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ABSTRACT This paper is concerned with the stability criteria of discrete neural networks with two
additive input time-varying delays. By using the time delay division and a new summation inequality, a less
conservative criterion is derived. Moreover, to compare the obtained criterion more directly with the existing
results, a corollary is proposed accordingly. Finally, some numerical examples are presented to demonstrate
that the obtained criteria are less conservative.

INDEX TERMS Discrete neural networks, Lyapunov-Krasovskii functionals, stability, time-varying delays.

I. INTRODUCTION
Neural network is an abstract mathematical model that
reflects the structure and function of human brain. It has
been widely used in many fields such as pattern recognition,
intelligent control, communication and expert system. There-
fore, it has attracted the attention of many scholars in recent
decades [1]–[4].

Time delay is a common phenomenon in dynamic sys-
tems. And it is an important factor leading to the deterio-
rating performance and even the instability of the system.
In the analysis of the stability of time delay system, one
of the most important problems is to obtain the maximum
allowable upper bound of time delay. As we know, the rea-
son for conservatism is that the conditions derived from
the Lyapunov-krasovskii function (LKF) are sufficient and
unnecessary. Therefore, themaximum allowable upper bound
obtained is a core index to measure the quality of stability
conditions or the degree of conservatism. Sincemany systems
are controlled by digital computers without of continuous
time delay, the research on discrete model is of more practical
significance [5]–[18].

It is well known that reducing conservatism depends on
two things: choosing the suitable LKF and making a more

accurate estimate of the derivative of the former. In order
to select the appropriate LKF, the commonly used methods
include constructing an amplified LKF [19] and increasing
its integral multiplicity [20] or to divide the time delay
interval [21], all of which may obtain more information
about the time delay and reduce the conservatism. Jensen
inequality [22], [23] is the first powerful tool used to estimate
the derivative of LKF in the stability theory of time-delay
systems. Subsequently, Seuret and Gouaisbaut [24] proposed
the Wirtinger-based integral inequality, which is more accu-
rate than Jensen’s inequality in estimating the derivative of
LKF. These inequalities are widely used in time-delay sys-
tems [6], [8], [16], [25]–[29]. The Free-matrix-based integral
inequality was proposed in [30] and [31], which was applied
to discussing the global exponential stability of neural net-
works [1]. The inequality of corresponding discrete version
is given in [32].

Based on the above discussions, this paper studies the
new stability criteria of discrete systems with two additive
time-varying delays. By means of the summation inequality
in [32], less conservative criteria than some existing ones are
obtained and two examples are presented to demonstrate the
effectiveness and superiority of the proposed approach.
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Notation:Throughout this paper,<n denotes n-dimensional
Euclidean space and <n×m is the set of all n × m real
matrices; I is used to denote an identity matrix with proper
dimension; diag{· · ·} denotes block diagonal matrix and the
Kronecker product is denoted as ⊗; P > 0(≥ 0) means that
P is a real symmetric and positive-definite (semi-positive-
definite) matrix; the symmetric term in a matrix is denoted
by ∗ and Sym[A] = A + AT ; N+(N ) is the set of all
positive (nonnegative) integers.

II. PRELIMINARIES
Consider the following discrete-time neural network with
additive time-varying delays as{
x(k + 1) = Ax(k)+ Bx(k − d1(k)− d2(k)), k ∈ N ,
x(k) = φ(k), k = −d2,−d2 + 1, . . . , 0.

(1)

where x(k) = (x1(k), x2(k), . . . , xn(k))T ∈ <n is state vector
and φ(k) ∈ <n is the initial condition; n ∈ N+, A and
B ∈ <n×n are constant matrices; d1(k) and d2(k) are the
discrete additive time-varying delays that are assumed to
satisfy

d11 ≤ d1(k) ≤ d12, d21 ≤ d2(k) ≤ d22, (2)

where dij(i, j = 1, 2) are nonnegative integers and d1 = d11+
d21, d2 = d12 + d22.
Lemma 1 [32]: For any sequence of discrete-time vari-

able x(i) in [a, a+n]→ <n, a positive symmetric matrix R ∈
<
n×n, and any matrices N1,N2,N3 ∈ <

4n×n, the following
inequality holds:

−

a+n−1∑
i=a

ηT (i)Rη(i) ≤ ωT�ω, (3)

where

η(i) = x(i+ 1)− x(i),

ω =
(
xT (a+ n), xT (a),

1
n+ 1

a+n∑
i=a

xT (i),

2
(n+ 1)(n+ 2)

a+n∑
i=a

a+n∑
j=i

xT (j)
)T
,

� = n(N1R−1NT
1 +

1
3
N2R−1NT

2 +
1
5
N3R−1NT

3 )

+ sym[N151 + N252 + N353],

51 = ε1 − ε2,52 = 2ε3 − ε1 − ε2,

53 = ε1 − ε2 + 6ε3 − 6ε4,

ε1 = (I 0 0 0), ε2 = (0 I 0 0),

ε3 = (0 0 I 0), ε4 = (0 0 0 I ).

III. MAIN RESULTS
Theorem 2: For given positive integers dij(i, j = 1, 2)

satisfying (2), the system (1) is asymptotically stable if
there exist matrices P > 0(∈ <5n×5n),Ql > 0(l =
1, 2, 3, 4),Rm > 0(m = 1, 2, . . . , 6) and matrices

Nr = (Nr1 Nr2 Nr3)(Nrs ∈ <4n×n, r = 1, 2, . . . , 8; s =
1, 2, 3), such that the following LMI holds:

8(d1(k), d2(k))

=

(
81(d1(k), d2(k)) 82(d1(k), d2(k))

∗ 83

)
< 0, (4)

where

81(d1(k), d2(k))

=

8∑
i=1

Di + G1(d1(k), d2(k)),

82(d1(k), d2(k))

= (
√
d11α1N1,

√
d1(k)− d11α2N2,

√
d12 − d1(k)α3N3,√

d2 − d12α4N4,
√
d21α5N5,

√
d2(k)− d21α6N6,√

d22 − d2(k)α7N7,
√
d2 − d22α8N8),

83 = diag(C ⊗ R1,C ⊗ R2,C ⊗ R2,C ⊗ R3,C ⊗ R4,

C ⊗ R5,C ⊗ R5,C ⊗ R6),

and

D1 = ET2 PE2 − E
T
1 PE1,

D2 = eT1 (Q1 + Q2)e1 − eT2 (Q1 − Q3)e2
− eT5 (Q2 − Q4)e5 − eT9 (Q3 + Q4)e9,

D3 = d11(e0 − e1)TR1(e0 − e1)

+α1sym[N1151 + N1252 + N1353]αT1 ,

D4 = (d12 − d11)(e0 − e1)TR2(e0 − e1)

+α2sym[N2151 + N2252 + N2353]αT2
+α3sym[N3151 + N3252 + N3353]αT3 ,

D5 = (d2 − d12)(e0 − e1)TR3(e0 − e1)

+α4sym[N4151 + N4252 + N4353]αT4 ,

D6 = d21(e0 − e1)TR4(e0 − e1)

+α5sym[N5151 + N5252 + N5353]αT5 ,

D7 = (d22 − d21)(e0 − e1)TR5(e0 − e1)

+α6sym[N6151 + N6252 + N6353]αT6
+α7sym[N7151 + N7252 + N7353]αT7 ,

D8 = (d2 − d22)(e0 − e1)TR6(e0 − e1)

+α8sym[N8151 + N8252 + N8353]αT8 ,

G1(d1(k), d2(k))

= sym[(E2 − E1)TPE(d1(k), d2(k))],

E(d1(k), d2(k))

= (0, 0, (d1(k)− d11 + 1)eT11 + (d12 − d1(k)+ 1)eT12,

0, (d2(k)− d21 + 1)eT15 + (d22 − d2(k)+ 1)eT16)
T ,

E1 = (eT1 , (d11 + 1)eT10 − e
T
1 ,−e

T
2 − e

T
3 ,

(d21 + 1)eT14 − e
T
1 ,−e

T
5 − e

T
6 )
T ,

E2 = (eT0 , (d11 + 1)eT10 − e
T
2 ,−e

T
3 − e

T
4 ,

(d21 + 1)eT14 − e
T
5 ,−e

T
6 − e

T
7 )
T ,

α1 = (eT1 , e
T
2 , e

T
10, e

T
18), α2 = (eT2 , e

T
3 , e

T
11, e

T
19),

α3 = (eT3 , e
T
4 , e

T
12, e

T
20), α4 = (eT4 , e

T
9 , e

T
13, e

T
21),
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α5 = (eT1 , e
T
5 , e

T
14, e

T
22), α6 = (eT5 , e

T
6 , e

T
15, e

T
23),

α7 = (eT6 , e
T
7 , e

T
16, e

T
24), α8 = (eT7 , e

T
9 , e

T
17, e

T
25),

ei = (0n×(i−1)n, I , 0n×(25−i)n), i = 1, 2, . . . , 25,

e0 = Ae1 + Be8, C = diag(−1,−3,−5).
Proof: Construct a Lyapunov functional as follows:

V (k) =
8∑
i=1

Vi(k),

where

V1(k) = θT (k)Pθ (k),

V2(k) =
k−1∑

i=k−d11

xT (i)Q1x(i)+
k−1∑

i=k−d21

xT (i)Q2x(i)

+

k−d11−1∑
i=k−d2

xT (i)Q3x(i)+
k−d21−1∑
i=k−d2

xT (i)Q4x(i),

V3(k) =
−1∑

i=−d11

k−1∑
j=k+i

ηT (j)R1η(j),

V4(k) =
−d11−1∑
i=−d12

k−1∑
j=k+i

ηT (j)R2η(j),

V5(k) =
−d12−1∑
i=−d2

k−1∑
j=k+i

ηT (j)R3η(j),

V6(k) =
−1∑

i=−d21

k−1∑
j=k+i

ηT (j)R4η(j),

V7(k) =
−d21−1∑
i=−d22

k−1∑
j=k+i

ηT (j)R5η(j),

V8(k) =
−d22−1∑
i=−d2

k−1∑
j=k+i

ηT (j)R6η(j),

where

θ (k) =
(
xT (k),

k−1∑
i=k−d11

xT (i),
k−d11−1∑
i=k−d12

xT (i),

k−1∑
i=k−d21

xT (i),
k−d21−1∑
i=k−d22

xT (i)
)T
.

For simplicity, the following vectors are defined firstly.

ξT (k) =
(
xT (k) xT (k − d11) xT (k − d1(k))

xT (k − d12) xT (k − d21) xT (k − d2(k))

xT (k − d22) xT (k − d(k)) xT (k − d2) UT
11

UT
12 UT

13 UT
14 UT

21 UT
22 UT

23 UT
24 W T

11

W T
12 W T

13 W T
14 W T

21 W T
22 W T

23 W T
24

)
,

where

Um1 =
1

dm1 + 1

k∑
i=k−dm1

x(i),

Um2 =
1

dm(k)− dm1 + 1

k−dm1∑
i=k−dm(k)

x(i),

Um3 =
1

dm2 − dm(k)+ 1

k−dm(k)∑
i=k−dm2

x(i),

Um4 =
1

d2 − dm2 + 1

k−dm2∑
i=k−d2

x(i),

Wm1 =
2

(dm1 + 1)(dm1 + 2)

k∑
i=k−dm1

k∑
j=i

x(j),

Wm2 =
2

(dm(k)− dm1 + 1)(dm(k)− dm1 + 2)

×

k−dm1∑
i=k−dm(k)

k−dm1∑
j=i

x(j),

Wm3 =
2

(dm2 − dm(k)+ 1)(dm2 − dm(k)+ 2)

×

k−dm(k)∑
i=k−dm2

k−dm(k)∑
j=i

x(j),

Wm4 =
2

(d2 − dm2 + 1)(d2 − dm2 + 2)

×

k−dm2∑
i=k−d2

k−dm2∑
j=i

x(j),

and m = 1, 2, for the formulas above.
The forward difference of Vi(k)(i = 1, 2, . . . , 8) is given

by

4V1(k) = θT (k + 1)Pθ (k + 1)− θT (k)Pθ (k)

= ξT (k){ET2 PE2 − E
T
1 PE1

+ sym[(E2 − E1)TPE(d1(k), d2(k))]}ξ (k)

= ξT (k)[D1 + G1(d1(k), d2(k))]ξ (k), (5)

4V2(k) = ξT (k)[eT1 (Q1 + Q2)e1 − eT2 (Q1 − Q3)e2
− eT5 (Q2 − Q4)e5 − eT9 (Q3 + Q4)e9]ξ (k)

= ξT (k)D2ξ (k). (6)

Using Lemma 2.1, one can obtain

4V3(k)

=

−1∑
i=−d11

k∑
j=k+i+1

ηT (j)R1η(j)−
−1∑

i=−d11

k−1∑
j=k+i

ηT (j)R1η(j)

= d11ηT (k)R1η(k)−
k−1∑

i=k−d11

ηT (i)R1η(i)

≤ ξT (k)[d11(e0 − e1)TR1(e0 − e1)]ξ (k)

+ ξT (k)(eT1 , e
T
2 , e

T
10, e

T
18){d11(N11R

−1
1 NT

11
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+
1
3
N12R

−1
1 NT

12 +
1
5
N13R

−1
1 NT

13)+ sym[N1151

+N1252 + N1353]}(eT1 , e
T
2 , e

T
10, e

T
18)

T ξ (k)

= ξT (k)[D3 + H1]ξ (k), (7)

4V4(k)

=

−d11−1∑
i=−d12

k∑
j=k+i+1

ηT (j)R2η(j)−
−d11−1∑
i=−d12

k−1∑
j=k+i

ηT (j)R2η(j)

= (d12 − d11)ηT (k)R2η(k)

−

k−d1(k)−1∑
i=k−d12

ηT (i)R2η(i)−
k−d11−1∑
i=k−d1(k)

ηT (i)R2η(i)

≤ ξT (k)[(d12 − d11)(e0 − e1)TR2(e0 − e1)]ξ (k)

+ ξT (k)(eT2 , e
T
3 , e

T
11, e

T
19){(d1(k)− d11)(N21R

−1
2 NT

21

+
1
3
N22R

−1
2 NT

22 +
1
5
N23R

−1
2 NT

23)+ sym[N2151

+N2252 + N2353]}(eT2 , e
T
3 , e

T
11, e

T
19)

T ξ (k)

+ ξT (k)(eT3 , e
T
4 , e

T
12, e

T
20){(d12 − d1(k))(N31R

−1
2 NT

31

+
1
3
N32R

−1
2 NT

32 +
1
5
N33R

−1
2 NT

33)+ sym[N3151

+N3252 + N3353]}(eT3 , e
T
4 , e

T
12, e

T
20)

T ξ (k)

= ξT (k)[D4 + G2(d1(k), d2(k))+ G3(d1(k), d2(k))]ξ (k),

(8)

4V5(k)

≤ ξT (k)(eT4 , e
T
9 , e

T
13, e

T
21){(d2 − d12)(N41R

−1
3 NT

41

+
1
3
N42R

−1
3 NT

42 +
1
5
N43R

−1
3 NT

43)+ sym[N4151

+N4252 + N4353]}(eT4 , e
T
9 , e

T
13, e

T
21)

T ξ (k)

+ ξT (k)[(d2 − d12)(e0 − e1)TR3(e0 − e1)]ξ (k)

= ξT (k)[D5 + H2]ξ (k), (9)

4V6(k)

≤ ξT (k)[d21(e0 − e1)TR4(e0 − e1)]ξ (k)

+ ξT (k)(eT1 , e
T
5 , e

T
14, e

T
22){d21(N51R

−1
4 NT

51

+
1
3
N52R

−1
4 NT

52 +
1
5
N53R

−1
4 NT

53)+ sym[N5151

+N5252 + N5353]}(eT1 , e
T
5 , e

T
14, e

T
22)

T ξ (k)

= ξT (k)[D6 + H3]ξ (k), (10)

4V7(k)

≤ ξT (k)[(d22 − d21)(e0 − e1)TR5(e0 − e1)]ξ (k)

+ ξT (k)(eT5 , e
T
6 , e

T
15, e

T
23){(d2(k)− d21)(N61R

−1
5 NT

61

+
1
3
N62R

−1
5 NT

62 +
1
5
N63R

−1
5 NT

63)+ sym[N6151

+N6252 + N6353]}(eT5 , e
T
6 , e

T
15, e

T
23)

T ξ (k)

+ ξT (k)(eT6 , e
T
7 , e

T
16, e

T
24){(d22 − d2(k))(N71R

−1
5 NT

71

+
1
3
N72R

−1
5 NT

72 +
1
5
N73R

−1
5 NT

73)+ sym[N7151

+N7252 + N7353]}(eT6 , e
T
7 , e

T
16, e

T
24)

T ξ (k)

= ξT (k)[D7 + G4(d1(k), d2(k))+ G5(d1(k), d2(k))]ξ (k),

(11)

4V8(k)

≤ ξT (k)(eT7 , e
T
9 , e

T
17, e

T
25){(d2 − d22)(N81R

−1
6 NT

81

+
1
3
N82R

−1
6 NT

82 +
1
5
N83R

−1
6 NT

83)+ sym[N8151

+N8252 + N8353]}(eT7 , e
T
9 , e

T
17, e

T
25)

T ξ (k)

+ ξT (k)[(d2 − d22)(e0 − e1)TR6(e0 − e1)]ξ (k)

= ξT (k)[D8 + H4]ξ (k), (12)

where

H1 = α1[d11(N11R
−1
1 NT

11 +
1
3
N12R

−1
1 NT

12

+
1
5
N13R

−1
1 NT

13)]α
T
1 ,

H2 = α4[(d2 − d12)(N41R
−1
3 NT

41 +
1
3
N42R

−1
3 NT

42

+
1
5
N43R

−1
3 NT

43)]α
T
4 ,

H3 = α5[d21(N51R
−1
4 NT

51 +
1
3
N52R

−1
4 NT

52

+
1
5
N53R

−1
4 NT

53)]α
T
5 ,

H4 = α8[(d2 − d22)(N81R
−1
6 NT

81 +
1
3
N82R

−1
6 NT

82

+
1
5
N83R

−1
6 NT

83)]α
T
8 ,

G2(d1(k), d2(k))

= α2[(d1(k)− d11)(N21R
−1
2 NT

21

+
1
3
N22R

−1
2 NT

22 +
1
5
N23R

−1
2 NT

23)]α
T
2 ,

G3(d1(k), d2(k))

= α3[(d12 − d1(k))(N31R
−1
2 NT

31

+
1
3
N32R

−1
2 NT

32 +
1
5
N33R

−1
2 NT

33)]α
T
3 ,

G4(d1(k), d2(k))

= α6[(d2(k)− d21)(N61R
−1
5 NT

61

+
1
3
N62R

−1
5 NT

62 +
1
5
N63R

−1
5 NT

63)]α
T
6 ,

G5(d1(k), d2(k))

= α7[(d22 − d2(k))(N71R
−1
5 NT

71

+
1
3
N72R

−1
5 NT

72 +
1
5
N73R

−1
5 NT

73)]α
T
7 .

From (5)-(12), we have

4V (k) ≤ ξT (k)[
8∑
i=1

Di +
5∑
i=1

Gi(d1(k), d2(k))

+

4∑
i=1

Hi]ξ (k).

According to (4) and Schur complement, it can be obtained
4V (k) < 0 for any ξ (k) 6= 0, which guarantees the sys-
tem (1) is asymptotically stable. This completes the proof.
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Remark 1: When system (1) has no additive input delays,
we can consider the following system:{

x(k + 1) = Ax(k)+ Bx(k − d(k)), k ∈ N ,
x(k) = φ(k), k = −d2,−d2 + 1, . . . , 0.

(13)

where the discrete delay d(k) satisfies d1 ≤ d(k) ≤ d2.
From Theorem 3.1, the stability criterion of system (13) can
be obtained similarly.
Corollary 3: For given positive integers d1 and d2 satis-

fying d1 ≤ d(k) ≤ d2, the system (13) is asymptotically
stable if there exist matrices P̃ > 0(∈ <3n×3n), Q̃i > 0, R̃i >
0(i = 1, 2) and matrices Ñr = (Ñr1 Ñr2 Ñr3)(Ñrs ∈
<
4n×n, r, s = 1, 2, 3), such that the following LMI holds:

8̃(d(k)) =
(
8̃1(d(k)) 8̃2(d(k))
∗ 8̃3

)
< 0, (14)

where

8̃1(d(k)) =
4∑
i=1

D̃i + G̃1(d(k)),

8̃2(d(k)) = (
√
d1α̃1Ñ1,

√
d(k)− d1α̃2Ñ2,√

d2 − d(k)α̃3Ñ3),

8̃3 = diag(C̃ ⊗ R̃1, C̃ ⊗ R̃2, C̃ ⊗ R̃2),

and

D̃1 = ẼT2 P̃Ẽ2 − Ẽ
T
1 P̃Ẽ1,

D̃2 = ẽT1 Q̃1ẽ1 − ẽT2 (Q̃1 − Q̃2)ẽ2 − ẽT4 Q̃2ẽ4,

D̃3 = d1(ẽ0 − ẽ1)T R̃1(ẽ0 − ẽ1)

+ α̃1sym[Ñ1151 + Ñ1252 + Ñ1353]α̃T1 ,

D̃4 = (d2 − d1)(ẽ0 − ẽ1)T R̃2(ẽ0 − ẽ1)

+ α̃2sym[Ñ2151 + Ñ2252 + Ñ2353]α̃T2
+ α̃3sym[Ñ3151 + Ñ3252 + Ñ3353]α̃T3 ,

G̃1(d(k)) = sym[(Ẽ2 − Ẽ1)T P̃Ẽ(d(k))],

Ẽ(d(k)) = (0, 0, (d(k)− d1 + 1)ẽT6
+ (d2 − d(k)+ 1)ẽT7 )

T ,

Ẽ1 = (ẽT1 , (d1 + 1)ẽT5 − ẽ
T
1 ,−ẽ

T
2 − ẽ

T
3 )
T ,

Ẽ2 = (ẽT0 , (d1 + 1)ẽT5 − ẽ
T
2 ,−ẽ

T
3 − ẽ

T
4 )
T ,

H̃ = α̃1[d1(Ñ11R̃
−1
1 ÑT

11 +
1
3
Ñ12R̃

−1
1 ÑT

12

+
1
5
Ñ13R̃

−1
1 ÑT

13)]α̃
T
1 ,

G̃2(d(k)) = α̃2[(d(k)− d1)(Ñ21R̃
−1
2 ÑT

21

+
1
3
Ñ22R̃

−1
2 ÑT

22 +
1
5
Ñ23R̃

−1
2 ÑT

23)]α̃
T
2 ,

G̃3(d(k)) = α̃3[(d2 − d(k))(Ñ31R̃
−1
2 ÑT

31

+
1
3
Ñ32R̃

−1
2 ÑT

32 +
1
5
Ñ33R̃

−1
2 ÑT

33)]α̃
T
3 ,

α̃1 = (ẽT1 , ẽ
T
2 , ẽ

T
5 , ẽ

T
8 ), α̃2 = (ẽT2 , ẽ

T
3 , ẽ

T
6 , ẽ

T
9 ),

α̃3 = (ẽT3 , ẽ
T
4 , ẽ

T
7 , ẽ

T
10), ẽ0 = Aẽ1 + Bẽ3,

ẽi = (0n×(i−1)n, I , 0n×(10−i)n), i = 1, 2, . . . , 10,

C̃ = C = diag(−1,−3,−5).

Proof: Construct a Lyapunov functional as follows:

V (k) =
4∑
i=1

Vi(k),

where

V1(k) = θT (k)P̃θ (k),

V2(k) =
k−1∑

i=k−d1

xT (i)Q̃1x(i)+
k−d1−1∑
i=k−d2

xT (i)Q̃2x(i),

V3(k) =
−1∑

i=−d1

k−1∑
j=k+i

ηT (j)R̃1η(j),

V4(k) =
−d1−1∑
i=−d2

k−1∑
j=k+i

ηT (j)R̃2η(j),

and

θ (k) =
(
xT (k),

k−1∑
i=k−d1

xT (i),
k−d1−1∑
i=k−d2

xT (i)
)T
.

Let

ξT (k) =
(
xT (k) xT (k − d1) xT (k − d(k))

xT (k − d2) UT
1 UT

2 UT
3 W T

1 W T
2 W T

3

)
,

where

U1 =
1

d1 + 1

k∑
i=k−d1

x(i),

U2 =
1

d(k)− d1 + 1

k−d1∑
i=k−d(k)

x(i),

U3 =
1

d2 − d(k)+ 1

k−d(k)∑
i=k−d2

x(i),

W1 =
2

(d1 + 1)(d1 + 2)

k∑
i=k−d1

k∑
j=i

x(j),

W2 =
2

(d(k)− d1 + 1)(d(k)− d1 + 2)

k−d1∑
i=k−d(k)

k−d1∑
j=i

x(j),

W3 =
2

(d2 − d(k)+ 1)(d2 − d(k)+ 2)

k−d(k)∑
i=k−d2

k−d(k)∑
j=i

x(j).

The remainder of the proof is similar to that of Theorem 3.1,
which is omitted for brevity. This completes the proof.

IV. NUMERICAL ILLUSTRATIONS
In this section, a numerical example that often appears in the
literatures is presented to demonstrate the effectiveness and
sophistication of the proposed approach.
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Example 1: Consider the system (13) with the following
parameters:

A =
(

0.8 0
0.05 0.9

)
, B =

(
−0.1 0
−0.2 −0.1

)
.

Example 2: Consider the system (13), where

A =
(

0.7 0.1
0.05 0.7

)
, B =

(
−0.1 0.1
−0.1 −0.2

)
.

The allowable delay upper bound d2 can be found for
given d1 or vice versa. The simulation results are listed
in Table 1 and Table 2.

TABLE 1. Allowable delay upper bound d2 for various d1 for Example 1.

TABLE 2. Allowable delay upper bound d2 for various d1 for Example 2.

Remark 2: It is easy to see from Table 1 that the result
of Corollary 3.1 (without delay-decomposition) in this paper
and the result of Theorem 1 (with delay-decomposition)
in [12] are the same, which are better than the other results
in the table. Furthermore, how to derive a less conservative
result remains a challenging and fascinating task.
Remark 3: The method of this paper can be applied to

analyzing the networked-Markov jump systems easily.
Consider the following system

x(k + 1) = A(r(k))x(k)+ B(r(k))
×x(k − d1(k)− d2(k)), k ∈ N ,

x(k) = φ(k), k = −d2,−d2 + 1, . . . , 0,

where {r(k)} is a discrete-time homogeneous Markov chain
taking values in a finite set S = {1, 2, ..., n} (n ∈ N+) with
transition probability matrix 5 = (πij)(i, j ∈ S) given by

P{r(k + 1) = j|r(k) = i} = πij,

where 0 ≤ πij ≤ 1 is the transition probability from mode i
to mode j and

∑n
j=1 πij = 1.

We use the following Lyapunov functional:

V (k) =
8∑
i=1

Vi(k),

where

V1(k) = θT (k)P(r(k))θ (k),

V2(k) =
k−1∑

i=k−d11

xT (i)Q1x(i)+
k−1∑

i=k−d21

xT (i)Q2x(i)

+

k−d11−1∑
i=k−d2

xT (i)Q3x(i)+
k−d21−1∑
i=k−d2

xT (i)Q4x(i),

V3(k) =
−1∑

i=−d11

k−1∑
j=k+i

ηT (j)R1(r(k))η(j),

V4(k) =
−d11−1∑
i=−d12

k−1∑
j=k+i

ηT (j)R2(r(k))η(j),

V5(k) =
−d12−1∑
i=−d2

k−1∑
j=k+i

ηT (j)R3(r(k))η(j),

V6(k) =
−1∑

i=−d21

k−1∑
j=k+i

ηT (j)R4(r(k))η(j),

V7(k) =
−d21−1∑
i=−d22

k−1∑
j=k+i

ηT (j)R5(r(k))η(j),

V8(k) =
−d22−1∑
i=−d2

k−1∑
j=k+i

ηT (j)R6(r(k))η(j).

Then, we can obtain some similar results for the
networked-Markov jump systems, which are omitted for
brevity.

V. CONCLUSION
In this paper, the problem of stability criteria of discrete
systems with two additive time-varying delay components
has been investigated. By means of the discrete form of Free-
matrix-based integral inequality, a criterion less conservative
than some existing ones is derived from a tighter estimation of
the new inequality. Then, a corollary is proposed to compare
the obtained criterion more directly with the existing results.
Finally, two illustrative examples are presented to demon-
strate the effectiveness of the obtained method.
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