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ABSTRACT The general volume of data has exploded to unimaginable levels in the past decade. Therefore,
the big data analytics has become an area of focus. Many frameworks have been developed for data analytics,
such as Hadoop, Spark, etc. Most of the frameworks are built on multi-core or many-core memory systems,
requiring developers and users to have an in-depth understanding of the architectures to take full advantage
of the hardware. In this paper, we present a comprehensive study of both multi-core and many-core memory
systems and discuss the different characteristics, including core, cache, memory, and the on-chip network.
Furthermore, we propose a simple but effective mechanism for cache false-sharing overhead that can reduce
a large number of LLC-load/store instructions and LLC cache-misses. In addition, we conduct detailed
experiments with Ligra, a graph analytics framework, on four different-sized datasets. The results show that
it can achieve up to a 2.5× and 9.5× speed-up for multi-core and many-core memory systems, respectively.
We finally share our key findings and discuss the platform development on multi-core and many-core
memory systems.

INDEX TERMS Data analytics, multi-core, many-core, cache false-sharing.

I. INTRODUCTION
There has been an increasing need to process large-scale data
efficiently for valuable information in both academic and
industrial communities. Many popular frameworks have been
developed for data analytics, such as Hadoop [1], Spark [2],
GraphLab [3], etc. Most of the frameworks are built on com-
mercial machines with multi-core or many-core processors,
such as the Intel Xeon-E series and the Intel Xeon Phi series.
These processors always have complex mesh connect, cache,
and memory hierarchies. There are many differences in the
architecture characteristics between multi-core and many-
core memory systems. To make full use of the hardware
resources, developers and programmers must exploit the full
capabilities of the memory systems. However, users who
want to analyze system performance are often faced with a
lack of detailed documentation. Thus, we propose the use of
a system of micro-benchmarks to capture the characteristics
of multi-core and many-core memory systems; this system
can express the features of architecture analytically so that

they can be used along with the application requirement
models to thoroughly analyze performance. To demonstrate
the methodology, we develop an extensive memory capability
model for two memory systems: the xeon-server is based
on the Intel Xeon E5-2692v2 multi-core processor, and the
knl-server is based on the Intel Xeon Phi 7210 many-core
processor. The Xeon E5-2692v2 is also deployed on the
Tianhe-2 supercomputer [19], and the Trinity supercomputer
is based on the Xeon Phi 7250 (an updated version of the
7210) processor [20].

The main contributions of this paper are:
• We derive and parametrize capability models for the
memory systems of multi-core and many-core proces-
sors. Then, we present a complex comparison regarding
the architecture characteristics of the models.

• We put forward the cache false-sharing issue which is
often overlooked by developers. Further, we propose an
effective mechanism to reduce the overhead of false-
sharing for multi-core and many-core memory systems.
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FIGURE 1. Xeon-E5 Architecture.

The graph analytics experiment results show that our
method can achieve up to a 2.5× and 9.5× increase in
speed for multi-core and many-core memory systems,
respectively.

• We summarized our key findings and discussed the plat-
form development on multi-core and many-core mem-
ory systems.

II. MULTI-CORE AND MANY-CORE ARCHITECTURE
We used the Intel Xeon E5-2692v2 and the Intel Xeon Phi
7210 to demonstrate our methodology, and we refer to them
as Xeon-E5 and KNL (Knights Landing), respectively, in the
following sections.

As shown in Figure 1, the Ivy Bridge-based Xeon-E5 has
12 cores and is clocked at 2.2 GHz, with a peak performance
of 211.2 Gflops. Each core has 64 KB of L1 cache (32 KB
data and 32 KB instruction), and 256 KB of L2 cache. All
twelve cores share 30 MB of last level cache (2.5 MB ∗
12), also called L3 cache. The on-chip memory controller
supports four DDR3 channels and 768 GB of the maximum
capacity. The Xeon E5 processor has two QPI links that
can connect with other processors to form a non-uniform-
memory access architecture [18]. TheQPI link runs at 8 GT/s,
and 2 bytes can be transferred in each direction. Each link
runs at 16 GB/s simultaneously, for an aggregate of 32 GB/s.
KNL is a new ×86-based many-core processor; its prede-
cessor is the Knights Corner (KNC), which is well known
as the Xeon Phi. One of the major changes regarding KNC
is that KNL is shipped not only as a PCIe accelerator but
also as a standalone processor. The architecture of KNL is
shown in Figure 2. The KNL used in our experiments has
64 tiles and two cores on each tile and is clocked at 1.3 GHz,
providing a peak performance of 5.3 Tflops. Each core has
64 KB of L1 cache the same as the Xeon-E5. Two cores on
one tile share 1 MB of L2 cache and the tiles are connected
into a 2D mesh that provides cache coherence between the
L2 caches. The L2 cache is the last level cache for KNL.
The KNL processor has six DDR4 channels with 384 GB of
maximum capacity, as well as eight MCDRAM controllers

FIGURE 2. KNL Architecture.

TABLE 1. Benchmark results.

that each connect to a 2 GB MCDRAM. Furthermore, KNL
provides three memory models and five configuration modes,
making a total of fifteen configurations [4].

We conduct our experiments on two machines. The xeon-
server is configured with two Xeon-E5 processors and
128GBofmemory that runs RedHat with a 2.6.32 kernel. The
knl-server is configured with a Knight Landing processor,
16GB MCDRAM, and 96 GB of memory that runs CentOS
with a 3.10.0 kernel. We configure the knl-server as an all-to-
all cluster using flatmemorymodewhich is themost common
pattern.

We use ccbench [5] to measure the latency of cache access
and Intel Memory Latency Checker [6] to check the band-
width and latency of memory for both the Xeon-E5 and KNL
processors. Table 1 shows the benchmark results in detail.
KNL has a total of 128 cores, which is almost ten times more
than that of the Xeon-E5 processor. However, the frequency
of KNL is much lower.
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FIGURE 3. The Procedure of an Array Update.

One of the most important differences between
Xeon-E5 and KNL is the cache hierarchy and connection.
Due to the larger number of cores, the tiles in KNL are con-
nected into a 2D mesh to provide cache coherence between
the L2 caches. Comparatively, all cores in the Xeon-E5 pro-
cessor have a private path to the L3 cache. Additionally,
Xeon-E5 has a bidirectional ring interconnect that connects
the 12 cores, the L3 cache, the QPI agent, and the integrated
memory controller. Both of the processors have a 64 KB L1
cache. However, the latency of KNL is nearly twice that of
Xeon-E5. The last level cache for KNL is the L2 cache, which
is 64 MB spread over 64 tiles, whereas each core within the
Xeon-E5 processor has a 2.5MB L3 cache, which amounts to
a 30 MB last level cache. Each core on Xeon-E5 can directly
load/store any data in the whole last level cache through the
ring bus, but the core on KNL must transfer data stored in
other L2 caches to its local L2 cache for operations. This may
not only lead to large amount of messaging, but also reduce
the valid capacity of last level cache. In the worst situation,
each L2 cache on all tiles contains the same data and the
practical last level cache turns into 1.5 MB. Additionally,
the latency of last level cache for both processors is very
close.

KNL presents a heterogeneous memory hierarchy with
MCDRAM and DRAM [10]. The bandwidth of MCDRAM
can reach almost 400 GB/s, which is much higher than
DRAM; MCDRAM also has a little longer latency. The
KNL processor has two more DDR channels than Xeon-E5
and can achieve a much higher bandwidth. However, the
memory access latency for KNL is nearly twice that of
Xeon-E5. It seems that the more memory channels, the higher
bandwidth, and the longer latency. Most importantly, KNL
has a larger number of cores, lower frequency, larger cache
capacity, a more complex interconnect, and a higher memory
bandwidth and latency than Xeon-E5.

III. MOTIVATION EXAMPLE
Data processing engines usually support parallel comput-
ing for fully exploiting the hardware potential. Cache
false-sharing is a well-study issue in the architecture
world [25], [26]. And, there have been several efforts over
the years to address the problem: profiling and manual tun-
ing the application, compiler techniques, and data layout

transformations [27]. However, the cache false-sharing issue
is often overlooked by developers in system development and
it can’t be addressed by the compiler automatically in many
situations. Thus, it may become a bottleneck for big data
analytics on multi-core or many-core memory systems.

For example, suppose a processor with four cores initial-
izes four threads to parallel update an array of 29 lengths, and
each element takes up 8 bytes of memory space. Figure 3(a)
shows one 64-byte cache line in cores that can contain 8 array
elements and the four threads parallel update the continuous
array space. In this situation, the updates caused by each
thread will lead to cache line failures in other cores, and extra
last level cache (LLC) load/store instructions will be needed
for cache coherence (details is discussed in section V). This
outcome may trigger not only excessive load/store instruc-
tions and memory accesses but also congestion on intercon-
nects and the memory controller. The more threads there are,
the more serious the situation becomes.

A better update strategy is shown in Figure 3(b). In this
strategy, there are no shared data in the cache lines of the
different cores, and we limit the effect of element updates in
the core where the thread was initialized. The optimization
methods will achieve good performance improvement for
highly parallel applications on both multi-core memory sys-
tems and on many-core memory systems. This phenomenon
is prevalent in the applications of big data analytics, and it is
often ignored by the developer. But, the he parallel computing
is one of the key steps, in general. We can avoid or reduce
the overhead of cache false-sharing through appropriate task
partitioning and scheduling mechanism that may lead to sig-
nificant performance improvements.

IV. EXPERIMENTS SETUP
To verify the overhead of cache false-sharing in big data
analytics, we select Ligra which is a popular graph analytic
framework [13], and compare the performance behavior after
the optimized for cache false-sharing on both multi-core and
many-core memory systems.

Graph structures provide a basic model of entities with
connections between them that can represent almost any-
thing [9]. Graph analytics has been widely adopted in various
big data applications such as social computation, web search,
and recommendation systems. Ligra is a lightweight graph
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FIGURE 4. PR on xeon-server and knl-server. (a) LLC-loads. (b) LLC-stores. (c) cache-misses.

FIGURE 5. TC on xeon-server and knl-server. (a) LLC-loads. (b) LLC-stores. (c) cache-misses.

processing framework that is specific to the shared-memory
multi-core memory system. We can efficiently implement
many graph applications with the interfaces provided by
Ligra, such as PageRank [14], Triangle Counting [15],
BFS [16], Betweenness Centrality [17], etc. The computation
is done by iteratively calling the VertexMap and EdgeMap
functions: VertexMap applies the application-define func-
tion to all vertices in the active set; EdgeMap applies the
application-define function to all edges whose source vertex
belong to the active vertex set. For most real-world graphs,
the number of edges is several times larger than vertices.
Thus, the EdgeMap function takes up the main computation
time in graph analytics. One key step in EdgeMap function is
parallel updating the vertex values by all threads that is very
similar to the situation in Figure 3(a).

Data layout transformation is one of the useful meth-
ods to reduce the overhead of cache false-sharing and has
been widely adopted by developers. Ligra implements multi-
thread parallel processing through Clik/OpenMP just like any
other platforms [21], [22]. For OpenMP, we can get rid of
cache false-sharing using its inherent scheduling polices. For
instance, it takes up 8 bytes for each vertex value needs
to be updated, while one cache line is 64 bytes that can
contain 8 vertex values, and it is better that one thread updates
8 sequential vertex values. This can be realized by setting a
parallel granularity to 8 using the interface of OpenMP. As for
Cilk/Cilk++, it adopts the bisection method to automatically
set the parallel granularity for performance. But, we can
control the granularity by adding extra invalid elements. Sup-
pose we initialize four threads on four cores and parallel
update an array of 52 elements. In general, we set the parallel

granularity to 8, the task partition will be <7, 6, 7, 6, 7, 6, 7,
6> for the four work threads. The update operations of one
thread will cause the cache line failures of other threads. If
we increase the number of array elements to 64 by adding
invalid elements, the task partition will be <8, 8, 8, 8, 8, 8, 8,
8> that can reduce the overhead of cache false-sharing. And,
we just need to skip the artificially added elements without
any operations in the processing. We optimize Ligra using
this method and compare with the native Ligra on multi-
core memory system (xeon-server) and many-core memory
system (knl-server), respectively.

V. EVALUATION
The experiments are run individually on the xeon-server
and knl-server. The configuration of machines is described
in Section II. We use both synthetic and real-world graph
datasets for performance measurement: Hollywood and soc
are social graphs, gsh is a web graph, and rmat23 is gen-
erated using the RMAT generator with an average degree
of 16 (as recommended by the Graph500 benchmark) [23].
RMAT graphs have a scale-free property that is a feature of
many real-world graphs [24]. We focus in this section on the
performance impact of cache false-sharing and the different
behaviors between multi-core and many-core memory sys-
tems.

A. OVERALL PERFORMANCE
We select two typical graph applications realized by Ligra.
PageRank (PR) was first proposed and used by Google.
PR pulls values from the vertex’s neighbors to update the
vertex PageRank value in parallel. Triangle Counting (TC)
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TABLE 2. A collection of graphs.

TABLE 3. Runtimes (in seconds).

computes a vertex’s edge list and the neighbors of the vertex
on its edge list for triangles. Both of them need parallel update
vertex PageRank/Triangle value during the computation, and
the update takes up most of the processing time. The results
are shown in Table 3, and we found that:

1) The native Ligra (Na-Ligra) runs faster on xeon-server
than knl-server while it didn’t appear to be much dif-
ference for optimized Ligra (Op-Ligra).

2) Overall, the Op-Ligra behaves better than Na-Ligra
on both xeon-server and knl-server. The optimization
effect is more obvious on knl-server than on xeon-
server for both PR and TC, and TC has achieved greater
performance improvement relative to PR on the two
servers.

B. RESULTS ANALYSIS
It is well known that both the CPU capacity and mem-
ory access have a significant impact on performance. The
xeon-server has two Xeon-E5 sockets, a peak performance
of 211.2 Gflops for each socket. While the knl-server has
a Xeon Phi 7250 processor, providing a peak performance
of 5.3 Tflops. Though the knl-server has more computing
power, the Na-Ligra spends more time on knl-server than on
xeon-server for both PR and TC computation. Therefore, we
count the number of last level cache load/store instructions
(LLC-loads and LLC-stores) and the number of last level
cache failures (cache-misses) generated during the calcula-
tion for further analysis. Figure 4 and 5 show the records
about the three factors for PR and TC, respectively. In gen-
eral, the number of LLC-loads, LLC-stores and cache-misses
increase with the size of graphs. The calculation on knl-server
produces several times larger number of load/store instruc-
tions relative to xeon-server, and more cache failures appear
accordingly. The extra instructions may be caused by the

FIGURE 6. The gap between xeon-server and knl-server. LLC-loads-Na is
for Na-Ligra while LLC-loads-Op is for Op-Ligra, and so are the others.
(a) PR. (b) TC.

different cache hierarchy: Xeon-E5 has three levels of cache
while KNL only has two levels of cache, and the L2 cache has
made the great contribution to the last level cache accesses
reduction. As for the cache failures, it increases as the number
of load and store instructions increases. In addition, KNL has
a total of 64 MB last level cache (64 tiles and 1 MB LLC
for each tile), each LLC is more private to its own tile which
means one thread must transform the needed data from other
LLC or memory to its local LLC. In extreme cases, each
LLC in 64 tiles contains the same data which is equivalent
to just 1 MB LLC. Correspondingly, threads on Xeon-E5 can
access the whole 30 MB L3 cache directly that can be very
helpful to reduce the number of cache failures. The result of
cache failures will lead to extra memory accesses. It is more
time consuming sincememory latency is always several times
longer than caches on the processor (see Table 1). Above all,
the differences in cache hierarchy and interconnect result in
the differences in the number of LLC-loads/stores and cache-
misses, which in turn affect the performance on xeon-server
and knl-server.

Figure 6 shows the gap between xeon-server and
knl-server for both native and optimized Ligra. The Y-axis
is the ratio of knl-server to xeon-server about the num-
bers of LLC-loads, LLC-stores, cache-misses. For exam-
ple, the number of LLC-loads instructions generated on the
knl-server is 4 while on the xeon-server is 2, then the ratio
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FIGURE 7. PR on xeon-server. (a) Speed-up Ratio of Op/Na-Ligra.
(b) Percentage of Op/Na-Ligra.

FIGURE 8. TC on xeon-server. (a) Speed-up Ratio of Op/Na-Ligra.
(b) Percentage of Op/Na-Ligra.

FIGURE 9. PR on knl-server. (a) Speed-up Ratio of Op/Na-Ligra.
(b) Percentage of Op/Na-Ligra.

FIGURE 10. TC on knl-server. (a) Speed-up Ratio of Op/Na-Ligra.
(b) Percentage of Op/Na-Ligra.

is 4/2 = 2. The larger the ratio, the larger the performance
gap between xeon-server and knl-server. Apparently, the gap
is narrowing after our optimization for the above three param-
eters (except LLC-loads-Op on soc graph). Due to the greater
computing power of the KNL, Op-Ligra has not much differ-
ence in performance between xeon-server and knl-server.

We also compare the characteristics of Op-Ligra with
Na-Ligra on both xeon-server and knl-server. The results are
present in Figure 7, 8, 9 and 10. The subgraph(a) shows

the performance improvement ratio for Op-Ligra relative to
Na-Ligra, and the subgraph(b) shows the percentage of
Op-Ligra to Na-Ligra about the number of LLC-loads/stores
instructions and cache-misses: the smaller the percentage,
the larger the decrease. Overall, the Op-Ligra generated
fewer LLC-loads and LLC-stores instructions during the
entire computation, and the number of cache-misses was also
greatly reduced. This can not only ease the congestion on
interconnects and controllers but also reduce memory access.
Thus, the Op-Ligra achieves great performance improve-
ments.

Through the comparison between the four figures,
we found that the smaller the percentage, the larger the
speed-up ratio. TC on knl-server achieves the maximum
performance improvement while PR on xeon-server is the
minimum. Thanks to the three levels of cache and the bi-
directional ring interconnect on Xeon-E5, the L2 cache can
effectively reduce the LLC-load/store instructions. And the
‘‘big’’ shared LLC also plays an important role in increasing
the cache-hit rate. Thus, our optimization for cache false-
sharing has less effect on xeon-server than on knl-server.
Besides, TC needs more updates on each vertex value every
iteration so that it gets more benefits from the optimization.
Furthermore, the acceleration effect seems to be more rele-
vant to the LLC-loads rather than LLC-stores in Figure 7.
Give that the number of LLC-load instructions is always
much larger than LLC-store instructions, reducing the num-
ber of LLC-load instructions has a significant impact on
improving performance.

C. DISCUSSION
The architecture of multi-core and many-core is much dif-
ferent, it is very important for developers to understand their
characteristics in order to design efficient programs. We have
made a comprehensive comparison about them by taking
an example of xeon-E5 and KNL. And we put forward the
cache false-sharing issue which is easy to overlook by many
programmers, and we also make detailed analytics about the
performance on graph processing.

The many-core memory systems can provide a larger
amount of lower frequency cores relative to multi-core mem-
ory systems, and they seem to prefer higher memory band-
width but longer memory latency.

The cache false-sharing exits in many big data analytics,
and addressing this issue contributes to fully develop paral-
lelism and performance improvement.

The many-core memory systems are more sensitive to
data dependency due to their complex interconnection among
cores and two-level cache hierarchy. Developers should pay
more attention to the issues that may cause data consistency,
such as parallel granularity, task scheduling, context data
structures and so on.

VI. RELATED WORKS
Previous research is primarily focused on either multi-core
or many-core memory systems. Ramos and Hoefler [10]
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developed an intuitive performance model for cache coher-
ent many-core architectures and provided several opti-
mal and optimized algorithms for complex parallel data
exchanges. Saini et al. [11] presented a performance evalu-
ation of Pleiades based on the Intel Xeon E5-2670 processor
and conducted detailed experiments using several low-level
benchmarks, and four full-scale scientific and engineering
applications. Ramos and Hoefler [12] also derived system-
atic benchmarking methods to select relevant parameters for
capability models of memory subsystems. The built models
can rigorously analyze the performance of many applications.
However, none of the built models have attempted to com-
plete a detailed comparison of the multi-core and many-core
memory systems and provide optimization techniques based
on the respective architectures.

VII. CONCLUSION
Multi-core and many-core processors have been widely
deployed in data centers and supercomputing centers.
Through our experiments, we derive and parametrize capa-
bility models for multi-core and many-core memory systems
and compare their architecture characteristics. Addition-
ally, we propose an optimization mechanism for reducing
the overhead of cache false-sharing caused by the parallel
updates, and we utilize Ligra to verify the effectiveness of
our approach and analyze the different influence of cache
false-sharing on multi-core and many-core memory systems.
Furthermore, our strategy can be widely adopted by other
parallel frameworks for big data analytics.
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