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ABSTRACT Remarkable progress has been made in the field of multi-object tracking. Although tracking-
by-detection has recently became one of the most popular frameworks, it still has one main drawback: this
approach relies heavily on the quality of detection. Thus, the missing detections caused by partial occlusion
usually lead to fragment problem. To address this problem, this paper introduces supervoxels to represent
objects with partial occlusion, even for missing detections. We first extract superpixels of the foreground,
and then our proposed supervoxel consists of spatial-temporal sequences of superpixels. The supervoxels
represent tracklets at the image level, so it is robust for initial detection. Then, we incorporate supervoxels into
multiple hypotheses tracking by considering the enhanced association with supervoxels (EAS). Moreover,
we propose a detection refinement method based on EAS. As our approach allows us to handle partial
occlusion problems, we achieve remarkable results in crowded scenes. Finally, our experiments on both
MOT15 and MOT16 benchmarks show that our EAS is competitive with the state-of-the-art trackers.

INDEX TERMS Enhanced association, multiple object tracking, partial occlusion, supervoxel.

I. INTRODUCTION
Multiple object tracking is a vital study in computer vision,
which focuses on recovering spatiotemporal trajectories of
objects from videos. Tracking-by-detection is the most pop-
ular framework [1] in multiple object tracking. It indepen-
dently detects objects from each frame using an offline
trained detector [2], [3]. It reduces the search space relative to
the very large solution space of global searching. In addition,
it converts object tracking into a data association problem,
i.e., assigning detections to the appropriate objects and asso-
ciating those detections with a consistent trajectory. Despite
the remarkable progress in this field in recent years, multiple
object tracking remains a major challenge in partial occlusion
scenes.

Partial occlusion occurs frequently while targets are mov-
ing, which leads to tracking errors, such as fragments and
false joints. This is mainly because the algorithm is not
robust enough to utilize partial information or to associate

inaccurate detections of partially occluded objects. In human
vision, objects are associated, even partially visible objects,
according to the motion and appearance information because
partial information estimates the complete object position.
Hence, we propose a more robust approach to exploit partial
information and maintain a stable association with objects in
the partial occlusion scenes.

To sufficiently represent the partial information, a super-
pixel [4] is proposed to segment the image into pixel regions
(i.e., superpixel). The superpixel accurately represents an
object’s partially visible region with similar features. It can
be accurately correlated, based on the stability of the object
moving between neighboring frames. Therefore, it also accu-
rately associates the corresponding objects. In this paper,
a supervoxel is defined as a spatial-temporal continuous
sequence of superpixels, which indicates the tracklet of a par-
tial region of an object, as shown in Figure 1. Then, we pro-
pose a novel enhanced association with supervoxels (EAS)
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FIGURE 1. Continuous superpixels are colored as the foreground in the
adjacent 3 frames. An object(pedestrian) contains 5 superpixels in each
frame. Superpixels in the same color compose 5 supervoxels in the above
image.

approach for multiple object tracking to solve the partial
occlusion problem. First, based on the association of super-
pixels, a superpixel association tree is built to obtain the
candidate supervoxels. The tree structure allows EAS to
search for more candidate superpixel sequences and has great
local continuity. The supervoxel has a remarkable effect
in representing partially occluded objects and associating
objects among frames. Then, the objects’ positions are accu-
rately estimated, and the pairwise edges association between
detections is enhanced with the supervoxel relationship on
the MHT framework. Overall, partially occluded objects are
joined into trajectories effectively, which reduces false nega-
tives in tracking.

We evaluate our approach on a set of standard public
datasets. The experimental results show that EAS is bet-
ter than other approaches in partial occlusion scenes and it
achieves competitive results compared with state-of-the-art
approaches.

II. RELATED WORK
Multi-object tracking has been studied for many years and
considerable research work has been performed in this field.
A segmentation-based tracking algorithm was proposed in
recently. Segmentation technology can obtain more accurate
foreground information for objects and provide more partial
information for multiple object tracking. This section briefly
reviews the most important milestones in this field, as well as
the research conducted on the segmentation algorithm in the
related domain.

A. MULTIPLE OBJECT TRACKING
Most tracking approaches fall into two categories:
online [5], [6] or offline [7]–[9]. The online approach uses
information from past frames to estimate the current state
recursively which is commonly applied in time-critical
scenes. The offline approach uses global information from
all the frames of a video sequence in order to achieve higher
accuracy.

Online algorithms do not use global information to
associate trajectories, which eventually leads to an accu-
mulation of errors. Breitenstein et al. [10] used a
particle filters approach and interpolated missing or
inaccurate detections caused by objects with nonlinear
motion. Breitenstein et al. [11] later adopted particle filter-
ing to approximate more complex multi-modal posteriors.
Yamaguchi et al. [12] proposed the agent-based behavior
model. Wu et al. [13] compared online tracking approaches.

Offline algorithms, on the other hand, use information from
all frames for tracking. Network flow based algorithms [14]
define each detection as a node in the network and solve
the tracking problem by calculating the min-cost network
flow. Mclaughlin et al. [7] linked distant trackers based on
motion information to better address long-term occlusions
and missing detections. Kim et al. [8] introduced dummy
nodes to overcome missed detections. Conditional random
field (CRF) algorithms [9], [15] generalize the global CRF
costs to assign label to detections. However, the failure of
trajectory association, which is caused by object occlusion,
results in trajectory fragmentation and ID-switch in the above
approaches.

To solve the association problem of detections among
frames, it is necessary to measure the similarity among detec-
tions. Some typical similarity measurement approaches take
the feature of whole objects as the basis of the associa-
tion. Spatio-temporal constraints [15], [16] are commonly
used in current tracking algorithms. To avoid making mis-
takes, detections are only associated in closer frames and
regions. Appearance is an important feature in measuring
similarities. For instance, Mclaughlin et al. [7] used color
histogram information to calculate similarity; Kim et al. [8]
and Sadeghian et al. [17] introduced convolutional neural net-
work features. Li et al. [18] reviewed popular visual tracking
methods based on deep learning features. Milan et al. [19]
and Mclaughlin et al. [7] utilized motion information. How-
ever, when the tracking objects are partially occluded, these
approaches are most likely ineffective because the partial
information is directly used to compare the whole object,
which is obviously sub-optimal.

Moreover, some tracking approaches [9], [20] use partial
information of partially occluded objects to solve the occlu-
sion problem. Some use partial region information obtained
through segmentation technology [21], optical flow point
matching [22] and other methods to describe the partial
information.

B. SEGMENTATION APPROACH IN TRACKING
Segmentation technology assigns labels to pixels according to
predefined features and then divides pixels into homogeneous
regions. In this case, segmentation provides a basis for the
extraction and association of partial information in multi-
object tracking.

In tracking, some approaches use partial informa-
tion of partially occluded objects to solve the occlusion
problem, with image segmentation and the background
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FIGURE 2. Enhanced association with supervoxels(EAS) approach.

model approach. Fragkiadaki and Shi [21] computed a figure-
ground segmentation of the video and then assigned repulsive
forces between foreground trajectories that belong to various
interconnected components in tracking. Wen et al. [20] inte-
grated the multi-part tracking and segmentation model [23]
into a unified energy optimization framework to handle the
object tracking and video segmentation task. In the multi-cut
framework, Keuper et al. [22] obtained outstanding tracking
results based on optical flow point tracking. CRF based on
superpixels [9] uses low-level information and associates
superpixels with specific objects, giving each superpixel the
same label as objects or classifying it as part of the back-
ground. However, the above approach is not stable or robust
enough in partial occlusion scenes for multiple object track-
ing, which makes it difficult to obtain accurate tracking
results.

In partial object connections between adjacent frames,
superpixels have excellent properties. They represent a par-
tial region with similar features of the object, which over-
comes the lack of semantics of methods that are based
on the point trajectory [21], [22]. Superpixels were first
proposed by Ren and Malik [4] and gradually applied
to computer vision, pattern recognition and other related
fields [9], [24]. Achanta et al. [23] proposed a simple lin-
ear iterative clustering(SLIC) superpixel generation algo-
rithm based on K-means clustering. When segmentation is
applied to the video, it needs to consider the temporal fac-
tor. Chang et al. [25] presented temporal superpixels (TSP),
which use optical flow information to evolve and accurately

maintain the labels between adjacent frames. However,
the current segmentation algorithms cannot maintain the con-
tinuity and stability of the superpixel in long-term video
sequences.

Taking the above-mentioned challenges into account,
the enhanced association with supervoxels(EAS) approach
is proposed with the strong spatial-temporal continuity of
supervoxels in tracking. It is robust for solving the problems
of partial occlusion and achieves a remarkable result because
of the association enhancement of the detections.

III. OVERVIEW
To sufficiently represent partial information, we utilize
spatial-temporal continuous sequences of superpixels as
a supervoxel. A novel enhanced association with super-
voxel (EAS) approach for multiple object tracking is pre-
sented to solve the partial occlusion problem. Much more
partially occluded objects are effectively joined into trajecto-
ries that reduce false negatives in tracking. Multiple hypoth-
esis tracking(MHT) [26] is a classic tracking framework
that has been further studied in recent years [8], [27]–[29].
We conduct our approach in multiple hypothesis track-
ing (MHT) framework, which is a popular tracking-by-
detection approach.

We represent our method in Figure 2. As shown in
Figure 2(a), our input data are video sequences and the detec-
tions are obtained through a public detector. Each detec-
tion has a confidence to describe the probability that it
belongs to pedestrians. We use the detection provided by the
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MOT15 [30] and MOT16 [31] datasets which came from dif-
ferent detectors. This verifies the robustness of our algorithm.

Spatial-temporal continuous sequences of superpixels
constitute supervoxel as shown in Figure 1. Each frame
is segmented into several superpixels with asegmentation
algorithm. Each superpixel is given a score by a fore-
background model where we use the SVM (Support Vec-
tor Machine) method based on the superpixel’s color [9].
Foreground superpixels are used to associate partial regions
between adjacent frames and have strong stability. In addi-
tion, foreground superpixels that are not located in the detec-
tions form the missing superpixel set. The superpixels in
the missing set may be potential objects and are used to
estimate position based on the relationship with context
detection.

We produce a supervoxel(Figure 2(b) and 2(c)) by building
a superpixel association tree(Sec. IV-B), with the foreground
superpixels as the root node. We utilize the supervoxel asso-
ciation information between the missing foreground super-
pixel and the original detections(obtained by the detector)
to rediscover objects(Figure 4(d)) as described in Sec. V-A.
We find that there is a problem with the confidence of the
detection set, so we use the relationship among detections to
determine height perceptive and perform confidence refine-
ment(Figure 4(e)) as described in Sec. V-B. The association
between detections is a very important step. The features usu-
ally include appearance and motion information. We intro-
duce the supervoxel association cost(Figure 2(f)) to measure
the similarity between the detections.

Finally, as shown in Figure 2(f), the association of detec-
tions maintains multiple track trees, and delay data associ-
ation decisions by keeping multiple hypotheses active until
the data association ambiguities are resolved, where every
detection is a vertex and associations between detections
form edges. At each frame, the track trees are updated from
observations by adding to the existing tree and creating a
new tree for each observation, where each branch in the tree
is scored with three types of linking constraints(including
appearance, motion and supervoxel).

Following the formulation [8], we use the log likelihood
ratio (LLR) between the target hypothesis and the score
can be computed recursively [32]. Supervoxel cost is intro-
duced to the score calculation by pairwise edge association
(Sec. V-C). The final trajectories are found by solving a
maximum weighted independent set problem(Figure 2(f)) to
obtain themore complete tracking result(Figure 2(g)). A large
number of occlusion objects are added to the trajectory.

IV. SPATIAL-TEMPORAL SUPERVOXEL
When objects are partially occluded, low-level superpixel evi-
dence [9] sufficiently represents partial information and is rel-
atively stable in spatial and temporal associations. We build a
superpixel association tree to obtain candidate supervoxels by
associating superpixels with motion and appearance(color)
information. The supervoxel has a prominent effect in rep-
resenting partially occluded objects and associating objects

among frames. The generation of the supervoxel is described
in this section.

A. DEFINITION OF SUPERVOXEL
In the tracking-by-detection framework, the effective detec-
tion set D = {Dt

i } is the basis of tracking. Each detection Dt
i

has position information, index i, the frame t that is located
and a confidenceC t

i to describe the probability that it belongs
to pedestrians. Traditional detectors generally use fully visi-
ble objects as training data, which results in partially occluded
objects being given very low confidence or even being lost.
Therefore we propose a supervoxel that has strong spatial-
temporal continuity in tracking. It is robust for discovering
and associating the partially occluded object.

In this paper, we define the spatial-temporal continuous
sequence of superpixels [4] as a supervoxel. The foreground
supervoxel (i.e., included in the pedestrian) indicates the
tracklet of a partial region of an object. To obtain the super-
voxel, we first use the TSP algorithm( [25]) to divide the
image into superpixels by frame Fi = {sti }. A robust fore-
background model is designed to find foreground superpixels
based on SVM classification of superpixel color features.
It is insensitive to camera movement or pedestrians standing
still. The fore-background model gives a score J t

i for each
superpixel and the superpixels with the higher scores tend
to be the foreground. Missing foreground superpixel set FM
forms the starting nodes for all the supervoxels.

A superpixel association tree is built and used to obtain
candidate supervoxels. For a certain foreground superpixel sti ,
a tree T is constructed with the associations of the superpixel
in different frames. The tree is extended with sti as the root
node. As shown in Figure 2(b), when the superpixel sk+13
is looking for association nodes sk+26 in the next frame,
the information of the ancestor node sk1 and the parent sk+13
are considered. It evaluates the quality of the nodes sk+26
in a comprehensive manner. A candidate supervoxel is a
branch Vi = {sti0 , s

t+1
i1
, . . . , st+mim } in T . The optimal super-

voxel is obtained by constructing proper functions to eval-
uate these candidate supervoxels. The details are discussed
in the next section. As shown in Figure 2.(b), sequence
{sk1, s

k+1
1 , sk+24 , sk+38 } is the best supervoxel selected by the

evaluation function.
As shown in Figure 1, after the segmentation algo-

rithm [25], the image is segmented into multiple superpixels,
where the colored regions indicate the foreground super-
pixels. Based on the association and evaluation methods
mentioned above, five supervoxels are finally formed. The
supervoxels effectively connect the partial regions of the
pedestrians.

B. SUPER-VOXEL EVOLUTION
As discussed in related work, the superpixels associated with
the original label(obtained by the segmentation algorithm)
cannot remain stable and accurate in long-interval frames,
so we build a superpixel association tree to obtain supervoxels
(Figure 2(b) and 2(c)). The superpixel association process
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can be either forward or backward. The following shows the
approach of forward association, but we use all directions in
the experiment.

The color and position information are selected to repre-
sent the superpixel and supervoxel. These features are used
to evaluate the similarity of superpixels when associating
adjacent frames. These features are synthetically considered
to form an evaluation functionQ for measuring the candidate
supervoxels. The evaluation score of the supervoxel reflects
the similarity of two objects for the supervoxel’s starting and
ending nodes located in the two objects.We use φ to represent
the features between adjacent frames and use ψ to represent
the features of the supervoxel. For a superpixel association
tree T , a foreground superpixel sti is used as a root node.When
the tree is extended in the temporal dimension, it needs to
select the appropriate superpixels as the association node in
the next frame. For a pending association node sti , multiple
similar nodes st+1j are added to the tree.

We measure color differences in the Lab color space
because of its perceptual accuracy [33]. We define the mean
of pixel color in the superpixel sti as superpixel color Lab(s

t
i ).

In adjacent frames, the cost of color φLab is defined as:

φLab(sti , s
t+1
j ) = ‖Lab(sti )− Lab(s

t+1
j )‖

2
. (1)

It describes the color difference between sti and s
t+1
j .

We define the coordinate mean of pixels in the superpixel
as the position (x ti , y

t
i )
T of sti . In adjacent frames, the cost of

distance φDis is defined as:

φDis(sti , s
t+1
j ) = ‖(x ti , y

t
i )
T
− (x t+1j , yt+1j )T ‖

2
. (2)

This formula describes the distance between sti and s
t+1
j in

space.
There are some necessary constraints when nodes are

associated with the current superpixel node. The superpixel
node should be in a neighboring location with similar color.
We formulate an extended function E(sti , s

t+1
j ) to evaluate the

similarity of superpixels in the adjacent frame:

E(sti , s
t+1
j ) =

0∑
k=−2

φLab(s
t+k
i , st+1j )+ φDis(s

t+k
i , st+1j ), (3)

where k indicates that we consider the parent node and
the ancestor node in the association. A detailed description
of each factor is introduced as above. Considering that the
position and appearance of the pedestrian does not suddenly
change between adjacent frames, we select two superpixel as
the association nodes in the adjacent frame.

For a candidate supervoxel, it is a continuous series of
superpixels and needs integrity features to describe it. Accel-
eration information is a good choice for describing the stabil-
ity. The cost of color is defined as:

ψLab_A(Vi) =
τ−1∑
k=1

‖L_At+kik ‖2
, (4)

which indicates the sum of the color acceleration. The accel-
eration is represented by the second order color difference of
the superpixel:

L_At+kik = Lab(st+k−1ik−1
)− 2Lab(st+kik )+ Lab(st+k+1ik+1

) (5)

Temporally, distance information is expressed as accel-
eration of the candidate supervoxel. The pixel coordinates
of pedestrians in the video are altered as they move. The
velocity of the pedestrians remains stable, which means that
the acceleration of the superpixel that belongs to an object
is fairly small. Therefore, we define the acceleration cost
for candidate supervoxels. The cost of acceleration for the
supervoxel is defined as:

ψDis_A(Vi) =
τ−1∑
k=1

‖D_At+kik ‖2
(6)

The acceleration is represented by the second order difference
of the superpixel position:

D_At+kik = (x t+k−1k−1 , yt+k−1k−1 )T

− 2(x t+kk , yt+kk )T + (x t+k+1k+1 , yt+k+1k+1 )T . (7)

In association tree T , each branch is a candidate super-
voxel, and the branches form a set V = {Vi}. The reliable
supervoxel usually has a very small rate of change in color
and speed, i.e., a low acceleration.We formulate an evaluation
function Q(Vi) to obtain the supervoxel score of Vi:

Q(Vi) = ψLab_A(Vi)+ ψDis_A(Vi). (8)

where the detailed description of each factor is introduced
as above. Through the evaluation function, we extract the all
candidate supervoxel score from the superpixel tree.

V. ENHANCED ASSOCIATION WITH
SUPERVOXELS FOR MHT
This section introduces the supervoxel that handles the partial
occlusion to solve the tracking problem based on the MHT
framework. We use the supervoxel to represent the partially
occluded object(Sec V-A) and enhance the pairwise edge
associations in tracking(Sec V-C), which results in a remark-
ably effective approach in the partial occlusion scenes.

A. OBJECT REDISCOVERY WITH SUPERVOXEL
Tracking-by-detection is a popular framework and we use the
framework in this paper. Thus, the effective detection set has a
significant impact on complete object tracking. As explained
in Sec. II, the traditional detector is not very good at detecting
partially occluded objects. We find the partially occluded
objects based on the fore-background model and estimate the
object’s position through the association between the super-
voxel and the original detections. We describe the detailed
process of rediscovering objects as follows.
Each superpixel sti in the missing superpixel set FM may be

a potential object. We use this superpixel as the source node
for forward and backward association. Then, the superpixel is
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FIGURE 3. These figures are 10 detections in continuous frames, where solid rectangular boxes are the detections produced by the
detector and dashed rectangular boxes are the rediscovered detections produced by our approach. The regions surrounded by yellow
curves form a supervoxel.

FIGURE 4. (a)This is a perspective in the video scene(MOT16-10); the following shaded area represents the ground plane; the
upper shadow area represents the head of the pedestrian and the area above pedestrian. We can see that the pedestrians
eventually disappear in the perspective vanishing point. (b)Histogram of distance distribution between detections and fitted
plane with top 25% confidence of detection set in the video sequence MOT16-10.

used to form two superpixel correlation trees. We select two
supervoxels with the minimum score corresponding to the
forward and backward association. The object is discovered
again, with the association betweenVmin(a branchwith amin-
imum score by Eq .8) and the contextual original detection
set {Di}. As previously mentioned, the following approach is
forward association.

Supervoxel Vmin includes a sequence of superpixels
{sti0 , s

t+1
i1
, · · · , st+τiτ }, some of which belong to detections.

The superpixel that is not located in the detection is a
potential object. If Di and sj belong to the same frame,
and Pos(sj) ∈ Di(i.e., coordinate mean of the superpixel sj
located in detection Di), we define Di and sj as matched.
Therefore, we obtain a sequence of matching detections
{Dt+k1

ik1
,Dt+k2

ik2
, · · · ,Dt+kl

ikl
}l≤τ .

The detection sequence {Dt+k1
ik1

,Dt+k2
ik2

, · · · ,Dt+kl
ikl
} is dis-

continuous, so it is used to discover the object in frame
{t, t + 1, · · · , t + τ }\{t+k1, t+k2, · · · , t+kl}. Thesemissed
pedestrian positions are fully filled by polynomial interpo-
lation based on contextual detection. To avoid redundancy,
i.e., two observations occupying the same position, we use the
NMS (non-maximal suppression) algorithm for rediscovered
detection. Figure3 shows that the supervoxel surrounded by
the yellow curve connect the partial and complete visually
visible pedestrians. The dashed rectangular boxes are the
discovered pedestrians produced by our approach.

As shown in Figure 2(f), there are now three kinds of
nodes in the tracking tree: the original nodes(obtained by
the detector), the rediscovered nodes and the dummy nodes
(labeled 0). The dummy nodes are obtained by Kalman filter
which represents the completely occluded objects. Both the
original and rediscovered nodes are used in tracking.

B. OBJECT CONFIDENCE ADJUSTMENT
By fusing the supervoxel and the original detection, the object
rediscovery approach joins the partially occluded objects in
the tracking. However, we find that there is a problem with
the confidence of the detection set, and some abnormal detec-
tions are still given high confidence. We use the relationship
among detections to determine height perceptive and perform
confidence refinement without using any camera parameters.

According to the perspective principle, the objects in a
relatively stable camera have a similar height at the same
ground position(Figure 4(a)). In other words, every object has
a perspective height in a 2-D image. We use the detections
that have the top 25% confidence in the detection set and set
them to fit a 3-D plane. Figure 4(b) shows that the difference
between the original detection height and the fitted plane falls
along a normal distribution with 0 as the approximate mean.

Without loss of generality, we assume that the height of a
human obeys normal distribution N (h, σ 2), where h = 1.7m
and σ = 0.3. Hence, for a perspective height h̃, it obeys a
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normal distribution N (h̃, σ̃ 2), where σ̃ = σ ∗ h̃/h. The per-
spective height is used to refine the confidence of detection.
When the height of the detection is abnormal, it is given a low
score. The refined function is defined as follows:

Cnew
i =

√
2πσ̃ ∗ p(h̃i) ∗ Ci, (9)

where p(h̃i) is the probability density function of normal
distribution N (h̃, σ̃ 2), Ci is the confidence of detection Di,
h̃i is the perspective height of detection Di and Cnew

i is the
refined confidence.

For a moving camera, the ground in the scene is variable,
but the effect is slight for the perspective model. At the same
time, to minimize the impact of scene changes, we select
50 frames as a slidingwindow, i.e., every 50 frameswe update
a perspective model.

C. PAIRWISE EDGES ASSOCIATION ENHANCEMENT
The original MHT framework uses motion and appearance
features to associate detection but the similarity between
occluded and completely visible objects is usually low.
In Sec. IV-B, evaluation score Q(V) of supervoxel V reflects
the similarity of two objects and can maintain a strong corre-
lation for the occluded object.

Figure 2(f) shows two detection nodes that satisfy motion
constraints(associated by red edges) and supervoxel con-
straints(associated by blue edges). While the appearance
constraints(associated by yellow edges) cannot be satisfied,
we still add it to the multiple hypothetical tracking.

For a hypothesis trajectory {Dt+1
i1
,Dt+2

i2
, · · · ,Dt+k

ik }, we
remove the dummy nodes(obtained by Kalman filter) to
obtain the sequence {Dt+m1

im1
,Dt+m2

im2
, · · · ,Dt+ml

iml
}. The super-

voxel cost of the two adjacent detections (Dt+mj
imj

,Dt+mj+1
imj+1

) is
defined as:

SVCost(Dt+mj
imj

,Dt+mj+1
imj+1

) = min{Q(Vi)} (10)

where all Vi are the supervoxels that go through
(Dt+mj

imj
,Dt+mj+1

imj+1
), i.e., supervoxel’s start and end nodes are

located in the two detections.
When we evaluate the quality of multiple hypothetical

trajectories, we do not only consider appearance and motion
constraints because it is possible to remove appropriate trajec-
tories due to the appearance difference caused by short-term
object occlusion or turn-back. We also used the supervoxel
cost to evaluate a hypothetical trajectory. For a trajectory that
does not satisfy the cost of the appearance, we still retain this
hypothetical trajectory if it satisfies the supervoxel cost.

The formula of the supervoxel association cost for a
hypothesis of tracking tree is calculated as follows:

Sc =
l−1∑
j=1

SVCost(Dt+mj
imj

,Dt+mj+1
imj+1

). (11)

The supervoxel association cost scores reflect the correlation
similarity of the hypothetical trajectory.

VI. EXPERIMENTS
We performed several experiments to evaluate our approach.
The quantitative results showed the superiority in partial
occlusion scenes.
Datasets: We used MOT benchmark in our experiments

including MOT15 [30] and MOT16 [31]. The datasets were
a combination of multiple sets that included sequences from
both the PETS [34] and KITTI [35] datasets. There were
22 challenging video sequences in MOT15 (11 training,
11 test) and 14 sequences in MOT16 (7 training, 7test). The
sequences covered several different types of tracking prob-
lems, including directions, variable speed, different density
of pedestrians and long-term occlusions. The detections are
provided by the MOT benchmark.
Parameters: For extending function E(sti , s

t+1
j ) and the

evaluation functionQ(Vi), each variable is regularized, which
solves the problem that the data scale was not uniform. Thus,
our approach makes it easier to add more features in the
future.
Metrics: We analyzed the integrity of the nodes that con-

structed the multiple hypothesis tree using the ground truth
of tracking as the benchmark. We used comprehensive eval-
uation metrics recall (Rcll↑), precision (Prcn↑) and F-Score
(F-Sc↑, the harmonic mean of precision and recall), where
F-Sc = 2 ∗ Rcll ∗ Prcn/(Rcll + Prcn). We followed the cur-
rent popular CLEARMOT [36] metrics to evaluate the track-
ing performance. The metrics included the multiple object
tracking accuracy (MOTA↑) and multiple object tracking
precision (MOTP↑). MOTA reflected the tracking accuracy
which combined false positives(FP↓), false negatives(FN↓)
and identity switches (IDS↓) of the predicted trajectories.
MOTP showed the tracking precision, which measured the
localization difference between the output trajectories and
the ground truth trajectories. The number of mostly tracked
objects (MT↑,> 80%overlap) andmostly lost objects (ML↓,
< 20% overlap) reflected a temporal coverage of output
trajectories. We also used the current popular IDF1 [37](↑),
which identified detections over the average number of
ground-truth and computed detections. The ↑ indicated the
higher the better, while the ↓ indicated the lower the better.

A. EFFECTIVENESS ANALYSIS IN TRACKING
We used our approach on the MOT16 Benchmark and
analyzed some intermediate results. Table. 1 shows the
detailed quantitative tracking results for each video sequence,
in which the All(ours) depicted the result of all seven test
video sequences.

Compared to the MHT_basic(obtained by running pub-
lished source code), more accurate detections were added to
the trajectory (10988 true positive increase), ensuring that
the false positive remained low(only increased by 2701).
Rcll increased by 6.0% overall in the seven video sequences
and more trajectories were tracked completely. The number
of MT rose from 103 to 131 and the ML dropped from
356 to 324. The comprehensive evaluation metric MOTA
increased by 4.5%.

VOLUME 7, 2019 2113



H. Sheng et al.: Enhanced Association With Supervoxels in MHT

TABLE 1. Tracking results of MOT16 benchmark.

TABLE 2. Detection results of the MOT15_train and MOT16_train. The
bold font indicates better performance on each metric.

1) INTEGRITY ANALYSIS OF TRACKING NODES
We predicted the position of partially occluded pedestrians
through a detection rediscovery algorithm(Sec. V-A), which
led to an increase in the number of detections. Using perspec-
tive theory( Sec. V-B), we obtained a lower confidence score
for abnormal detection through our confidence adjustment
algorithm, which made the quality evaluation of the detection
more accurate.

In Table. 2, compared to the original detection(obtained
by [30] and [31]) with no further processing, our EAS
approach(Sec. V-A and V-B) obtained better results in the
integrity of tracking nodes. While increasing the number of
detections, we deleted some detections with low confidence
scores in analyzing integrity because our evaluation criteria
for detection were more accurate. The detections with low
scores tended to be incorrect. We significantly improved the
Prcn and F-Sc by using a detection rediscovery approach
while still maintaining Rcll. We accurately estimated the
position of a large number of partial occlusion detections.
We also decreased the FP which means that more incorrect
detections were deleted using our approach, along with a
slight decrease in TP.

2) DISTRIBUTION OF ASSOCIATED EDGES
In the association process, we introduced the supervoxel
association approach(Sec. V-C). It linked more much par-
tially occluded detection and avoided incorrect elimination
of brunch.

As we discussed in Sec. V-C, we used three kinds of
edges(motion, appearance, and supervoxel) to associate the
object. In tracking, motion(the movement between adjacent
frames was limited and had certain regularity) was a nec-
essary constraint, and we associated two objects if appear-
ance or supervoxel was satisfied. In Table. 3 we counted the
usage distributions of different edges during constructing the
multiple hypothesis tree.

Our supervoxel association approach(Sec. V-C) had bet-
ter robustness for partially occluded pedestrians. It allowed

TABLE 3. Association result change in MOT15 and MOT16. ’without’ is the
original linking result( [8]). ’with supervoxel’ is the result using our
supervoxel association. The count units are in million.

TABLE 4. Tracking results comparison of MOT16 benchmark.

more partially occluded pedestrians to join the trajectory.
As shown in Table. 3, compared to the originally asso-
ciated edges(linking approach in [8], i.e. satisfying space
and appearance constraint), our associated edges approach
(i.e., considering supervoxel association) improved the
effective association of 5% to 8%.

B. COMPARISON WITH STATE-OF-THE-ART
As shown in Table. 4, our approach was compared in
the MOT16 Benchmark with JMC [38], JPDA_m [39],
NOMT [40], NLLMPa [41], GCRA [42] andMHT_DAM[8].
The last row of Table. 4 presented the tracking results of
our EAS approach. The tracking result of our approach
was significantly higher than the baseline algorithm [8]
approach(MHT_basic in Table. 4) on many metrics. Com-
pared to the current popular algorithms, EAS achieved
approximate state-of-the-art results. Our approach found and
associated more partial occlusion objects. This has greatly
ameliorated on Rcll, MT and FN. In terms of various metrics,
our algorithms have achieved competitive results.

Figure 5 shows the visual tracking results of the video
sequence MOT16-03 by our approach. The pedestrian(with
a yellow box) was continuously tracked. However, it failed
in the MHT( [8]) approach, due to the occlusion and inac-
curacy association. In addition, some pedestrians(e.g., with
blue boxes in Figure 5) lacked the corresponding detection in
the original detection set. It was earlier added to the trajec-
tory using our approach. Many false detections(e.g., with red
boxes in Figure 5) did not join trajectories using our approach,
through giving appropriate confidence.
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FIGURE 5. The result of tracking on the sequences MOT16-03. The top row is the benchmark(MHT) method, and the bottom row is the result obtained
by our method. The red box indicates the error trajectory under the original confidence description. The yellow box indicates the complete pedestrian
trajectory including partial occlusion. The blue box indicates the pedestrian that was earlier added to the trajectory.

TABLE 5. Tracking results comparison to MOT15 benchmark.

To prove effectiveness in different datasets, we also eval-
uated our approach in the MOT15 Benchmark as shown
in Table. 5. Our approach was compared with ELP [7],
SegTrack [9], JPDA_m [39], NOMT [40], AMIR15 [43],
RAR15pub [44], AM [45] and MHT_DAM [8]. Our method
still achieved excellent results in many metrics and obtained
approximate state-of-the-art results. The video sequence
scene type and detector in MOT15 were different from
MOT16. This proved that our EAS approach was effective
for different detectors.

We consistently outperformed previous algorithms in MT
and MOTA, due to the increase in Rcll and the decrease
in FN. Our approach identified more image evidence from
occluded and neighboring contextual objects, which allowed
the tracking model to accurately obtain more trajectories.

VII. CONCLUSION
This paper proposes a novel enhanced association with super-
voxels(EAS) method for multiple object tracking in complex
scenes where partial occlusion frequently occurs. For object
association, a supervoxel with superior ability for resisting
occlusion is introduced, which makes full use of contextual
information. EAS rediscovers detection for partially occluded
objects by utilizing the relationship between existing detec-
tions and supervoxels. EAS estimates the perspective height
of pedestrians in the video and refines the confidence of
detections. The pairwise costs are proposed based on a novel
energy function that uses supervoxel association in tracking.

We show that our method has the ability to generate longer
andmore complete trajectories when partial occlusion occurs.
Experimental results show the obvious advantages of our
approach on tracking partially occluded objects in a set of
standard public video sequences.
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