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ABSTRACT The scatter contamination and photon starvation artifacts are less severe due to the smaller
cone angle and attenuation associated with the smaller sample size in the microstructure imaging (MSI)
with a cone-beam CT (CBCT) instrument. Compared with other artifacts, the blurring effect is more critical
in the MSI due to the direct degradation of spatial resolution. An efficient deblurring method using the line
integral images is proposed in this paper. The point spread function (PSF) of the CBCT system is simplified
as a 2D Gaussian kernel function with the spatially invariant assumption. The deblurred line integral images
are calculated using the iterative optimization process with an objective function in which the blurring effects
are described by the convolution between the simplified PSF and the real line integral image. A first-order
primal–dual algorithm is applied and derived to solve the real line integral image due to its fast convergence
and high computational efficiency. The performance of the proposed method is evaluated using various
datasets, including a digital phantom, a physical phantom, and a laboratory mouse. The spatial resolution,
noise distribution, and computation cost of the proposed method are compared with those of a 3D image
domain deconvolution method. In addition to the well-suppressed blurring effects in the CBCT images,
the proposedmethod provides a higher computational efficiency than the 3D approach. The proposedmethod
is thus practical and attractive to be incorporated into the data processing workflow of the CBCT instrument
of MSI.

INDEX TERMS Computed tomography, deconvolution, spatial resolution.

I. INTRODUCTION
The major advantages of the cone-beam computed tomog-
raphy (CBCT) over the multi-slice computed tomogra-
phy (MSCT) include the high isotropic spatial resolution,
the flexibilities in the geometry configuration and the volu-
metric coverage in one rotation [1]. Recently, the application
of CBCT in the preclinical research including the small ani-
mal imaging [2] and the ex-vivo bone analysis [3] is enabled
by these advantages which are essential in the microstruc-
ture imaging (MSI). In general, there are various physical

factors which strongly degrade the image quality of the CBCT
instrument and lead to images artifacts, including scatter
contamination [4]–[8], beam hardening [9]–[13], photon star-
vation [14] and blurring effect [15], [16]. Due to the much
smaller size of the object in the preclinical application com-
pared with that in the human scan in the clinical environment,
the scatter contamination and photon starvation artifacts in
the preclinical application are less severe due to the smaller
cone angle and illuminated volume. The beam hardening
artifact is reduced by the x-ray spectrum-dependent selection
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of the metal filtrations embedded into the source of the CBCT
equipment [17]. To resolve the microstructures using the
CBCT scanner in the preclinical application, it is essential to
suppress the blurring effect which leads to the direct degra-
dation of the system spatial resolution. The major factors
of the blurring effects in the CBCT equipment [15], [16]
include the finite x-ray focal spot size and detector element
aperture, and the photon spreading effect in the scintillator.
The suppression of the blurring effects, namely the deblurring
process, is designed to suppress the effect caused by multiple
factors.

There are two major approaches in the current deblurring
solutions, including the hardware upgrades of the existing
CBCT equipment and the image processing algorithms based
on the modeling of the physics process of the blurring effects.
The spatial resolution of a CBCT imaging system can be
directly improved by the upgrade of the system components
using the x-ray tube of smaller focal spot and the flat panel
detector of smaller pixel size [15]. The most common option
of the x-ray source upgrade is using the micro-focus x-ray
tube with smaller focal spot size. Since the current and power
of the micro-focus tube are much less than the regular tube,
the prolonged integration time of the exposure is required
to achieve a reasonable signal-to-noise ratio (SNR), leading
to motion artifacts in the in-vivo scans where the anesthesia
duration is limited. Decreasing the size of each pixel on the
detector is another option to increase the spatial resolution.
Nevertheless, two issues are associated with the smaller pixel
size, including the increased computation load for the same
field of view (FOV) and the lower SNR due to the decreased
sensitive area of the detector unit. The limitations and dif-
ficulties in the above hardware upgrading methods stimu-
late the research of advanced image processing algorithms
where the higher spatial resolutions were achieved using
the mathematical deblurring models in the existing CBCT
instruments [16], [18]–[20]. In the development of the deblur-
ring algorithms for a CBCT instrument, the point spread
function (PSF) is widely used to quantitatively characterize
the performance of the CBCT system. The PSF, representing
the impulse response of a complete imaging system, is a
mathematical term that describes the blurring effect in the
imaging system [15]. In the two-dimensional (2D) case such
as the projection domain image, the measured image is the
convolution between the real image and the PSF of the CBCT
system [21]. The current methods of the CT image deblurring
are divided into two categories including the projection and
the image domain methods.

The projection domain deblurringmethods build the model
of the blurring effects from the physical factors in the x-ray
projection, including the finite focal spot, the detector aper-
ture, and the photon spreading effect [22]. Tilley et al. [16]
developed a forward model for the CBCT imaging system
where a flat panel detector was used. The blurring effects due
to the finite focal spot size and the indirect measurement of
x-ray through the detector scintillator were described by the
blurring matrix in the forward model. The deblurring process

for the projections is composed of the inversion of the blur-
ring matrix. The deblurred projections were reconstructed
by a penalized generalized least-squares algorithm [16]. The
blurring effects in the reconstructed CBCT images were
well suppressed using Tilley’s method. When the detector
blur was comparable to the source blur, limited deblurring
performance was observed using Tilley’s method since it
fails to include the blurring effect due to the finite detector
aperture. In general, the precisely modeled blurring effect
of the system is a necessary prerequisite to the efficient
deblurring operation in the projection domain deblurring. The
characterization of each blurring effect in the mathematical
model is complicated due to the complexity in the physical
factors underneath the blurring effects and the flexibility in
the system configuration.

Compared with the projection methods, the modeling in
the image domain deblurring methods is more straightfor-
ward. The real image is estimated using the inversed con-
volution, namely the deconvolution between the measured
image and the impulse response of the CBCT imaging
system characterized by a systematic PSF. To combat
for the blurring issue in the volumetric CBCT images,
the three-dimensional (3D) deconvolution is performed in
the image domain. Wang et al. [18] proposed an expectation-
maximization (EM)-like iterative deblurring method to
improve the spatial resolution of the spiral CT images, assum-
ing a spatially shift-invariant linear system with a separable
3D Gaussian PSF. There are two drawbacks in the appli-
cation of the iterative deblurring method. The calculation
efficiency of the image domain deblurring methods is the first
limiting factor for the MSI application where a large-scale
volumetric data is processed. The computation load of the
voxel-wise calculations in the iterative deblurring method is
directly proportional to the number of the voxels, leading to
long computation time in the MSI application. The second
drawback is the deconvolution induced artifact, including
the image noise amplification and the edge-ringing artifacts
on the surrounding structures. A histogram-based selective
deblurring method was proposed to suppress the deconvolu-
tion induced artifacts [20], [22], [23] in the deconvolved CT
angiography (CTA) images. In addition to the 3D deconvo-
lution operations, the histogram-based segmentations of the
small high-density structures were performed in both original
and deconvolved images. The deblurred image was the com-
bination of the low-density regions segmented from the orig-
inal CT image, the small high-density structures segmented
from the deblurred CT image by the deconvolution opera-
tions and the transition regions replaced by the interpolation
of the surrounding soft tissues. The deconvolution induced
artifacts were partially suppressed after the segmentation and
interpolation operations in the selective deblurring method.
The complete removal of the deconvolution induced artifact
was difficult in the selective deblurring method due to the
inevitable inclusion of the deconvolution operations.

The applications of the existing projection domain and
image domain methods for the CBCT imaging system are
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limited by the complexity in the modeling of the whole sys-
tem and the huge computation cost in the 3D deconvolution
processes, respectively. In this work, a line integral model
based deblurringmethod is proposed for the application of the
CBCT instrument in MSI. The proposed method in the line
integral domain inherits the simplicity in the modeling of the
blurring effects from the image domain deblurring methods
due to the linear relationship between the two domains. The
deblurring model includes the deconvolution of the system-
atic PSF in the line integral domain. The PSF of the CBCT
system is estimated by a single-parameter Gaussian func-
tion under the assumption of the rotational symmetry. The
whole deblurring algorithm is applied on the 2D line integral
images where the simple 2D deconvolution is performed
instead of the time-consuming 3D deconvolution, leading to
the higher computation efficiency and easier implementation
in practice. Moreover, our deblurring operation on the line
integral images can be incorporated into the streamline of the
image acquisition of the CBCT equipment. The deblurred line
integrals are exported for further image reconstruction. The
proposed workflow is evaluated using the digital phantom,
the physical phantom and the laboratory mouse in the preclin-
ical research. To evaluate the performances of the proposed
method, we compare the proposed algorithmwith the existing
image domain deblurring method. An image set acquired
using the smaller detector pixel is generated as the reference
in the comparison. The computation time is also compared
between the two methods.

II. METHOD
A. DEBLURRING MODEL FOR LINE INTEGRAL IMAGES
In this work, the deblurring process is performed on each
line integral prior to the CT reconstruction. Here, the line
integral is the logarithmic transformation result of the projec-
tion image. The value of each pixel in the line integral image
stands for the integration of the line attenuation coefficients
along each line of sight. The physical processes induced
blurring effects in each line integral image are depicted by the
PSF of the CBCT imaging system. The blurring factors like
the finite focal spot size of the x-ray tube and the pixel size of
the detector are included in the PSF. The blurred line integral
image is the convolutional result between the PSF and the
real line integral image. The deblurring problem in the line
integral domain is solved using the optimization approach
with the objective function as shown below,

argmin
I2

(∥∥∥PSF2 ⊗ I2 − I
′

2

∥∥∥2
2
+ γR2 (I2)

)
,

subject to I2 ≥ 0. (1)

Here, PSF2 stands for the 2D PSF of the CBCT system,⊗
is the convolutional operator, I2 is the 2D line integral image
to be solved, I

′

2 denotes the measured image of the blurred
line integral image, R2 (I2) is the regularization term, γ is
the weighting factor controlling the regularization strength.
The line integral image I2 is subjected to a non-negative con-
straint. The objective function consists of the L2-norm data

fidelity term which penalizes the deviations of the estimated
line integral image from the measured one and the regulariza-
tion term which controls the compromise between the SNR
and the spatial resolution. The system blur is assumed to be
shift-invariant due to the rotational symmetry property around
the rotation axis of the CBCT instrument. Under the shift-
invariant assumption, the deblurring problem is solved using
the deconvolution on each 2D line integral with the same
PSF2 as the convolutional kernel. The total variation, with the
advantage of edge preserving, is applied in the regularization
term.

To solve the optimization problem using the matrix opera-
tions, the objective function in (1) is rewritten as,

L̂ = argmin
L

∥∥∥B2 · L − L ′∥∥∥2
2
+ γ ‖D2 · L‖1,

subject to L ≥ 0. (2)

Here, L, L
′

, and L̂ are the vectorized versions of the optimiza-
tion variable, the measured line integrals, and the estimated
line integrals, respectively. B2 is a Toeplitz matrix converted
from PSF2. B2 · L represents the same linear transformation
as the 2D convolutional term PSF2 ⊗ I2 in (1) [24]. D2 is a
matrix representing the 2D discrete gradient operator, D̃2 :

RM×N → RM×N×2. The 2D discrete gradient operation
under the symmetric boundary condition is defined as [25](

D̃2L
)
i,j
=
(
Li+1,j − Li,j,Li,j+1 − Li,j

)
. (3)

The regularization term is expressed as

R2 (L) =
∑

i,j

∣∣Li − Lj∣∣ = ‖D2 · L‖1, (4)

where Li, Lj are the i-th and j-th elements of the vector L.
Combining the above equations, we formulate the

deblurring problem as the minimization of a convex objec-
tive function. In this work, the overrelaxed Chambolle-Pock
algorithm [26], [27] is employed to solve the deblurring
problem due to its superiorities in convergence speed and
computational efficiency.

III. SOLVER FOR THE DEBLURRING PROBLEM
The overrelaxed Chambolle-Pock algorithm [26] solves the
convex optimization problems with a canonical form,

argmin
x

F (Kx)+ G(x), (5)

where F and G are convex, lower semi-continuous func-
tions, K is a continuous linear operator. The optimization
problem described by (5) is solved using the following
iterations,

x̄k = proxtG
(
xk−1 − tKT zk−1

)
z̄k = proxsF∗

(
zk−1 + sK

(
2xk − 2xk−1

))
xk = xk−1 + ρ

(
x̄k − xk−1

)
zk = zk−1 + ρ

(
z̄k − zk−1

)
,

(6)

where ρ is the relaxation parameter, t and s represent the two
step sizes, x and z represent the primal-dual pair. The value
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of the relaxation parameter is between 0 and 2 to achieve
the balance between the overrelaxed and underrelaxed oper-
ations. The proximal mapping of the function G (u) with the
parameter t (i.e., proxtG(x)) is defined as

proxtG (x) = argmin
u

(
G (u)+

1
2t
‖u− x‖22

)
, (7)

The function F∗ denotes the ‘‘convex conjugate’’ of the
function F . F∗ is defined as

F∗ (z) = sup
x

(
zT x − F (x)

)
, (8)

The functions F andG are assumed to be the simple functions
which are the real-valued functions over the subsets of the
lines whose points are the real numbers. Since the proxim-
ity operators of the simple function either have a closed-
form or at least can be solved efficiently with high precision,
an explicit iterative relation is obtained using the overre-
laxed Chambolle-Pock algorithm under the simple function
assumptions of F andG. Using the constraint of ts ‖K‖2 ≤ 1,
the convergence of the objective function towards the global
minimum is proved in [26]. We choose ts ‖K‖2= 1 in this
work to maximize the initial step size and simplify each
iteration by setting t or s in (6).
To apply the overrelaxed Chambolle-Pock algorithm in the

2D line integral domain, the matrix K and the functions F ,
G are rewritten using the elements introduced in the objective
function (2) as

K =
[
B2
D2

]
, (9)

G (L) =

{
0 if L ≥ 0
∞ otherwise,

(10)

F (KL) = F
([

B2L
D2L

])
= F1 (B2L)+ F2 (D2L) , (11)

F1 (y1) =
∥∥∥y1L ′∥∥∥2

2
/2, (12)

F2 (y2) = γ ‖y2‖1. (13)

According to the above definitions, the proximal mappings of
the functions F∗ and G are

prox tG (L) = P+ (L) , (14)

proxsF∗1 (z1) =
(
z1 − sL

′
)
/ (1+ s) , (15)

proxsF∗2 (z2) = PγB (z2) , (16)

where P+ represents the point-wise projections onto the non-
negative orthant, PγB denotes the point-wise projections onto
the ball γB = {‖x‖∞ ≤ γ }. A separable sum rule [28] allows
for

proxsF∗
([

z1
z2

])
=

[
proxsF∗1 (z1)

proxsF∗2 (z2)

]
. (17)

The iterative forms of the overrelaxed Chambolle-Pock
algorithm in the 2D line integral domain are retrieved by

combining (6) and from (14) to (17):

L̄k = P+
(
Lk−1 − t

(
BT2 z

k−1
1 + DT2 z

k−1
2

))
z̄k1 =

(
zk−11 + sB2

(
2Lk − 2Lk−1

)
− sL

′
)/

(1+ s)

z̄k2 = PγB
(
zk−12 + sD2

(
2Lk − 2Lk−1

))
Lk = ρL̄k + (1− ρ)Lk−1

zk1 = ρ z̄
k
1 + (1− ρ) z

k−1
1

zk2 = ρ z̄
k
2 + (1− ρ)zk−12 ,

(18)

The length of the vectorized line integral L equals the
total number of pixels in the line integral image. The second
dimension of the converted Toeplitz matrix B2 is the same as
the length of L, leading to complexity in writing the explicit
form of B2. To simplify the calculation, the convolution is
expressed by the point-wise product in the frequency domain
instead of the matrix multiplication in the real domain.
According to the convolution theorem [29], the convolution
calculated by the matrix multiplication is expressed by the
inverse Fourier transform (IFT) of the point-wise products of
the FTs of the two convolution kernel functions:

B2 · L = IFT (FT (PSF2) .∗FT (I2)) , (19)

where L is the vectorized 2D line integration image I2,
‘‘.∗’’ denotes the pixel-wise multiplication. Analogously,
the multiplication of BT2 and z (vectorized Iz) is expressed
using the FT operations on PSF2 and Iz as

BT2 · z = IFT (Conj (FT (PSF2)) . ∗ FT (Iz)), (20)

where Conj(x) calculates the conjugate of every element
in x. The FT of the PSF is defined as the optical transfer
function (OTF). The simplified expressions of (19) and (20)
can be retrieved after replacing FT (PSF2) by OTF2.
To avoid the periodic boundary condition requirement in

the application of the convolution theorem, we introduce a

weighting matrix in the data fidelity term
∥∥∥B2 · L − L ′∥∥∥2

2
in (2) as ∥∥∥M (B2 · L − L

′

)
∥∥∥2
2
, (21)

whereM represents the diagonal matrix applying no penalties
on the boundary pixels in the line integral image. The unity
weights are assigned to the inner pixels of the image. The
PSF and the line integral image are zero padded by the
weighting matrix accordingly. The objective function (2) is
thus reformulated as,

L̂ = argmin
L

∥∥∥M (B2 · L − L
′

)
∥∥∥2
2
+ γ ‖D2 · L‖1,

subject to L ≥ 0. (22)

By denoting B̄2 = MB2 and L̄ ′ = ML
′

, (22) is mathe-
matically equivalent to (2). Analogously, the optimization
problem with the objective function (22) can be solved using
the same form of the iterations as (6) when B2 and L ′ are
substituted by B̄2 and L̄ ′. Taking the boundary conditions into
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consideration, we solve the deblurring problem in the 2D line
integral domain using the following iterative scheme:

L̄k = P+
(
Lk−1−t

(
BT2M

T zk−11 + D
T
2 z

k−1
2

))
z̄k1 =

(
zk−11 + sMB2

(
2Lk−2Lk−1

)
− sML

′
)/

(1+ s)

z̄k2 = PγB
(
zk−12 + sD2

(
2Lk − 2Lk−1

))
Lk = ρL̄k + (1− ρ)Lk−1

zk1 = ρ z̄
k
1 + (1− ρ) z

k−1
1

zk2 = ρ z̄
k
2 + (1− ρ)zk−12 .

(23)

A. WORKFLOW OF THE PROPOSED METHOD
The schematic of the workflow of the proposed deblurring
method in the line integral domain is shown in Fig. 1. The
proposed method starts with the calculation of the line inte-
gral images from the projections by the logarithmic transfor-
mation. The blurring effects in each line integral image are
described by theGaussian-type PSF of the CBCT system. The
proposed deblurring method is applied to each line integral
image. The deblurring problem of the line integral image
is solved by the overrelaxed Chambolle-Pock algorithm as
described above. Finally, the deblurred CT images are recon-
structed from the deblurred line integral images.

FIGURE 1. The schematic of the workflow of the proposed method.

IV. EVALUATION
A. DATA ACQUISITION
The proposed method in the line integral domain is evaluated
using digital phantom, mouse phantom data, and laboratory
mouse data. Two image sets of different spatial resolutions
are retrieved in each case. The low-resolution image set
is deblurred by the proposed method. In the meanwhile,
the high-resolution image set is chosen as the reference.

The digital phantom contains a number of different
regions which include the following tissue type and atten-
uation values obtained from the National Institute of Stan-
dards and Technology (NIST) database [30]: (i) fat (µ =
0.01875 mm−1); (ii) muscle (µ = 0.02150 mm−1); and (iii)
bone (µ= 0.03 mm−1). In addition to the three types of
tissues, four sets of (iv) line pairs (µ = 0.03 mm−1) with
spatial frequencies of 16.7, 12.5, 10.0, and 18.3 line pairs
per centimeter (lp/cm) are also included in the digital phan-
tom. The low-resolution line integral images are obtained
by projecting the digital phantom with a 0.025 mm voxel
size to the pseudo-detector with a 0.4 mm pixel. Mean-
while, the 0.2 mm pixel is used in the high-resolution case.

The Poisson noise of a similar level as the bench experiments
is added to each line integral image [31].

The cylinder-shaped mouse phantom consists of a cen-
tral cylinder of Teflon to mimic the spine, two cylindrical
cavities as the thorax, and the uniform cylindrical body of
polystyrene to simulate the muscle and other soft tissues. The
two cavities are symmetrically distributed on both sides of
the central Teflon. The length and diameter of the cylindrical
body of the mouse phantom are 100 mm and 30 mm, respec-
tively. The dimension of the laboratory mouse is similar to
that of the mouse phantom.

The mouse phantom and the laboratory mouse are scanned
on the test-bench CBCT instrument in our laboratory. The
bench CBCT consists of the RAD-94 x-ray tube (Varian), the
XRD-1611 flat panel detector (Perkin Elmer), and the cus-
tomized motion and supporting structures. The focal spot size
of the source is 0.4 mm. The source settings include 60 kVp
and 30 mA for the mouse phantom and 50 kVp and 30 mA
for the laboratory mouse. The low-resolution line integral
images are obtained under the binning-3 setting of the detec-
tor with 512 by 512 pixels and a 0.4 mm pixel. Meanwhile,
the binning-2 setting of the detector with 1024 by 1024 pixels
and a 0.2 mm pixel is used in the high-resolution case. The
geometry setup in the bench experiments includes 945.2 mm
as the source to detector distance (SID) and 588.3 mm as the
source to axis distance (SAD). The number of the projections
is 502 for each CT scan in which the angle of each projection
is evenly spaced at 0.7157 degree. The line integral image
is generated from the logarithmic transformation of each
projection. The voxel sizes of the reconstructed images are
0.1 mm in both low-resolution and high-resolution cases.

B. COMPARISON STUDY
To evaluate the performance of the proposed deblurring
method in the line integral domain, we compare the proposed
method with the reference deblurringmethod in the 3D image
domain. The deblurring issues in the 3D image domain are
solved by the same overrelaxed Chambolle-Pock algorithm as
the one for the 2D line integral domain. The iterative scheme
in (23) is extended to the 3D case as shown in the following:

µ̄k=P+
(
µk−1 − t(BT3M

T zk−11 + DT3 z
k−1
2 )

)
z̄k1=

(
zk−11 + sMB3

(
2µk − 2µk−1

)
− sMµ

′
)/
(1+ s)

z̄k2=PγB
(
zk−12 + sD3

(
2µk−2µk−1

))
µk = ρµ̄k + (1−ρ)µk−1

zk1 = ρ z̄
k
1 + (1−ρ) z

k−1
1

zk2 = ρ z̄
k
2 + (1−ρ)zk−12 ,

(24)

where µk , µ
′

and µ̄k are vectorized 3D image, B3 is the 3D
PSF matrix, D3 is the matrix form of the 3D discrete gradient
operator D̃3 [25] defined as(
D̃3L

)
i,j
=
(
Li+1,j,k−Li,j,k ,Li,j+1,k−Li,j,k ,Li,j,k+1−Li,j,k

)
.

(25)
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The proposed deblurring method is applied to the line
integral images prior to the CT reconstruction. The 3D image
domain deblurring method is applied to the reconstructed
CT images. The CT reconstruction is implemented using the
standard FDK algorithm [32] in all the studies.

C. IMAGE QUALITY METRICS
To enable a quantitative comparison between the proposed
method and the reference method, the performances of the
two methods are evaluated using the metrics of the image
quality, including the 2D noise power spectrum (NPS) in a
uniform region of interest (ROI) and the MTFtask and the
structural similarity index (SSIM) of a high-contrast ROI.

To evaluate the noise characteristics of the proposed
scheme in the frequency domain, we quantify the 2D NPS
in the deblurred images. The 2D NPS was calculated within
a single-material area of the CT image using the formulation
as in the following [33]:

NPS ≈ |DFT2 {f }|2 , (26)

where f equals the 2D array of the pixel values minus the
mean value in the area, and DFT2 denotes the 2D discrete
Fourier transform.

The spatial resolutions of the CT imaging systems are
evaluated using the task-based modulation transfer func-
tion (MTF) MTFtask proposed by Richard et al.[34].
To compute the MTFtask , a one-dimensional (1D) ESF is
first generated by the averaging over the radial directions of
the circular disk image. The differentiated ESF as the PSF
is Fourier transformed to generate the MTF. To character-
ize the resolution of the imaging system in a scalar form,
the spatial frequency f50 at which MTF(f) is reduced to 50%
is chosen as the metric to quantify the spatial resolution [34].
In addition to the MTFtask , the SSIM is computed in the
same ROI to assess the deviation of the structures from the
reference image. The SSIM of two images a and b is normally
expressed as,

SSIM (a, b) =
(2µaµb + C1) (2σab + C2)(

µ2
a + µ

2
b + C1

) (
σ 2
a + σ

2
b + C2

) , (27)

whereµa,b, σa,b, σab are the local means, standard deviations,
and cross-covariance for the images a and b, respectively.

V. RESULTS
A. SIMULATION STUDIES
The cylindrical digital phantom consists of four types of area
as shown in Fig. 2(a), including the oval-shaped muscle,
the round-shaped bone, the four line pairs, and the other fat
area. To intuitively assess the spatial resolution of each CT
image, the zoom-in display of the line pairs in the ROI1 is
attached to the bottom of each subfigure in Fig. 2. The
first row in Fig. 2 includes the high-resolution CT image as
the reference and the low-resolution image to be processed.
The line pair with the highest spatial resolution is not dis-
tinguishable in the low-resolution image. The second row
in Fig. 2 presents the two deblurred CT images using the

FIGURE 2. Cross-sectional CT images of the digital phantom:
(a) the high-resolution image as the reference, (b) the low-resolution
image to be processed, (c) the deblurred image using the proposed
method, (d) the deblurred image using the 3D image domain method. The
zoom-in display of the line pairs in the ROI1 of (a) is located under each
subfigure. ROI2 is marked by the dashed box in the uniform area of fat.
ROI3 represents the high-contrast bone region enclosed by the dashed
circle. The display window is [0.015, 0.025] mm−1.

proposed method in the line integral domain and the 3D
overrelaxed Chambolle-Pock method in the image domain
for comparison purpose, respectively. The visibility of the
line pairs in both deblurred CT images is comparable with
the high-resolution reference due to the improvement of the
spatial resolution.

The evaluation of the noise characteristics is performed
in the single-tissue ROI2 in Fig. 2(a). As shown in Fig. 3,
the noise distribution of the high-resolution image cov-
ers more high spatial frequency region compared to the
low-resolution case, indicating more balanced frequency
resolving abilities due to the higher spatial resolution. The
extension of the NPS in the deblurred images compared
to the low-resolution case represents the ability to recover
the finer structures. The NPS of the ROIs in the two
deblurred images are close to each other, suggesting the
equivalent noise characteristics of the two methods. Since
there are no variations in the mean values of the ROIs in
the deblurred CT images compared to the high-resolution
and low-resolution images, the CT number error due to the
deblurring processes is negligible. The MTFs in the image
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FIGURE 3. Measured NPS of the CT images of the digital phantom
in Fig. 2: (a) the high-resolution image as the reference, (b) the
low-resolution image to be processed, (c) the deblurred slice using the
proposed method, (d) the deblurred image using the 3D image domain
method. Zero frequency is at the center of each NPS.

FIGURE 4. MTFs of the CT images of the digital phantom in Fig. 2: green
line: low-resolution image to be processed; blue dashed line: proposed
method; red dotted line: image domain method. The black dashed line
represents MTF=0.5.

slices are calculated in the selected disk marked by the
dashed circle and named as ROI3 in Fig.2 (a). The MTFs
of the low-resolution CT image without deblurring and the
two deblurred images are shown in Fig. 4. The f50 of the
deblurred image by the 3D image domain method is 13.8%
higher compared to the low-resolution image. The f50 of the
deblurred image by the proposed method in the 2D line inte-
gral domain is 21.1% higher compared to the low-resolution
case. The proposed method brings more MTF improvement
compared to the image domain method. In addition to the
MTF improvement, the SSIM of the proposed method is
0.9998 compared to 0.9997 in the case of the original image,
indicating the slightly smaller deviation in the image struc-
ture from the reference case. The computation times of
the two methods are compared in Fig. 5. The typical time
cost of the proposed method is 4.6% of the image domain
method.

In the digital phantom case, both deblurring methods
achieve significant improvements in the spatial resolutions
without degradation in the noise control performance in the
deblurred images. Compared with the 3D image domain
method, the proposed 2D deblurring method in the line inte-
gral domain has better deblurring performance and higher
computational efficiency.

FIGURE 5. Comparison of the computation times between the proposed
method and the image domain method for the digital phantom case.

FIGURE 6. Cross-sectional CT images of the mouse phantom:
(a) the high-resolution image as the reference, (b) the low-resolution
image to be processed, (c) the deblurred image using the proposed
method, (d) the deblurred image using the 3D image domain method.
ROI1 represents the high-contrast bone region enclosed by the dashed
circle. ROI2 is marked by the dashed box in the uniform area of the
phantom body. The display window is [0.015, 0.055] mm−1.

B. BENCH DATA OF MOUSE PHANTOM
Compared with the simulation studies, the physical objects
are irradiated by the real x-rays in the bench experiments.
There are more potential artifacts due to the non-ideal phys-
ical processes during the experiments. The axial and sagittal
views of the mouse phantom are shown in Fig. 6 and Fig. 7,
respectively. The edge sharpness of the central high-contrast
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FIGURE 7. Sagittal plane CT images of the mouse phantom:
(a) the high-resolution image as the reference, (b) the low-resolution
image to be processed, (c) the deblurred image using the proposed
method, (d) the deblurred image using the 3D image domain method.
There is a dashed line in (a) indicating the location of the 1D plot in Fig. 8.
The display window is [0.015, 0.055] mm−1.

FIGURE 8. 1D horizontal profiles along the dashed line drawn
in figure 6(a), green line: low-resolution image to be processed; blue
dashed line: proposed method; red dotted line: image domain method.

structure (ROI1 in Fig. 6(a)) in the CBCT images is
degraded by the blurring effects as shown in Fig. 6(b). The
better-resolved boundaries in the second row of Fig. 6 indi-
cate the improvements of the edge sharpness of ROI1 using
the two deblurring methods. Similar improvements in the
edge sharpness of the certain structures are presented in the
sagittal views of the deblurred volumes as shown in Fig. 7.
The 1D plots of the line segment marked by the white dashed
line in Fig. 7(a) are shown in Fig. 8. The steeper peaks and
valleys in the line plots of the deblurred images indicate the
improvements in the spatial resolution in the sagittal plane.

The evaluation of the noise characteristics is per-
formed in the ROI2 enclosed by a white dashed box
in Fig. 6(a). As shown in Fig. 9, the noise distribution of

FIGURE 9. Measured NPS of the CT images of the mouse phantom
in Fig. 6: (a) the high-resolution image as the reference, (b) the
low-resolution image to be processed, (c) the deblurred slice using the
proposed method, (d) the deblurred image using the 3D image domain
method. Zero frequency is at the center of each NPS.

FIGURE 10. MTFs of the CT images of the mouse phantom in Fig. 6: green
line: low-resolution image to be processed; blue dashed line: proposed
method; red dotted line: image domain method. The black dashed line
represents MTF=0.5.

the high-resolution image provides more high and medium
spatial frequency components compared to the low-resolution
case. Themedium frequency components are recovered in the
NPS of the ROIs in the two deblurred images. The NPS of
the ROIs in the two deblurred images are close to each other,
suggesting the equivalent noise characteristics of the two
methods. According to themean values of the ROIs in the four
CT images, the CT number error due to the deblurring pro-
cesses is negligible. The MTF calculation is performed in the
selected diskROI1 in Fig. 6(a). According to theMTFs shown
in Fig. 10, the increases of f50 over the low-resolution image
are 22.2% and 24.8% for the image domain and the proposed
methods, respectively. In addition to the MTF improvement,
the SSIMs of the proposed method and the image domain
method are 0.9945 and 0.9943, respectively. The SSIM of the
original image and the reference image is only 0.9913. The
proposed method shows better performance in the recovery
of the image structure. Fig. 11 shows the computation times
of the two deblurring methods. The computation time of the
proposed method is 4.4% of the image domain method.

C. BENCH DATA OF LABORATORY MOUSE
The body structure of the laboratory mouse is more com-
plicated compared to the mouse phantom, leading to a
higher requirement of the spatial resolution to resolve
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FIGURE 11. Comparison of the computation times between the proposed
method and the image domain method for the mouse phantom case.

FIGURE 12. Cross-sectional CT images of the laboratory mouse: (a, e, i)
the high-resolution images as the reference, (b, f, j) the low-resolution
images to be processed, (c, g, k) the deblurred images using the proposed
method, (d, h, l) the deblurred images using the image domain method.
ROI1 represents the high-contrast bone region enclosed by the dashed
circle. ROI2 is marked by the dashed box in the uniform area of the
mouse body. The third row is the zoom-in display of the ROI3 enclosed by
the white dashed box in (e). The display windows of the first row and the
other two rows are [0.015, 0.055] mm−1 and [0.03, 0.07] mm−1,
respectively.

themicro-structures. The cross-sectional CBCT images of the
laboratory mouse are presented in Fig. 12. The first two rows
are the cross-sectional images where the display windows are
optimized for the soft tissue and the bone, respectively. The
third row is the zoom-in display of the ROI in Fig. 12 (e).
The annular structure outside the soft tissue region of the lab-
oratory mouse is the shell of the plastic container. According
to the first two columns in Fig. 12, the degradation of the
spatial resolution and the drop in the CT value of the bone

FIGURE 13. Sagittal CT images of the laboratory mouse: (a, e, i, m) the
high-resolution image as the reference, (b, f, j, n) the low-resolution
image to be processed, (c, g, k, o) the deblurred image using the
proposed method, (d, h, l, p) the deblurred image using the image
domain method. The second row is the zoom-in display of the
ROI1 enclosed by the white dashed box in (a). The fourth row is the
zoom-in display of the ROI2 enclosed by the white dashed box in (i).
The display windows of the first and second two rows are
[0.03, 0.07] mm−1 and [0.015, 0.055] mm−1, respectively.

structure are present in the low-resolution image compared
to the high-resolution reference. According to the second
two columns in Fig. 12, the edge sharpness of the high-
contrast objects like the bones and gas pockets is improved
in the deblurred images without introducing any new artifact.
In addition to the cross-sectional CT images shown in Fig. 12,
the sagittal and coronal views of the mouse are presented
in Fig. 13 and Fig. 14, respectively.

The bone and soft tissue windows are applied to the first
two and the second two rows in Fig. 13, respectively. The
bone structure around the arrow mark in the zoom-in display
of the mouse skull region (second row of Fig. 13) is indis-
tinguishable before the deblurring processes. As shown in
the last two columns in Fig. 13, the boundary of the bone
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structure is successfully recovered after the deblurring pro-
cesses. Compared to the image domain method, more details
of the bone structure are recovered in the deblurred image
by the proposed method, leading to a smaller gap between
the deblurred image and the high-resolution reference image.
There are a number of gas pockets in the rectangle ROI
marked in the third row of Fig. 13 where the display window
is optimized for the soft tissue. The edge sharpness of the
gas pockets is improved by both deblurring methods. The
improvements in the two deblurred images are comparable.

FIGURE 14. Coronal CT images of the laboratory mouse: (a, e, i, m) the
high-resolution image as the reference, (b, f, j, n) the low-resolution
image to be processed, (c, g, k, o) the deblurred image using the
proposed method, (d, h, l, p) the deblurred image using the image
domain method. The second row is the zoom-in display of the ROI1
enclosed by the white dashed box in (a). The fourth row is the zoom-in
display of the ROI2 enclosed by the white dashed box in (i). The display
windows of the first and second two rows are [0.015, 0.055] mm−1 and
[0.03, 0.07] mm−1, respectively.

The soft tissue and bone windows are applied to the first
two and the second two rows in Fig. 14, respectively. The
densely packed gas pockets in the soft tissue ROI as shown

FIGURE 15. Measured NPS of the CT images of the laboratory mouse in
Fig. 12: (a) the high-resolution image as the reference, (b) the
low-resolution image to be processed, (c) the deblurred slice using the
proposed method, (d) the deblurred image using the 3D image domain
method. Zero frequency is at the center of each NPS.

in Fig. 14(a) are blurred out in the low-resolution image.
Some smaller gas pockets are very similar to the surrounding
soft tissues. The recognition of the boundary of the small gas
pockets is easier in the deblurred images (last two columns
in Fig. 14). The edge sharpness of some gas pockets in the
deblurred images is comparable with the high-resolution ref-
erence image shown in the first column of Fig. 14. The mouse
skull region is selected as the ROI in the images with a display
window optimized for bone. The skull structure in Fig. 14(n)
is blurred, especially the bone joint. The boundaries of the
joints in the deblurred images are distinguishable.

FIGURE 16. MTFs of the CT images of the laboratory mouse
in Fig. 12: green line: low-resolution image to be processed; blue dashed
line: proposed method; red dotted line: image domain method. The black
dashed line represents MTF=0.5.

The evaluation of the noise characteristics of the pro-
posed method is performed in the ROI2 enclosed by a white
dotted box in Fig. 12(a). The missing medium frequency
components in the NPS of the low-resolution image case are
recovered using the two deblurring methods. Similar noise
characteristics are achieved by the two deblurring methods
according to the 2D NPS shown in Fig. 15. According to
the mean values of the ROIs in the four CT images, the CT
number errors are negligible in the deblurred CT images.
The MTF calculation is performed in the ROI1 enclosed by
a white dotted circle in Fig. 12(a). According to the MTFs
shown in Fig. 16, the increases of f50 over the low-resolution
image are 13.5% and 12.2% for the image domain and
the proposed methods, respectively. In addition to the MTF
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FIGURE 17. Comparison of the computation times between the proposed
method and the image domain method for the laboratory mouse case.

improvement, the SSIMs of the proposed method and the
image domain method are 0.9913 and 0.9911, respectively.
The SSIM of the original image and the reference image is
0.9903. The proposed method shows better performance in
the recovery of the image structure. The computation times
of the two deblurring methods are shown in Fig. 17. The
computation time of the proposed method is 4.9% of the
image domain method.

VI. DISCUSSIONS
In this work, we proposed a deblurring method in the line
integral domain. The deblurring problem is transformed into
an iterative optimization problem in which the deblurred line
integral images are estimated. The blurring effects in the line
integral domain of the CBCT imaging system are character-
ized by the systematic PSF and introduced in the objective
function. The systematic PSF is simplified as a Gaussian
kernel function with the shift-invariant assumption of the
CBCT system. To efficiently solve the optimization problem,
the overrelaxed Chambolle-Pock algorithm is introduced to
the iterative calculations in the 2D line integral domain. There
are significant improvements in the spatial resolutions of the
reconstructed images using the deblurred line integrals by the
proposed method.

According to the comparison results with the reference
method in the 3D image domain, the performances of the
proposed and the reference methods are comparable with
respect to the 2D NPS and MTF. The proposed 2D line inte-
gral deblur method outperforms the 3Dmethod at the compu-
tational efficiency and the accessibility. The improvement in
the computational efficiency is contributed by the architec-
ture with only 2D operations. The deblurring processes for
the different line integral images in the proposed method are
independent of each other, leading to the ease of integration of
the deblurring process in the data acquisition streamline and
the acceleration potential using parallel GPU computing. The
deblurred line integral images are sequentially exported to the

next reconstruction process, enabling the instant retrieval of
the deblurred CT image just after the data acquisition of the
last frame.

In addition to the incorporation into the CT data acquisi-
tion streamline, there are other future directions for the line
integral domain deblur. The in-depth comparison between the
2D and 3D deblurring methods is a near-term subject that
helps with understanding the principles of the parameter opti-
mization in the Chambolle-Pock algorithm. The automation
of the parameter optimization in the Gaussian kernel function
is also important in extending the application of the proposed
method towards the CT systems with more complexity in the
PSF and the blurring factors.

In current work, the shift-invariant assumption of the
imaging system is the prerequisite of the modeling of the
PSF by a simple Gaussian kernel function. The irregular
shape of the x-ray tube focal spot and the fact that the
source blur is depth-dependent result in the variations of the
PSF in the system. We will include the explicit character-
ization of the source blur in the modeling of the PSF of
the CBCT.

In our 2D deblur model, line integral images of different
angles are assumed to be independent, whereas the afterglow
phenomenon during the scan could lead to the correlations
between the adjacent projections. We will use a 3D PSF
kernel in which the third dimension represents the different
projection angles to characterize the blurring effects brought
by the afterglow phenomenon.

VII. CONCLUSION
In summary, the 2D deblurring method described in this
work provides an efficient solution to the deblurring prob-
lems in the MSI using the CBCT system. The proposed
method employs a simple objective function design in which
all the blurring factors are characterized together by the
PSF of the CT imaging system. According to the evaluation
results in different samples, the proposed method success-
fully improves the spatial resolution without the degrada-
tion of the noise performance compared with the 3D image
domain method. Moreover, the computation time of the pro-
posed method is 20 times shorter than the conventional image
domain deblurring method, leading to potential incorporation
of the proposed deblurring workflow with the image acqui-
sition streamline of the CT instrument. Owing to the above
advantages, the proposed method is practical and attractive
for the deblurring of the CBCT images in MSI.
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