoded into a mathematical expression, and the
priority value of this representation is calculated according to
the current system.

2) GENETIC OPERATIONS
After all individuals have been evaluated by the simulation
model, the archive will be updated by the two multi-objective
approaches (NSGAII [58], SPEA2 [59]) to explore the Pareto
front of nondominated SPs. Then, the breeding step is real-
ized using the genetic operations.

GP individuals from the current population are selected
using the double tournament selection [60] to hand bloat. This
method does a tournament selection based on fitness. But the

individuals entering the tournament are not from the general
population but from other tournament selection operations
which were based on smallness. In this study, the tournament
size for fitness t1 is set to 7 and the tournament size for
smallness t2 is set to 2 according to [60]. After the double
tournament selection process, new individuals are created
using genetic operations.

An instance of subtree crossover and mutation in
MO-CCGP is shown in Figure 3, the subtree crossover recom-
bines subtrees from two selected parents by randomly picking
a node in each individual and swapping over the connecting
subtrees, thereby producing two new individuals. The subtree
mutation is performed by selecting a node of a chosen parent
and replacing the subtree rooted by that node with a newly
randomly-generated subtree.

The genetic operations in the proposed MO-TTGP are dif-
ferent from the traditional operations. Because the traditional
individual only contains one type of genetic material, but
the individual in MO-TTGP contains two types of GP trees.
There are three steps of crossover operation in theMO-TTGP.
Firstly, the crossover operator randomly selects two individ-
uals Ri and Rj. Then, a sub-tree(S-Ri) which belongs to one
type of GP trees in the individual Ri is randomly selected.
Finally, S-Ri is swapped with a randomly selected sub-tree
in Rj (S-Rj) which belongs to the same type of GP trees.
There are also three steps ofmutation operation inMO-TTGP.
Firstly, the mutation operator randomly chooses one individ-
uals Ri. Then, a sub-tree(S-Ri) which belongs to one type of
GP trees in the individual Ri is randomly selected. Finally,
S-Ri is replaced by a newly randomly-generated subtree
(Sn-Ri) which belongs to the same type of GP trees.
TheMO-GEPmethod utilizes iteratively the genetic opera-

tions including selection, mutation, transposition and recom-
bination. Roulette wheel selection is adopted here to select
individuals according to fitness. To enrich the diversification

FIGURE 3. An instance of subtree crossover and mutation in MO-CCGP.
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of population, mutation tends to produce perturbations on the
rules by randomly changing symbols in a chromosome. The
principle of transposition is randomly choosing a fragment
of a chromosome and insert it in the head. There are two
types of transposition operator applied in this study, IS trans-
position and RIS transposition. Recombination can keep the
favourable fragments in the next generation by exchanging
some material between two randomly chosen chromosomes.
There are two kinds of recombination used in this study:
one-point recombination and two-point recombination. More
details can refer to [46].

It should be stressed that only genetic materials from the
same type of selected trees will be exchanged. For example,
a tree representing JSR in a parent will only crossover with
a tree representing JSR of the other parent. This is because
the terminals used in the sub-population/tree/chromosome of
JSR are different from the sub-population/tree/ chromosome
of MAR.

C. PROCEDURES OF PROPOSED ALGORITHMS
The proposed MO-CCGP algorithms including CCGP-
NSGAII and CCGP-SPEA2 can be described as follows.
Step 1: The initial GP individuals are randomly generated

by using ramped half-and-half method (depth 2 to 6). The
MO-CCGP method starts with two randomly generated sub-
populations, one sub-population Pop for JSR and the other
sub-population Pws for MAR.
Step 2: The individual Ri op from the sub-population Pop

is paired with the individual Rj ws from the sub-population
Pws using random shuffling. Rk rep is the complete SP that
is formed by the combination of (Ri op, Rj ws).
Step 3: In the fitness evaluation stage, eight training sce-

narios O (more details are shown in Table 2) are loaded
to evaluate the performance of a complete SP Rk rep. The
fitness of (Ri op, Rj ws) is obtained by applying Rk rep to O
using one replication [61], and it is measured by the average
value of the specific objective across all training scenarios.
The simulation results are collected and returned to assign
fitness to the individual (Ri op, Rj ws).
Step 4: After all individuals have been evaluated,

the archive A will be updated according to the specific multi-
objective approach. To explore the Pareto front of nondom-
inated SPs, two multi-objective approaches are employed
to assign ranks and crowding distance (NSGAII) or Pareto
strength (SPEA2).
Step 5: The multi-objective performances (HVR, IGD,

Spacing) of the Pareto front in the current generation are cal-
culated according to the reference Pareto front PFref. In this
study, PFref is extracted from all Pareto fronts found by the
six proposed methods in 30 independent runs.
Step 6: If the maximum generation is not reached, new

sub-populations are generated by the double tournament
selection, subtree crossover and subtree mutation. After the
genetic operations have been done, the algorithm starts a new
generation

Step 7: If the maximum generation is reached, fast-
nondominated-sort method is applied to the last generation
of individuals to obtain the Pareto front PFknown.

Algorithm 1 CCGP-NSGAII/ CCGP-SPEA2
Input: simulation model O←{O1, . . . ,OT}
Output: the Pareto front of nondominated SPs PFknown
(1) initialize population Pop←{R1 op, . . ., Rn op},

Pws←{R1 ws,. . . ,Rn ws}
(2) generation←0, archive A← {}
(3) while generation ≤ max Generation do
(4) pair up the Ri op, Rj ws using random shuffling
(5) for all Ri op∈Pop do
(6) Rk rep← collaborate (Ri op, Rj ws)
(7) evaluate f(Rk rep) by applying Rk rep to O

using 1 rep
(8) f(Ri op), f(Rj ws)← f(Rk rep)
(9) end for

(10) assign ranks and crowding distance (NSGAII) or
Pareto strength (SPEA2) to build archive A

(11) calculate the multi-objective metrics of the Pareto
front in the current generation according to the
reference Pareto front PFref

(12) apply genetic operations to archive A to generate new
population

(13) generation← generation + 1
(14) end while
(15) apply fast-nondominated-sort to the last generation of

individuals to obtain the Pareto front PFknown.
(16) return PFknown

The proposed MO-TTGP methods which includes
TTGP-NSGAII and TTGP-SPEA2, are similar to the
MO-CCGP methods. The difference is that an individual
in MO-TTGP contains two sub-trees for two decision rules
when decoding for fitness evaluation. In this case, each
individual in MO-TTGP is equivalent to a complete SP.

The representation and the genetic operations of MO-GEP
are different from that of GP-based algorithms. However,
the overall process of the MO-GEP is similar to MO-TTGP,
which is not described in detail here.

D. PARAMETER SETTINGS
There are many methods for choosing representatives with
which to collaborate in CCGP [70]. Therefore, we conducted
experiments on five collaboration schemes based on the
CCGP-NSGAII method. Before introducing the experiment,
we need to clarify three questions: how to choose collabora-
tors, how many collaborators to choose, and how to assign
fitness when there are multiple collaborations.

The first question can be described as the collaborator
selection pressure. It is also the selection strategy of the
collaboration scheme. The second question can be called as
the collaboration pool size. It defines the number of collabo-
rators per subpopulation to use for a given fitness evaluation.
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Algorithm 2 TTGP-NSGAII/ TTGP-SPEA2
Input: simulation model O←{O1, . . . ,OT}
Output: the Pareto front of nondominated SPs PFknown
(1) initialize population P at random, P←{R1, R2..Rn}
(2) generation←0, archive A← {}
(3) while generation ≤ max Generation do
(4) for all Ri ∈ P do
(5) evaluate f(Ri) by applying Ri (Rop i, Rws i) to O

use 1 rep
(6) end for
(7) assign ranks and crowding distance (NSGAII) or

Pareto strength (SPEA2) to build archive A
(8) calculate the multi-objective metrics of the Pareto

front in the current generation according to the
reference Pareto front PFref

(9) apply genetic operations to archive A to generate new
population

(10) generation← generation + 1
(11) end while
(12) apply fast-nondominated-sort to the last generation of

individuals to obtain the Pareto front PFknown.
(13) return PFknown

There is no standard answer to the above two questions,
so it is necessary to conduct experiments on this problem
studied in this study. The third question can be defined as
the collaboration credit assignment. A clear answer to this
question is given in [70]. It is evident that using an optimistic
approach is generally the best mechanism for collaboration
credit assignment. Optimistic means assigning an individual
a fitness score equal to the value of its best collaboration.
Therefore, we use this optimistic approach for collaboration
credit assignment.

To make a relative fair comparison, all these collaboration
schemes use the same NFEs. The parameter configurations
of the collaboration scheme are shown in Table 5. There are
two parameter settings, one setting fixed population size
and changed evolutionary generations, and the other setting
fixed evolutionary generations and changed population size.
For example, ‘100-30’ means the population size is fixed to
100 and the generation is set to 30. In addition, ‘n’ denotes
the population size of each sub-population. This is because
the CCGP-NSGAIImethod evaluate both the parent and child
individuals in the evaluation process, the number of fitness

TABLE 5. Parameter settings of the collaboration scheme.

evaluations per generation is 100×2=200(except for the first
generation), and the total number of fitness evaluations is
200×30=6000. This setting will be used as a standard NFEs
of the collaboration schemes. Since the experiment was con-
ducted under the same algorithm framework CCGP-NSGAII,
and most of the running time was consumed in the evaluation
process. Therefore, the NFEs represents the running time,
and the running time of each collaboration scheme under
the same NFEs is roughly equal. Parameter P1 ensures that
the same NFEs can be achieved under the condition of the
same population size. Similarity, parameter P2 ensures that
the same NFEs can be achieved under the condition of the
same generations.

Complete selection method performs exhaustive pair-wise
evaluations, applying each individual in one population to
each in the other population. Such approach can be com-
putationally expensive in multi-population models, since the
NFEs used for each assessment of fitness is 4n2 (except for
the first generation). Therefore, its NFEs is 40,000 which
is much more than 6,000, so this study did not use this
collaboration method.

The two collaboration methods of random shuffling and
random selection randomly select one individual from the
other sub-population to pair with the current individual, and
then conduct the fitness evaluation of the combined individ-
ual. The difference between these two collaboration schemes
is that random shuffling method simultaneously assigns fit-
ness to both individuals, but the random selection method
only assigns fitness to the current individual but the matched
individual is not assessed. Therefore, the random shuffling
method needs only to be evaluated 2n times per generation,
but the random selection method needs to be evaluated 4n
times per generation. In addition, these two collaboration
methods have no relationship with fitness.

There are three collaboration methods which have rela-
tionship with fitness. They are tournament selection, fittest
selection, fittest and random selection. The tournament selec-
tion method chooses the individual by tournament selection
from alternative sub-population, the tournament size is set
to 2 in this experiment. In the fittest selection, an individual
is always combined with the fittest individual from each of
the other sub-populations. Similar to random selection, both
tournament selection and fittest selection needs to be evalu-
ated 4n times per generation. In fittest and random selection,
two individuals (best and random) are selected to pair with
the individual from the other sub-populations. Therefore,
the NFEs for this collaboration method is 8n per generation.
All these collaboration methods were applied to the same

training set as described in Table 2 in this study. Comparison
of multi-objective performance indicators in five collabora-
tion methods under the parameter setting of P1 are shown
below. The experimental results under the parameter setting
of P2 are similar to P1, so they are not described here.
As shown in Figure 4, the pink circle denotes the average
result and the red horizontal line represents the median result
of the corresponding algorithm. We can observe that the
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FIGURE 4. Performances of the collaboration methods in training
scenarios under the parameter setting of P1 (a) HVR (b) IGD (c) Spacing
(HVR to be maximized, Spacing and IGD to be minimized).

metrics of HVR, IGD and Spacing produced by random shuf-
fling method are significantly better than other collaboration
methods. For the HVR and IGD metrics, the result is that the
RSH>RS>TS>FS>FRS (‘>’ means ‘is significantly better
than’, ‘≥’ means ‘is not bad than’). In term of Spacing,
the result is that the RSH>RS≥FS>TS>FRS.

We can observe that each generation of RSH has less NFEs
than other collaboration methods. Under the same NFEs con-
ditions, RSH has evolved more generations and thus obtained
a better pareto solution set than other fourmethods. The fittest
selection method (FS) evolves each decision rule using the
best individual from the other sub-population. This is quite
similar to the family of numerical optimization techniques
which proceed by optimizing one function variable at a time
while holding the other variables constant. It is well known
that such procedures work well on functions whose vari-
ables are reasonably independent, but have difficulties with

functions with interacting variables. In addition, it should be
noted that although each situation is solved optimally, this
does not always lead to an optimal overall solution [71].
In conclusion, the random shuffling performed best among
the five collaboration methods, and it was used in this study.

Table 6 shows the parameter settings of the proposed
MO-CCGP andMO-TTGP algorithms. These parameters are
adjusted carefully based on our preliminary experiments, and
the results show that these parameter settings perform well
in both effectiveness and robustness. To make a relative fair
comparison, all GP-based methods proposed in this study use
the same NFEs. For the NSGAII-based methods, generation
is set to 50 and the population size is fixed to 200. Because
the NSGAII-based methods evaluate both the parent and
child individuals in the evaluation process, the number of
fitness evaluations per generation is 200×2=400, and the
total number of fitness evaluations is 50×400=20000. For
the SPEA2-based methods, generation is set to 100 and the
population size is fixed to 200. Therefore, the number of
fitness evaluations per generation is 200, and the total number
of fitness evaluations is 100×200=20000. These settings are
applied to achieve the same NFEs for fair comparison.

TABLE 6. Parameter settings of the MO-CCGP and MO-TTGP methods.

In addition, five different archive size settings (20,50,100,
150 and 175) for SPEA2-based methods are used to
investigate the impact on the three multi-objective per-
formance metrics. Based on our preliminary experiments,
the best setting that achieve high performance is 100.

As shown in Table 7, these parameters are set as rec-
ommended in [46]. It should be noted that the termination
condition for the GEP-N-NSGAII is set to 50 generations,
it is to ensure the same NFEs as the GP-based algorithms.
The running time of GEP-T-NSGAII is set to 67.5 minutes,
which is the average running time of the GP-based algorithm.
It is to ensure the similar computational time as the GP-based
algorithms.

E. PERFORMANCE METRICS
Three popular metrics are employed to evaluate the
performances of the proposed methods: Hypervolume Ratio
(HVR) [62], Inverted Generational Distance (IGD) [63], and
Spacing [64]. They can be expressed as follows:
• Hypervolume ratio (HVR): hypervolume is used to mea-
sure the size of the objective space dominated by the
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TABLE 7. Parameter settings of the MO-GEP methods.

obtained non-dominated front PFkonwn. A higher HV
value is desirable and denotes a good dominate perfor-
mance.

HV = volume(
⋃nPF

i=1
vi) (10)

Where nPF is the number of members in the obtained
non-dominated front PFkonwn, vi is the hypercube con-
structed with a reference point and the member i as the
diagonal of the hypercube [58]. HVR is the ratio of
the HV of PFkonwn and the HV of the reference Pareto
front PFref .

HVR =
HV (PFkonwn)
HV (PFref )

(11)

• Inverted Generational Distance (IGD): This is a variant
of the Generational Distance (GD) and represents a
combined or comprehensive indicator. It measures the
average distance from the reference Pareto front PFref
to Pareto front PFkonwn obtained by the algorithm.

IGD =
(
∑n

i=1 di
p)1/p

n
(12)

Where n is the number of all elements in PFref , p is set to
2 in this study, di is the Euclidean distance between the
member i in PFkonwn and its nearest member in PFref .
Pareto fronts with a lower IGD value are desirable and
denote a good convergence performance.

• Spacing: This indicator measures the distance variance
of neighboring vectors in PFkonwn. A lower Spacing
value indicates a good distribution of solutions along
PFkonwn.

Spacing =

√
1

nPF − 1

∑nPF

i=1
(d − di)

2
(13)

Where nPF is the number of members in the obtained
Pareto front PFkonwn, di is the minimum distance
between the member and its nearest member in PFkonwn,
d is the average value of all di.

PFref is normally the true Pareto front, which is unknown
in advance. Therefore, a reference Pareto front is adopted in
the calculation of these performance metrics. In this study,
PFref includes the nondominated SPs extracted from all SPs

found by the proposed methods in all independent runs.
Each experiment is conducted 30 independent runs for each
algorithm. In summary, the evolved SPs from 6 methods ×
30 runs = 180 Pareto fronts are combined into a common
pool, and the nondominated sorting technique is used to
extract the Pareto front from this pool.

V. EXPERIMENTAL RESULTS
A. TRAINING PERFORMANCE
The experiments are all implemented in Java 8.0 and
run on a computer with Intel Core i5-4590 3.30 GHz,
8 GB RAM.

For each performance metric, a Wilcoxon signed-rank test
with the significance level of 0.05 [65] is carried out on the
results obtained by 30 independent runs of each method.
Table 8 summarizes the statistical test results of Figure 5.
In this table, A denotes GEP-N-NSGAII, B denotes GEP-
T-NSGAII, C denotes CCGP-NSGAII, D denotes CCGP-
SPEA2, E denotes TTGP-NSGAII, F denotes TTGP- SPEA2.
For each performance metric (HVR, IGD and Spacing),
the sign of ‘+’, ‘−’, ‘=’ in method A vs. B indicates that
according to the metric, approach A is significantly better
than B, significantly worse than B, or there is no significant
difference between A and B (this case is already marked
in bold) based on the Wilcoxon signed rank test with the
significance level of 0.05.

TABLE 8. p-values of the statistical test for each metric on training set.

As shown in Figure 5, for the HVRmetric, the result is that
CCGP-NSGAII>CCGP-SPEA2>TTGP-NSGAII≥GEP-T-
NSGAII>TTGP-SPEA2≥GEP-N-NSGAII. For the IGD
metric, the result is that CCGP-NSGAII>CCGP-SPEA2≥
TTGP-NSGAII≥GEP-T-NSGAII>TTGP-SPEA2 ≥ GEP-
N-NSGAII. In term of Spacing, CCGP-NSGAII≥
TTGP-NSGAII>CCGP-SPEA2≥GEP-T-NSGAII ≥ TTGP-
SPEA2≥GEP-N-NSGAII. In addition, there is no significant
difference between the five algorithms in off-line training
time except for the GEP-N-NSGAII. This is because the
GEP-N-NSGAII use the same NFEs as the GP-based meth-
ods, but the running time of GEP-N-NSGAII is much less
than that of GP-based methods. It also shows that the GEP
algorithm is more efficient than GP. However, the solution
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FIGURE 5. Performances of the proposed methods in training scenarios
(a) HVR (b) IGD (c) Spacing (d) Running time.

quality of GEP-N-NSGAII is the worst in all the algorithms.
It should be stressed that the off-line training time is not
particularly important because the training process can be
carried out when the workers get off work.

In addition, the solution quality of GEP-T-NSGAII is much
better than that of TTGP-SPEA2 and GEP-N-NSGAII, but it
is still weaker than that of TTGP-NSGAII and MO-CCGP

under the same computational time. Since MO-GEP is inher-
ently unsuited to cooperative coevolution, it was solved using
a two chromosomes approach which is similar to the two sub-
trees model of the MO-TTGP.

From these results, we can observe that the metrics of HVR
and IGD produced by MO-CCGP are significantly better
than that of MO-TTGP methods and the MO-GEP methods.
In terms of Spacing, the values obtained by GP-NSGAII
basedmethods are significantly better than that of GP-SPEA2
based methods and the GEP-based methods. To conclude,
the collaborative patterns pose a great impact on the per-
formance metrics of HVR and IGD, and the multi-objective
approaches significantly affect the performance of Spacing.
The framework of MO-CCGP algorithm is more suitable for
solving complex scheduling problems with strong nonlinear
correlation.

In addition, there is a close relationship between the inter-
pretation and the simplification of SPs with the program
length of the evolved SPs. Hence, we recorded the aver-
age program length of a complete SP from the Pareto front
PFknown in each independent run. As shown in Figure 6(a),
the average program length of the MO-CCGP methods is
generally higher than that of the MO-TTGP methods. This
is because the cooperative co-evolution could find more
problem related features than the single population evolution
method. Besides, the SPs investigated in this study involve
two rules: JSR and MAR. Therefore, the program length of
the individual needs to be shown separately for two decision
rules. As shown in Figure 6(b), the program length of JSR is
smaller than that of MAR in the proposed methods. It indi-
cates that the machine assignment problem is relatively more
difficult than the job sequencing problem and MAR will use
more problem-related features.

Overall, we found that the CCGP-NSGAII method achieve
the best performance on the metrics of the HVR, IGD and
Spacing among the six proposed methods. However, the aver-
age program length of the evolved SPs generated by the
CCGP-NSGAII is higher than other methods. This is because
it contains more problem-related features.

Figure 7 shows the average performance metrics of HVR,
IGD and Spacing across generations of the GP-based meth-
ods from all the 30 independent runs. As shown in Figure 7(a),
the HVRs grow quite fast at the early generations and the
growing rate is smaller in the latter generations. It is very clear
that the MO-CCGPmethods achieve higher HVRmetric than
theMO-TTGPmethods. The HVRs obtained by the NSGAII-
based methods are significantly better than that of SPEA2-
based methods.

The detailed results from Figure 7(b) show that the MO-
CCGP methods achieve lower IGD metric much faster than
theMO-TTGPmethods. Apparently, theMO-CCGPmethods
only need half of the maximum NFEs to find the best IGD
metric that obtained by the MO-TTGP methods. Figure 7(c)
shows that the NSGAII-based methods achieve lower Spac-
ing metric than the SPEA2-based methods. These detailed
results confirm the above conclusions.
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FIGURE 6. Program length of the evolved SP (a) Average program length of the evolved SPs (b) Program length of the JSR and MAR, respectively.
(‘op’ and ‘ws’ represent the program length of the JSR and MAR, respectively).

FIGURE 7. Average performance metrics of the proposed methods across
generations (a) HVR (b) IGD (c) Spacing.

B. TESTING PERFORMANCE
To evaluate the generalization performance of the evolved
SPs, six aggregate Pareto fronts extracted from the six pro-
posed methods in the 30 independent runs are separately

applied to the test set. Because the random seed has a signif-
icant impact on simulation results, we use the same random
number seed for fair comparison of the six proposed methods
in each experiment. In summary, we conducted a total of
30 experiments for each algorithm, each of which adopted
the same random seed.

Table 9 summarizes the statistical test results of Figure 8.
We can observe that the six proposed methods have sig-
nificant differences in the three indicators. As shown in
Figure 8, for the HVR and IGD metrics, the result is that
CCGP-NSGAII>CCGP-SPEA2≥GEP-T-NSGAII≥TTGP-
NSGAII>TTGP-SPEA2≥GEP-N-NSGAII. In term of Spac-
ing, CCGP-NSGAII≥TTGP-NSGAII≥CCGP-SPEA2 ≥
GEP-T-NSGAII≥TTGP-SPEA2≥GEP-N-NSGAII. These
results confirm the above training performance and verify
the performance consistency of the proposed algorithms in
different environments.

TABLE 9. p-values of the statistical test for each metric on the test set.

In addition, the time performance of the evolved SP is
similar to that of the man-made SP on each test scenario,
which is within a few seconds. Therefore, the evolved SPs
are very suitable for online scheduling to cope with dynamic
changes.

VI. THE EVOLVED SCHEDULING POLICIES
To evaluate the generalization performance of the evolved
SPs, the Pareto front of the evolved SPs will be applied to
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FIGURE 8. Performances of the proposed methods on the test scenarios
(a) HVR (b) IGD (c) Spacing.

both the training and testing scenarios to compare with the
combinations of JSR and MAR reported in the literature.

A. COMPARISON TO EXISTING SPs ON TRAINNING SET
In this study, 320 combinations of benchmark SPs are used to
compare with the evolved SPs [10]–[12]. These benchmark
SPs are made up of 10 well-knownMARs and 30 JSRs which
are shown in Table 10 and Table 11, respectively. Because

TABLE 10. Benchmark machine assignment rules.

TABLE 11. Benchmark job sequencing rules.

the ATC rule contains parameter k, three parameter config-
urations with k equals 1.0, 2.0, 3.0 are used in this study.
Therefore, there are 32 JSR×10 MAR=320 combinations of
benchmark SPs used for the comparisonwith the evolved SPs.

To evaluate the effectiveness of the proposed methods,
the 320 types of benchmark SPs are applied to 8 training
scenarios (see Table 2), and 100 simulation replications
are performed for each scenario. Therefore, we perform
8×100=800 simulation replications to test the performance
of each SP on the training scenarios. Average value of the
specific objective of the 800 replications generated by the
benchmark SPs are recorded to compare with the results
generated by the nondominated SPs (extracted from the
reference Pareto front PFref ) on the training set. As shown
in Figure 9, the nondominated evolved SPs dominate nearly
all the man-made SPs under any objective.

B. COMPARISON TO EXISTING SPs ON TEST SET
To evaluate the generalization performance of the proposed
method, the evolved SPs in the aggregate Pareto front P are
compared to the 320 benchmark SPs in the set B in 64 test
scenarios. For each test scenario, 100 simulation replications
are performed for each SP, and the average value of the
specific objective of each SP is recorded

Three performance metrics as shown in Table 12 are used
to determine the Pareto dominance between each pair (Pi, Bj)
for all Pi ∈ P and Bj ∈ B. The first metric is the comparison
dominance which expresses the percentage that the evolved
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FIGURE 9. The performance of the nondominated evolved SPs and the
existing SPs in the training scenarios. (‘∗’ and ‘o’ respectively represent
the evolved and existing SPs).

SPs dominate the benchmark SPs in |P| ∗ |B| comparisons in
each test scenario.

The second metric is the total dominance which means
the Pareto dominance between the evolved set P and the
benchmark set B. After all the comparisons were done, an
evolved SP Pi can be classified into three categories [66].
• Dominating: if Pi is not dominated by any Bj ∈ B and
∃Bj ∈ B such that Pi dominates Bj. It is denoted by D
in Table 12.

• Non-dominated: if there is no dominance betweenPi and
Bj for ∀Bj ∈ B. It is denoted by ND in Table 12.

• Dominated: if ∃Bj ∈ B such that Pi is dominated by Bj.
It is denoted by DE in Table 12.

The third metric is the set coverage [67], the set coverage
C(P, B) represents the percentage of solutions in B that are
dominated by at least one solution in P. It can be described
as follows.

C(P,B) =
|{x ∈ B|∃y ∈ P : y dominate x}|

|B|
(14)

It should be stressed that C(B,P) is not necessarily equal to
1–C(P,B). If C(P,B) is larger than C(B,P), then P is superior
to B. The results are shown in Table 12. It is clear that the

evolved SPs always perform better than the man-made SPs
in the metrics of comparison dominance and set coverage.
But the total dominance varies greatly depending on the
different experimental configurations. Therefore, we use 26

full factorial design to investigate the effect of each factor.
The main effects plot of six factors for total dominance are
shown in Figure 10. Results with the main effects of six
factors are shown in Table 13, and the factors that have a
significant impact on the results have been marked in bold
and surrounded by boxes.

From these results we can observe that four main factors
(optional device number, utilization, operation number and
machine number) are positively correlated with the result of
total dominance. This is because the problem become more
complicated as the values of these factors increase. Therefore,
the evolved SPs behave more competitive than the man-made
rules and can find better heuristic knowledge in the huge
heuristic search space. In contrast, it is easy to see that there
are two main factors (process time and allowance factor)
are negatively correlated with the result of dominance. The
reason is that the degree of dispersion of Normal distribution
(120,20) is much lower than the Uniform distribution (1,99),
and the delivery date is more relaxed in the shop floor. Hence,
the search space is narrowed down and the problem is much
easier to solve. Therefore, the man-made rules can also find
useful knowledge to solve the problem as compared with the
evolved SPs.

As shown in Table 12, we can observe that there
are seven test scenarios (9,25,29,41,45,57,61) where the
dominating proportion on the total dominance of the
evolved SPs equals 0. These scenarios can be described as
(X,X,N,X,80,2). Because of the concentrated distribution of
the processing time N(120,20), low utilisation (80%) and the
low optional device number (2) settings in these scenarios,
the problem is more convenient to solve under these config-
urations. Therefore, man-made rules can also achieve similar
performance as compared with the evolved SPs. From what
has been mentioned above, we can safely draw a conclusion
from these results: the evolved SPs can discover more useful
heuristic knowledge and behave more competitive than the
man-made rules in more complex scheduling environments.
Thus, the generalization performance of the evolved SPs is
validated in the new unobserved scenarios.

FIGURE 10. The main effects plot of six factors for total dominance.
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TABLE 12. Performance of the dominance percentage of the evolved SPs.

C. INSIGHTS INTO THE EVOLVED SPs
We want to further investigate which specific objective of the
evolved SPs is dominated by the man-made rules. Therefore,
three evolved SPs (#1, #2, #3) as shown in Figure 11 are

selected from the aggerate Pareto fronts that perform well
on the specific objective of WTmean, Tmax and Fmean to
compare with the 320 types of benchmark SPs in 64 test
scenarios.
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FIGURE 11. Pareto front and the selected SPs. (‘∗’ denotes the
nondominated SPs and ‘o’ denotes the selected SPs).

TABLE 13. Estimated effects of the total dominance.

TABLE 14. Examples of the evolved SPs.

As shown in Table 14, the evolved SPs are complicated
to analysis because of the nature of GP algorithm. There are
many researches on the subject of the simplification and inter-
pretation of the evolved SPs [41], [68], [69]. However, this
work does not focus on this point but on the generalization
performance of the evolved SPs.

The three evolutionary SPs and the 320 types of bench-
mark SPs are simultaneously applied to the 64 test scenarios.
Meanwhile, 100 simulation replications are performed in
each test scenario. Average value of the specific objective
obtained from 100 independent simulation replications is
recorded as the performance metric of the test SP in each test
scenario.

The relative deviation (RD) is used to compare the evolved
SP and the benchmark SP under certain target in each test
scenario. And the average relative deviation (ARD) is used

for comparison between the evolved SP and the benchmark
SP on the average objective function value of the 64 test
scenarios. RD is defined as follows:

RD(#j, Insi) =
1
|T|

∑|T|

k=1

objjbest (bench, Insi)−obj(#j, Insi)

obj(#j, Insi)
(15)

In the formula, obj(#j, Insi) denotes the specific objective
function value obtained by applying the evolved SP (#j) to
instance Insi; obj

j
best (bench, Insi) denotes the best perfor-

mance among 320 simulation results obtained by applying
the 320 benchmark SPs to instance Insi under the same tar-
get; |T| is set to 100, which denotes 100 independent runs.
RD(#j, Insi) denotes the relative deviation between the per-
formance obtained by the corresponding evolved SP (#j) with
the best performance obtained by the 320 types of benchmark
SPs on the same instance under the same target.

This method is constructed to verify the general-
ization performance of the evolved SPs. Obviously,
the higher the RD(#j, Insi) value, the better result the
evolved SP finds. Because the obj(#j, Insi) could be zero,
the objjbest (bench, Insi) is usually zero in these cases,
we define the RD(#j, Insi) as 0. The exception happens
in the test scenario 24, the obj(#1, Insi) is zero, but
the obj1best (bench, Ins24) is 0.13, in this case we set the
RD(#1, Ins24) to 1.

As shown in Table 15, #1, #2 and #3 represent the three
evolutionary SP, respectively. Ben.1 denotes the best result
of the 320 benchmark SPs obtained in the corresponding
scenario under the certain target. RD1 denotes the relative
deviation between the average objective value of WTmean
obtained by the evolutionary SP (#1) with the best result
obtained by the 320 benchmark SPs in each test scenario.
Similarly, RD2 denotes the relative deviation between the
average objective value of Tmax obtained by the evolutionary
SP (#2) with the best result obtained by the 320 benchmark
SPs in each test scenario. RD3 denotes the relative deviation
between the average objective value of Fmean obtained by
the evolutionary SP (#3) with the best result obtained by the
320 benchmark SPs in each test scenario. The negative bold
value with borders presents that the benchmark SP performs
better than the evolved SP on the specific objective, and vice
versa.

From Table 15, we can observe that the ARD of the objec-
tive function valueWTmean, Tmax and Fmean is 3.86, 2.05 and
0.12, respectively. It demonstrates the evolved SPs generally
perform better than the 320 types of man-made SPs on the
specific objective for most scenarios. Taking the objective of
WTmean for example, there is only one evolved SP (#1) used
to compare with the best SP among the 320 benchmark SPs
in each scenario. However, there are only four scenarios that
the evolved SP (#1) perform worse than the best SP among
320 benchmark SPs on objective ofWTmean. This result vali-
dates the generalization performance of the evolved SP.

The number of the test scenarios that the evolved SPs
perform better than the 320 types of benchmark SPs under
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TABLE 15. Comparison of the selected evolutionary scheduling policy and the best benchmark scheduling policy on the test set.

each objective of WTmean, Tmax and Fmean is 60, 55 and 63,
respectively. There are four scenarios (29, 38, 45, 61) with
relatively poor performance of WTmean. We can observe that
the result of WTmean is relatively small. The large deviation
of the performance difference is caused by the relative dif-
ference between the results of these two types of SP, but in
absolute terms, both of them are small. In addition, there are
nine scenarios (6, 13, 29, 38, 40, 41, 45, 46, 61) that the
benchmark SP perform better than the evolved SP (#2) under
the objective of Tmax . Because the Tmax target is a maximum
objective rather than an average objective, it may change
drastically with the change of the random number seed in the

simulation. Therefore, instead of the mean objective (WTmean
andFmean), the extreme objective of Tmax is hard tominimize.
Besides, the evolved SP (#3) perform better than the 320 types
of benchmark SPs in 63 scenarios on the performance
of Fmean.

These scenarios that the evolved SPs perform worse
than the 320 types of manual SPs have similar factor
levels of experimentations, which can be expressed as
(X,X,X,3,80,X). Because of the low utilisation (80%) and the
loose delivery time (3) setting in these scenarios, the man-
made SPs can also find useful heuristic knowledge to solve
the problem as compared with the evolved SPs.
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From these results, we can observe that the evolved SPs
make a good trade-off when trying to simultaneously min-
imize the three objectives. Moreover, the results obtained
by the evolved SPs are very competitive as compared with
the man-made SPs reported in the literature that used to
optimize the single objective. This result demonstrates the
effectiveness and the scalability of the proposed method. The
advantage of the evolved SPs is that they performed well in
new unobserved scenarios, which make the evolved SPs more
robust when they are employed in a stochastic and dynamic
scheduling environment.

VII. CONCLUSIONS AND FUTER WORKS
This study proposes three types of methods to automatically
design SPs including JSR and MAR for the MO-DFJSP. The
main conclusions are as follows.
1) The results reveal that MO-GEP performs more efficient

than MO-CCGP and MO-TTGP, the solution quality of
MO-CCGP is significantly better than that ofMO-TTGP
and MO-GEP under the same computational costs. This
is because the MO-DFJSP includes two sub-problems,
cooperative coevolution is more suitable for solving
such complex problem.

2) The results demonstrate that the random shuffling
method performs the best among the five collaboration
methods. This is because the two sub-problems have a
strong interaction effect. We need to coevolve the two
decision rules at low computational costs rather than to
collaborate them in a greed way.

3) Both the training and testing performances show
that CCGP-NSGAII is the most competitive approach
among the proposed methods for evolving efficient non-
dominated SPs. Statistical tests indicate that it has the
best overall performance in terms of the three perfor-
mance metrics (HVR, IGD, Spacing).

4) The evolved SPs which were extracted from the agger-
ate Pareto fronts were compared with the 320 types of
benchmark SPs reported in the literature on both the
training and testing scenarios. The results reveal that the
evolved SPs can discover more useful heuristic knowl-
edge and behave more competitive than the man-made
SPs in more complex scheduling environments without
increasing the online solution time. It also demonstrates
that the evolved SPs can obtain trade-offs among dif-
ferent objectives and have a strong generalization per-
formance to be reused in new unobserved scheduling
scenario.

The future works of our study mainly focuses on the three
aspects. Firstly, we plan to consider more dynamic charac-
teristic of the problem, such as arrivals of urgent orders,
cancellations of already handled jobs and resource failures.
And then, we expect to use feature construction method and
surrogate model-based evaluation strategy to improve the
effectiveness and efficiency of the hyper-heuristic methods.
At last, we plan to implement the proposed method which
can automatically evolve SPs to replace the man-made SPs

designed by experts in our MES (Manufacturing Execution
System) software, and further test the generalization perfor-
mance of the evolved SPs using different industrial cases.
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